Petri Nets

◆ Definitions
- **Source Transition**: a transition without any input place
 - is unconditionally enabled
- **Sink Transition**: a transition without any output place
 - consumes but does not create any tokens
- **Self-Loop**: \(P \) is both an input and output place of \(T \)
- **Pure Petri Net**: does not contain self-loops
- **Ordinary Petri Net**: all of the arc weights are unity, i.e. one.
- **Infinite Capacity Net**: assumes that each place can accommodate an unlimited number of tokens
- **Finite Capacity Net**: max. token-capacity \(K(P) \) defined for each \(P \)
- **Strict Transition Rule**: finite capacity net with additional rule that the number of tokens in each output place \(P \) of \(T \) cannot exceed its capacity \(K(P) \) after firing \(T \).

◆ Modeling Constructs

- **Concurrency**
 ![Concurrency Diagram](par begin \(\bullet \) par end)

- **Precendence**
 ![Precendence Diagram](\(\rightarrow \) \(\rightarrow \))

- **Conflict, choice or decision**
 - function: “exclusive OR”
 - only one transition can fire
 - weight: probability of taking that arc
 ![Conflict Diagram](0.9 \(\bullet \) 0.1)
Petri Nets

- Modeling Constructs
 - Synchronization
 - AND
 - joining several paths into a single path

Example

Fig. 8. A Petri net showing a dataflow computation for $x = \frac{a + b}{a - b}$.
Petri Nets

- **Modeling Constructs**
 - Time
 - need new concept \(\Rightarrow\) timed transition
 - timed transition has firing delay \(T\)
 - when transition is enabled, wait \(T\), then fire
 - tokens are consumed and created at the firing instance
 - timed Petri Net symbol

\[\downarrow T \]

- **Stochastic Petri Net**
 - \(T\) is not fixed
 - \(T\) = random variable with *exponential distribution*
Petri Nets

- Generalized Stochastic Petri Nets (GSPN)
 Adds extra constructs
 - Mixed transitions
 » stochastic and instantaneous transitions
 - Multiple Arcs

\[
\text{same as} \quad \begin{array}{c}
\circ \\
\downarrow \quad 2
\end{array}
\]

» needs 2 tokens to fire

Petri Nets

- Generalized Stochastic Petri Nets (cont.)
 - Inhibitory Arcs
 » token inhibits firing
 » obviously no token transfer
 » watch for deadlocks!

 - Multiple Inhibitory Arcs
 » needs at least N tokens to inhibit firing
 » less than N tokens \(\Rightarrow\) transition is firable
Petri Nets

- Reachability
 - fundamental basis for studying the dynamic properties of any system
 - firing of enabled transition will change token distribution
 - sequence of firings results in sequence of markings
 - marking M_n is reachable from M_0 if there exists a sequence of firings that transforms M_0 into M_n
 - firing sequence is denoted by
 - $\sigma = M_0 t_1 M_1 t_2 ... t_n$ or simply $\sigma = t_1 t_2 ... t_n$
 - in this case M_n is reachable from M_0 by σ
 - the set of all possible markings reachable from M_0 in a net (N,M_0) is denoted by $R(N,M_0)$ or simply $R(M_0)$
 - the set of all possible firing sequences from M_0 in a net (N,M_0) is denoted by $L(N,M_0)$ or simply $L(M_0)$

Petri Nets

- Reachability Graph
 - Petri Net with initial marking
 $$M(t_0) = \{m_1, m_2\} = \{2,0\}$$
 - Reachability Graph
 - add transitions to graph and…
 - Markov chain
Petri Nets

- **Reachability Graph**
 - Petri Net with initial marking
 \[M(t_0) = \{m_1, m_2, m_3\} \]
 - Reachability Graph

- **Boundedness**
 - A Petri net \((N, M_0)\) is said to be \(k\)-bounded (or simply bounded) if the number of tokens in each place does not exceed a finite number \(k\) of any marking reachable from \(M_0\), i.e., \(M(p) \leq k\) for every place \(p\) and every marking \(M \in R(M_0)\)
 - Example of 2-bound net
Petri Nets

- Liveness
 - closely related to the complete absence of deadlock in OS
 - A Petri net \((N,M_0)\) is said to be live (or equivalently \(M_0\) is said to be a live marking of \(N\)) if, no matter what marking has been reached from \(M_0\), it is possible to ultimately fire any transition of the net by progressing through some further firing sequence.

A live Petri net guarantees deadlock-free operation, no matter what firing sequence is chosen.
However, this property is costly to verify, e.g. for large systems.

Petri Nets

- How did we get the net of the candy machine?
 - identify places needed

\[
\begin{align*}
5 & \quad 15 \\
0 & \\
10 & \quad 20
\end{align*}
\]
Petri Nets

- Example: candy machine
 - identify paths from places to places and the events that get you there (interpret the numbers as “deposit x cents”.

