Fault Models

- Much work has been done on fault models. The discussion is based on the paper:
 - There is an interesting follow-up paper "Verification of Hybrid Byzantine Agreement Under Link Faults" by P. Lincoln and J. Rushby that addresses a problem in the algorithm of Thambidurai and Park.
Fault Models

- Benign versus Malicious
 - Benign
 - error is self-evident
 - component does not undergo incorrect state transition during failure
 - examples:
 - omission fault
 - crash fault
 - timing fault
 - data out-of-bound
Fault Models

- Malicious
 - not self-evident to all non faulty receivers
 - can behave in two ways
 - symmetric
 - received identically by all processors
 - asymmetric
 - no restrictions of fault => anything goes

- Fault frequency
 - worse case every fault could behave asymmetric
 - best case all faults are benign
 - what is the best assumption for your system?
Fault Models

- Fault Taxonomy

- Relationship & Probability of Occurrence
 - note: this is not a venn diagram!
Fault Models

- Lamport Model
 - assumes that every fault is asymmetric

\[N \geq 3t + 1 \]
\[r' \geq t + 1 \quad \text{or} \quad r \geq t \quad \text{rebroadcasts} \]

- Meyer + Pradhan 87
 - differentiates between malicious and benign faults

\[N > 3m + b \]
\[r > m \]
\[m = \text{number of malicious faults} \]
\[b = \text{number of benign faults} \]
Fault Models

- Thambidurai + Park 88
 - difference between malicious faults
 - symmetric faults
 - asymmetric faults
 - result:

\[N > 2a + 2s + b + r \]

\[r \geq a \]

- a = asym., s = sym., b = benign, r = rounds
- in general \(a_{\text{max}} < s_{\text{max}} < b_{\text{max}} \)
- or \(\lambda_a << \lambda_s << \lambda_b \)
- saves rounds and hardware
Fault Models

- Advantages of multi-fault model
 - 1) more accurate model of the system
 » less “overly conservative”
 - 2) resulting reliabilities are better
 » custom tailor recovery mechanisms
 » Example:
 - consider Byzantine solution using OM() algorithm
 - assume N = 4, 5, 6
 - still, only one fault is covered using the OM algorithm
 - moreover, the system reliability degrades
 - N = 6 results in worse reliability than N = 4
 - one is better off to turn the additional processors off!
 » see paper Tha88, page 98, table 1
Fault Models

Source: Tha88

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>$P(\text{Failure})$</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>5</td>
<td>1.0×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>6</td>
<td>1.5×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>UM</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary, $b = 0$, $s = 0$</td>
</tr>
<tr>
<td>UM</td>
<td>5</td>
<td>1.0×10^{-11}</td>
<td>1 arbitrary, $b = 1$, $s = 0$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>2.0×10^{-11}</td>
<td>1 arbitrary, $b = 0$, $s = 1$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>1.1×10^{-15}</td>
<td>1 arbitrary, $b = 2$, $s = 0$</td>
</tr>
</tbody>
</table>

Table 1: Reliability data for Example 1
Fault Models

Source: Tha88

<table>
<thead>
<tr>
<th>(r = 1)</th>
<th>(a = 0)</th>
<th>(a = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(b = 0)</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>(b = 1)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>(b = 2)</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>(b = 3)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>(b = 4)</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>(b = 5)</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>(b = 6)</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: Resiliency of a System based on the Unified Model (minimum number of processors required)
Fault Models

3) smarter degradation
 » we can specify the number of rounds
 » example using $N = 11$
 ■ let subscript max denote the maximum number of faults covered, assuming this is the only type of fault occurring.
 ■ if $r = 1$ then $a_{\text{max}} = 1$ or $s_{\text{max}} = 4$
 ■ if $r = 2$ then $a_{\text{max}} = 2$ or $s_{\text{max}} = 4$
 why? $s_{\text{max}} = 4 \Rightarrow N > 2 \times 4 + 2 = 10$
 $s_{\text{max}} = 5 \Rightarrow N \neq 2 \times 5 + 2 = 12$

requirements for success
 » good estimate of fail rates $\lambda_a, \lambda_s, \lambda_b$
 ■ typically $\lambda_a \ll \lambda_s \ll \lambda_b$
 » good estimate of recovery rates ρ_a, ρ_s, ρ_b
 ■ typically $\rho_a < \rho_s < \rho_b$
Agreement algorithms

- Azadmanesh & Kieckhafer
 - partitions further into transmissive and omissive cases of malicious faults
Agreement algorithms

- **Incomplete Interconnections**
 - Lam82, Dol82
 - agreement only if the number of processors is less than 1/2 of the connectivity of the system’s network.

- **Eventual vs. Immediate Byz. Agreement (EBA, IBA)**
 - recall interactive consistency conditions IC1, IC2
 - an agreement is **immediate** if in addition to IC1 and IC2 all correct processors also agree (during the round) on the round number at which they reach agreement.
 - otherwise the agreement is called **eventual**
 » each processor has decided on its value, but cannot synchronize its decision with that of the others until some later phase.
 » Thus, agreement may not always need full t+1 rounds
Agreement algorithms

- Lamport OM \(N \geq 3m + 1 \quad r = m + 1 \)
- Lamport SM \(N \geq m + 2 \quad r \geq m + 1 \)
- Davis+Wakerly \(N \geq 2t + 1 \quad S = t + 1 \)
- Meyer+Pradhan \(N > 3m + b \quad r \geq m \)
- Thambidurai+Park \(N > 2a + 2s + b + r \quad r \geq a \)

- Dol82a (EBA) \(N > t^2 + 3t + 4 \quad r = \min(f + 2, t + 1) \)