Stand-by Redundancy

- When primary component fails, standby component is started up.
- Stand-by spares are cold spares => unpowered
- Switching equipment assumed failure free

Let X_i denote the lifetime of the i-th component from the time it is put into operation until its failure.

System lifetime:

$$X_{sys} = \sum_{i=1}^{n} X_i$$

Stand-by Redundancy

- **MTTF**
 $$E(X) = \frac{n}{\lambda}$$

 - gain is linear as a function of the number of components, unlike the case of parallel redundancy
 - added complexity of detection and switching mechanism
M-of-N System

Starting with \(N \) components, we need any \(M \) components operable for the system to be operable.

Example: TMR

\[
R_{\text{TMR}}(t) = R_1(t)R_2(t)R_3(t) + R_1(t)R_2(t)(1 - R_3(t)) \\
+ R_1(t)(1 - R_2(t))R_3(t) + (1 - R_1(t))R_2(t)R_3(t)
\]

Where \(R_i(t) \) is the reliability of the \(i \)-th component

if \(R_1(t) = R_2(t) = R_3(t) = R(t) \) then

\[
R_{\text{TMR}}(t) = R^3(t) + 3R^2(t)(1 - R(t)) \\
= R^3(t) + 3R^2(t) - 3R^3(t) \\
= 3R^2(t) - 2R^3(t)
\]

M-of-N System

The probability that exactly \(j \) components are not operating is

\[
\binom{N}{j} Q^j(t) R^{N-j}(t) \quad \text{with} \quad \binom{N}{j} = \frac{N!}{j!(N-j)!}
\]

then

\[
R_{MofN}(t) = \sum_{i=0}^{N-M} \binom{N}{i} Q^i(t) R^{N-i}(t)
\]
Reliability Block Diagram

- Series Parallel Graph
 - a graph that is recursively composed of series and parallel structures.
 - therefore it can be “collapsed” by applying series and/or parallel reduction
 - Let C_i denote the condition that component i is operable
 » 1 = up, 0 = down
 - Let S denote the condition that the system is operable
 » 1 = up, 0 = down
 - S is a logic function of C’s

- Example:

\[
S = (C_1 + C_2 + C_3)(C_4 C_5)(C_6 + C_7 C_8)
\]

+ => parallel (1 of N)
. => series (N of N)
K of N system

- Example 2-of-3 system

\[S = (C_1C_2 + C_1C_3 + C_2C_3) \]

may abbreviate

\[S = \frac{2}{3} (C_1C_2C_3) \]

draw as parallel

![Diagram of 2-of-3 system](image)

Example: Bus-Guardian

- assume \(\lambda \) for transistor & logic \(\lambda = 2 \times 10^{-5} \)
- 50/50 split: fail-on/fail-off

Two failure states for system

- \(Q_A = \) failed active (babbling) with \(\lambda_A \)
- \(Q_P = \) failed passive with \(\lambda_P \)
Example: Bus-Guardian

\[\lambda = 2 \times 10^{-5} \]
\[\lambda_A = 1 \times 10^{-5} \]
\[\lambda_p = 1 \times 10^{-5} \]

\[MTTF = \frac{1}{\lambda} = 5 \times 10^4 \]
\[MTTF_A = \frac{1}{\lambda_A} = 10^5 \]
\[MTTF_p = \frac{1}{\lambda_p} = 10^5 \]

for each stage

Example: Bus-Guardian

◆ Active Failure
 - if any one bus guardian is correct then no babble possible
 - thus we use 1-of-N parallel system model

\[Q(t) = \prod_{i=1}^{3} Q_i(t) \]

with \[Q_i(t) = 1 - e^{-\lambda_i t} \]
Example: Bus-Guardian

- Solution - Parallel
 » if any one bus guardian is correct then no babble possible
 » 1-of-N parallel system model

\[Q(t) = (1 - e^{-\lambda_A t})(1 - e^{-\lambda_A t})(1 - e^{-\lambda_A t}) \]
\[= 1 - 3e^{-\lambda_A t} + 3e^{-2\lambda_A t} - e^{-3\lambda_A t} \]

e.g. with \(\lambda_A = 10^{-5} / h \) and \(t = 1000h \)
\[\lambda_A t = 0.01 \]