![Petri Net Diagram]

Petri Nets

- Example: candy machine
 - transition events: “deposit x cents”

![Petri Net Diagram]
Petri Nets

- Example: candy machine
 - final Petri net

![Petri Net Diagram]

GSPN

- gspn model name (opt. param. list) (See language description)
 - 1. List all places and initial marking
 - place-name expr for init num of tokens
 - 2. List all timed trans. and rates
 - trans-name ind expr for rate
 - trans-name dep place-name expr for base rate
 - 3. List instant. trans. and branch weights
 - trans-name ind expr for weight
 - trans-name dep place-name expr for base weight
 - 4. List all place to trans. arcs
 - place-name trans-name expr for mult.
 - 5. List all trans. to place arcs
 - trans-name place-name expr for mult.
 - 6. List all inhibitory arcs
GSPN

- Some general notes
 - Recall: reachability graph is Markov.
 - Most functions compute CDF of “time to absorption” in reachability graph.
 - Must ensure net is “dead” at desired point, e.g.:
 » when 1st token enters “Failure” place,
 » when exactly k-of-N nodes are faulty,
 » when exactly k-of-N nodes are still up,
 - Need Inhibitory arcs from “Failure” back to all timed transitions.
 » Causes net to become dead at instant of failure.
 » Otherwise absorption could occur well after failure.

GSPN

- Useful Functions
 - etokt (t; model name, place-name {; args})
 » Expected num of tokens in place at time t.
 - etok (model name, place-name {; args})
 » Steady state average of same thing (no t parameter).
 - premptyt (t; model name, place-name {; args})
 » Probability place is empty at time t,
 » Useful for tracking failure modes,
 » Warning: Do not use (1 - premptyt) !!!
 - prempty (model name, place-name {; args})
 » Steady state average of same thing (no t parameter).
GSPN

♦ Useful Functions
 - `tput`, `tputt`, `taveputt`
 » Difference is point-in-time of analysis.
 » Function:
 ■ The “throughput” of a transition
 ■ The “firing rate” of the transition
 » More useful in Performance models (jobs/sec).
 » `tput`: throughput for transition
 » `tputt`: throughput for transition at time t
 » `taveputt`: time-averaged throughput of a transition during interval (0,t)

GSPN

♦ Useful Functions
 - `util`, `utilt`, `taveutil`
 » Difference is point-in-time of analysis
 » Function:
 ■ The “utilization” of a timed transition
 ■ The fraction of time it is enabled.
 ■ Also useful in Performance models (proc. util).
 » `util`: utilization for a transition
 » `utilt`: utilization for a transition at time t
GSPN Example

◆ K-of-N System: Model A

* SYSTEM: K of N SYSTEM. ALTERNATE MODEL DEMONSTRATION
* MODELS: GSPN

epsilon results 1.0*10^(-11)
epsilon basic 1.0*10^(-13)
format 3

*------------------------- MODEL DEFINITION -- MODEL A
 gspn KofN_A (K,N)
 *
 * 1. INITIAL MARKING M(0) P_NAME TOKENS
 n_up N
 n_dn 0
 end
 *
 * 2. TIMED TRANSITIONS T_NAME ind RATE (or) T_NAME dep P_NAME RATE
 flt dep n_up lambda
 end
 *
 * 3. INSTANT. TRANSITIONS T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
 end
 *
 * 4. PLACE - TRANS ARCS P_NAME T_NAME MULT
 n_up flt 1
 end
 *
 * 5. TRANS - PLACE ARCS T_NAME P_NAME MULT
 flt n_dn 1
 end
 *
 * 6. INHIBITORY ARCS P_NAME T_NAME MULT
 n_dn flt (N-K+1)
 end
GSPN Example

- K-of-N System: Model B

```plaintext
*------------------------- MODEL DEFINITION -- MODEL B
gspn KofN_B (K,N)

* 1. INITIAL MARKING M(0) ...................................... P_NAME TOKENS
   n_up     N
   n_dn     0
   SYS_FAIL 0
   end

* 2. TIMED TRANSITIONS ........... T_NAME ind RATE (or) T_NAME dep P_NAME RATE
   flt dep n_up lambda
   end

* 3. INSTANT. TRANSITIONS .... T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
   fail_sys  ind  1
   end

* 4. PLACE - TRANS ARCS .............................. P_NAME T_NAME MULT
   n_up flt 1
   n_dn fail_sys (N-K+1)
   end

* 5. TRANS - PLACE ARCS .............................. T_NAME P_NAME MULT
   flt n_dn 1
   fail_sys SYS_FAIL 1
   end

* 6. INHIBITORY ARCS ................................. P_NAME T_NAME MULT
   SYS_FAIL flt 1
   end
```
GSPN Example

◆ K-of-N System: Model C

*------------------------- MODEL DEFINITION -- MODEL C
 gspn KofN_C (K,N)
* 1. INITIAL MARKING M(0) P_NAME TOKENS
 n_up N
 n_dn 0
 sys_up 1
 SYS_FAIL 0
 end
* 2. TIMED TRANSITIONS T_NAME ind RATE (or) T_NAME dep P_NAME RATE
 flt dep n_up lambda
 end
* 3. INSTANT. TRANSITIONS T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
 fail_sys ind 1
 end
* 4. PLACE - TRANS ARCS P_NAME T_NAME MULT
 n_up flt 1
 sys_up fail_sys 1
 end
* 5. TRANS - PLACE ARCS T_NAME P_NAME MULT
 flt n_dn 1
 fail_sys SYS_FAIL 1
 end
* 6. INHIBITORY ARCS P_NAME T_NAME MULT
 n_up fail_sys K
 SYS_FAIL flt 1
 end