System Diagnosis

- **Objective**
 - Designing systems that are capable of self-diagnoses of multiple faults

- **Motivation**
 - Multiprocessor systems employ increasing numbers of processors. Some of these processors will fail.
 - Applications include safety critical systems.
 - Inaccessible systems, e.g. remote, under water or ground, space.
 - “It is always good to know who your enemies are”.
System Diagnosis

- Assumptions
 - System is partitioned into *units*
 - units need not be identical
 - units are powerful enough to test and judge other units pass/fail.
 - Tests are adequate to detect all faults
 - perfect coverage. (This is very restrictive since it also implies faults to be permanent).
 - There exists a reliable method for collecting and evaluating all test results
 - e.g. reliable broadcast
 - These assumptions are often termed *PMC Model*, after early work by Preparata, Metze and Chien (1967)
System Diagnosis

- System Graph

- Definitions
 - Test graph $G = (U, E)$
 - U: the set of units
 - E: the set of testing links (edges)
 - a_{ij}: the outcome of test (U_i, U_j)
 - if U_i is non-faulty then
 - if U_j is non-faulty $\Rightarrow a_{ij} = 0$
 - if U_j is faulty $\Rightarrow a_{ij} = 1$
 - else a_{ij} is unreliable
System Diagnosis

- Example: single fault, U_1 faulty
 - Then $a_{51} = 1$ and $a_{12} = X$ (0 or 1)
 - Syndrome $S = \text{set of all outcomes}$
 - order all a_{ij}
 - $a_{12} \rightarrow a_{23} \rightarrow a_{34} \rightarrow a_{45} \rightarrow a_{51} \rightarrow X \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow X \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow X$
 - 2 cases
 - Single 1 in $a_{51} \Rightarrow U_1$ is faulty
 - note if U_5 was faulty, then $a_{45} = 1$
 - Pair of adjacent 1’s
 - the “upstream” 1 is correct
 - $a_{45} = 1$
System Diagnosis

- Definition: t-fault-diagnosable
 - Every set of up-to t faulty units can be correctly diagnosed (eventually).
 » Previous example is 1-fault-diagnosable
 » not 2-fault diagnosable
 ■ e.g. assume U1 and U2 faulty and $a_{12} = 0$
 ■ same syndrome as 1-fault-diagnosable example

- Definition: one-step t-fault-diagnosable
 - For every set of up-to t faulty units there exists a unique syndrome which correctly identifies all faulty units.
System Diagnosis

Definition: Sequential t-fault-diagnosable
- For every set of up-to t faulty units there exists a unique syndrome which correctly identifies at least one faulty unit.
- (Can be applied recursively)
System Diagnosis

- Example: dual fault
 - Assume U_1 and U_2 are both faulty
 » $(a_{12}, a_{23}, a_{34}, a_{45}, a_{51})$
 » $(X, X, 0, 0, 1)$
 - Could mimic single fault at U_1
 » i.e. $(0, 0, 0, 0, 1)$
 - But, pattern 001 always points to a faulty unit
 » thus remove U_1 and reconfigure
 » $(a_{23}, a_{34}, a_{45}, a_{52})$
 » $(X, 0, 0, 1)$
 » still have 001 pattern => U_2 diagnosed to be faulty
System Diagnosis

- Example: dual fault
 - Assume U_1 and U_3 are both faulty
 » $(a_{12}, a_{23}, a_{34}, a_{45}, a_{51})$
 » $(X, 1, X, 0, 1)$
 - Now possible pattern
 » $(1, 1, 1, 0, 1)$
 » still points to one faulty unit $\Rightarrow U_1$
 » after reconfiguration
 ■ $(a_{23}, a_{34}, a_{45}, a_{52})$
 ■ $(1, X, 0, 0)$
 » points to one faulty unit $\Rightarrow U_3$
System Diagnosis