Example: Bus-Guardian

compute: \[Q(t) = 1 - 3e^{-\lambda_A t} + 3e^{-2\lambda_A t} - e^{-3\lambda_A t} \]

\[Q(1000h) = 1 - 3(0.9900498) + 3(0.9801987) - (0.9704455) \]
\[= 1.2 \times 10^{-6} \]

compute:
\[Q(t) = (1 - e^{-\lambda_A t})(1 - e^{-\lambda_A t})(1 - e^{-\lambda_A t}) \]
\[= (1 - e^{-\lambda_A t})^3 \]
\[Q(1000h) = 0.9851243 \times 10^{-6} \]

in general: danger of cancellation
=> catastrophic results,
=> legal issues (even though one should realize what the fail rates really mean)
Example: Bus-Guardian

\[\text{MTTF}_A = \int_0^\infty R(t)dt = \int_0^\infty 1 - Q(t)dt \]

\[= \int_0^\infty (3e^{-\lambda_A t} - 3e^{-2\lambda_A t} + e^{-3\lambda_A t})dt \]

\[= \left[-\frac{3}{\lambda_A} e^{-\lambda_A t} + \frac{3}{2\lambda_A} e^{-2\lambda_A t} - \frac{1}{3\lambda_A} e^{-3\lambda_A t} \right]_0^\infty \]

simplification:

\[e^{-\lambda_A t} = 0 \text{ as } t \to \infty \]

\[e^{-\lambda_A t} = 1 \text{ with } t = 0 \]

\[\text{MTTF}_A = \frac{3}{\lambda_A} - \frac{3}{2\lambda_A} + \frac{1}{3\lambda_A} \]

3 drivers result in approx. MTTF of twice and not three times that of single driver

\[= (3 - \frac{3}{2} + \frac{1}{3}) \times 10^5 \]

\[= 1.83 \times 10^5 \text{ h} \]

Example: Bus-Guardian

- **Passive Failure**
 - any one of \(N \) bus guardians can take out subsystem
 - thus we use series system model

\[R(t) = \prod_{i=1}^3 R_i(t) \]

\[= e^{-\sum_{i=1}^3 \lambda_i t} \]

\[= e^{-3\lambda t} \]

Given \(\lambda = 1 \times 10^{-5} \)

\[t = 1000 \text{h} \]

\[R(t) = e^{-3\lambda t} = 0.9704455 \]

\[\Rightarrow \text{MTTF} = \frac{1}{\lambda_{\text{sys}}} = 33333 \text{h} \]
Example: Bus-Guardian

- summary
 - active failure \Rightarrow parallel $\Rightarrow Q_A$
 - passive failure \Rightarrow series $\Rightarrow Q_P$
 - whole system fails if either mode occurs \Rightarrow series

![Diagram of series and parallel systems]

$$Q_A \quad Q_P$$

Example: Bus-Guardian

- summary

<table>
<thead>
<tr>
<th></th>
<th>Simplex</th>
<th>Triplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>$MTTF_A$</td>
<td>$1 \times 10^5 h$</td>
<td>$1.8 \times 10^5 h$</td>
</tr>
<tr>
<td>$MTTF_P$</td>
<td>$1 \times 10^5 h$</td>
<td>$0.33 \times 10^5 h$</td>
</tr>
<tr>
<td>$MTTF$</td>
<td>$0.5 \times 10^5 h$</td>
<td>$0.28 \times 10^5 h$</td>
</tr>
</tbody>
</table>

$$MTTF = \frac{MTTF_A \times MTTF_P}{MTTF_A + MTTF_P}$$
What is the unreliability Q_A?

- Two approaches to compute $Q(t)$ at 1000h

1) $$Q(t) = (1 - e^{-\lambda_A t})(1 - e^{-\lambda_A t})(1 - e^{-\lambda_A t})$$
 $$= 1 - 3e^{-\lambda_A t} + 3e^{-2\lambda_A t} - e^{-3\lambda_A t}$$

2) $MTTF_A = 1.8333 \times 10^5$

 using $MTTF = \frac{1}{\lambda}$ we compute λ and use
 $$Q(t) = (1 - e^{-\lambda t})$$

Now we compute $Q(1000)$ and ...

What is wrong?