- Necessary and Sufficient Conditions
 - \(t \) = # of faults
 - \(n \) = # of units
 - \(N \) = # of testing links
 - One-step \(t \)-fault-diagnosable system
 \[n \geq 2t + 1 \]
 - each unit is tested by more than \(t-1 \) other units (or: at least \(t \))
 - this implies \(N \geq n \cdot t \)
 - optimal: replace \(\geq \) with =
 - Sequentially \(t \)-fault-diagnosable system
 \[n \geq 2t + 1 \quad \text{necessary} \]
 \[N \geq n + 2t - 2 \quad \text{and sufficient} \]
System Diagnosis

- Single Loop System (Ring)
 - Let \(t = 2m + \lambda \)

 \[
 \text{integer } 0 \text{ or } 1 \text{ (even or odd)}
 \]

 - Loop is sequentially \(t \)-fault-diagnosable if

 \[
 n \geq 1 + (m + 1)^2 + \lambda(m + 1)
 \]

 proof given in paper Pre67

 - e.g.

 \[
 \begin{align*}
 t = 1 & \Rightarrow m = 0, \quad \lambda = 1, \quad n = 1 + 1 + 1 = 3 \\
 t = 2 & \Rightarrow m = 1, \quad \lambda = 0, \quad n = 1 + 2^2 + 0 = 5 \\
 t = 3 & \Rightarrow m = 1, \quad \lambda = 1, \quad n = 1 + 2^2 + 2 = 7
 \end{align*}
 \]
System Diagnosis

- Inefficiency of PMC
 - PMC requires for t-diagnosability, that each node must be tested by at least t other nodes.
 - Problem: many diagnosis!
 - Alternative: adaptive models
 » the term adaptive stems from allowing the choice of which test(s) to perform depend on the results of previous tests.
System Diagnosis

- Adaptive Distributed System Diagnosis
 - “Implementation of On-Line Distributed System-Level Diagnosis Theory” by Bianchini and Buskens, Trans. on Computers, May 1992
 - Uses array TESTED_UP_X at each node n_X
 - Meaning of TESTED_UP_X[i]
 - TESTED_UP_X[i] = j implies that node n_X has received information from fault-free node n_i, that n_i found n_j to be fault-free.
 - Idea:
 - each node finds first node that is fault-free
 - n_i checks n_j j > i mod N, where N is the number of nodes.
 - get other TESTED_UP_i values from TESTED_UP_j
 - implies that node n_X has received information from fault-free node n_j, that n_i found n_j to be fault-free.
System Diagnosis

Example: assume nodes 1, 4 and 5 are faulty

Bia92, fig 4 and 6
System Diagnosis

- Adaptive Distr.Sys.Diag. Algorithm (Bia92 fig 5)

```c
/* ADAPTIVE_DSD
 /* The following is executed at each n_x, 0 ≤ x ≤ N-1 at predefined */
 /* testing intervals. */
1. y = x;
2. repeat {
2.1. y = (y + 1) mod N;
2.2. request n_y to forward TESTED_UP_y to n_x;
2.3. } until (n_x tests n_y as “fault-free”);
3. TESTED_UP_x[x] = y;
4. for i = 0 to N-1
4.1. if (i ≠ x)
4.1.1. TESTED_UP_x[i] = TESTED_UP_y[i];
```

(Bia92 fig 5)
System Diagnosis

- Diagnosis
 - accomplished at any node \(n_x \) by following the fault-free paths from \(n_x \) to other fault-free nodes.

```c
/* DIAGNOSE */
/* The following is executed at each \( n_x \), \( 0 \leq x \leq N-1 \) when \( n_x \) desires diagnosis of the system. */
1. `for i = 0 to N-1`
1.1. `STATE_x[i] = faulty;`
2. `node_pointer = x;`
3. `repeat {`
3.1. `STATE_x[node_pointer] = fault-free;`
3.2. `node_pointer = TESTED_UP_x[node_pointer];`
3.3. `} until (node_pointer == x);`
```

Bia92 fig. 7