Signed Messages

- Traitors ability to lie makes Byzantine General Problem so difficult.
- If we restrict this ability, then the problem becomes easier.
- Use authentication, i.e. allow generals to send unforgeable signed messages.
Signed Messages

Assumptions about Signed Messages
A1: every message that is sent is delivered correctly
A2: the receiver of a message knows who sent it
A3: the absence of a message can be detected
A4: a loyal general’s signature cannot be forged, and any alteration of the contents of his signed messages can be detected. Anyone can verify the authenticity of a general’s signature

Note: no assumptions are made about a traitor general, i.e. a traitor can forge the signature of another traitor.
Signed Messages

- Signed message algorithm assumes a *choice* function
 - if a set V has one single element v, then $\text{choice}(V) = v$
 - $\text{choice}(\emptyset) = R$, where \emptyset is the empty set
 - RETREAT is default
 - $\text{choice}(A,R) = R$
 - RETREAT is default
 - set V is **not** a multiset (recall definition of a multiset)
 - thus set V can have at most 2 elements, e.g. $V = \{A,R\}$.
Signed Messages

- Signing notation
 - let \(v:i \) be the value \(v \) signed by general \(i \)
 - let \(v:i:j \) be the message \(v:i \) counter-signed by general \(j \)

- each general \(i \) maintains his own set \(V_i \) containing all orders he received

- Note: do not confuse the set \(V_i \) of orders the general received with the set of all messages he received. Many different messages may have the same order.
BGP: Signed Message Solution

SM(m) -- from Lam82

Initially $V_i = \emptyset$

1) The commander signs and sends his value to every lieutenant

2) For each i
 A) If lieutenant i receives a message of the form $v:0$ from the commander and he has not yet received any order, then
 i) he lets V_i equal \{v\}
 ii) he sends the message $v:0:i$ to every other lieutenant
 B) If lieutenant i receives a message of the form $v:0:j_1:...:j_k$ and v is not in the set V_i, then
 i) he adds v to V_i
 ii) if $k < m$, then he sends the message $v:0:j_1:...:j_k:i$ to every lieutenant other than $j_1, ..., j_k$
Algorithm SM(m)

- the SM(m) algorithm for signed messages works for \(N \geq m + 2 \)
 i.e. want non faulty commander and at least one non faulty lieutenant

- How does one know when one does not receive any more messages?
 - by *missing message assumption* A3, we can tell when all messages have been received
 - this can be implemented by using synchronized rounds

- Now traitor can be detected!
 - e.g. 2 correctly signed values => general is traitor
Algorithm $SM(m)$

- example, general is traitor

Diagram:
- General
 - attack:0
 - retreat:0
 - attack:0:1
 - retreat:0:2
- lieutenant 1
- lieutenant 2
Algorithm SM(m)

- example, lieutenant 2 is traitor
Algorithm SM(m)

example:
- SM(0)
 » general sends $v:0$ to all lieutenants
 » processor i receives $v:0$ $V_i = \{v\}$
- SM(1)
 » each lieut. countersigns and rebroadcasts $v:0$
 » processor i receives ($v:0:1$, $v:0:2$, ..., $v:0:(N-1)$)
Algorithm SM(m)

- case 1: commander loyal, lieutenant j = traitor
 » all values except v:0:j are v
 \[v \in V_i \quad \forall \text{ loyal lieut. } i \]
 » processor j cannot tamper
 \[V_i = \{v\} \quad \forall \text{ loyal lieut. } i \]

- case 2: commander = traitor, => all lieut. loyal
 » all lieutenants correctly forward what they received
 ■ agreement: yes
 ■ validity: N/A
Algorithm SM(m)

- e.g.:
 - SM(2)
 - each lieut. countersigns and rebroadcasts all messages from the previous round
 - processor i has/receives
 - $v:0$
 - $v:0:1, v:0:2, ..., v:0:(N-1)$
 - $v:0:1:1, v:0:1:2, v:0:1:3, ..., v:0:1:N-1$
 - $v:0:2:1, v:0:2:2, v:0:2:3, ..., v:0:2:N-1$
 - $v:0:N-1:1, v:0:N-1:2, v:0:N-1:3, ..., v:0:N-1:N-1$

original message

after 1st rebroadcast

after 2nd rebroadcast
Algorithm \(SM(m) \)

- case 1: commander loyal, 2 lieutenants are traitors
 - want each loyal lieut to get \(V=\{v\} \)
 - round 0 => all loyal lieuts get \(v \) from commander
 - other rounds:
 - traitor cannot tamper
 - => all messages are \(v \) or \(\Phi \)

- case 2: commander traitor + 1 lieut. traitor
 - round 0: all loyal lieuts receive \(v:0 \)
 - round 1:
 - traitors send one value or \(\Phi \)
 - round 2:
 - another exchange (in case traitor caused split in last round)
 - traitor still can not introduce new value
 - => agreement: yes
 - validity: N/A
Algorithm SM(m)

- Cost of signed message
 - encoding one bit in a code-word so faulty processor cannot “stumble” on it.
 - e.g.
 - unreliability of the system $F_S = 10^{-10}/h$
 - unreliability of single processor $F_P = 10^{-4}/h$
 - want: Probability of randomly generated valid code word

$$P = \frac{10^{-10}}{10^{-4}} = 10^{-6} \approx 2^{-20}$$

- given 2^i valid codewords, want $(20+i)$ bits/signature
- e.g. Attack/Retrieve
 - $=> 2^1$
 - $=> 21$ bit signature
Agreement

Important notes:

- there is no way to guarantee that different processors will get the same value from a possibly faulty input device, except having the processors communicate among themselves to solve the Byz.Gen. Problem.
- faulty input device may provide meaningless input values
 » all that Byz.Gen. solution can do is guarantee that all processors use the same input value.
 » if input is important, then use redundant input devices
 » redundant inputs cannot achieve reliability. It is still necessary to insure that all non-faulty processors use the redundant data to produce the same output.
Agreement

- Implementing BGP is no problem
- The problem is implementing a message passing system that yields respective assumptions, i.e.:
 - A1: every message that is sent is delivered correctly
 - A2: the receiver of a message knows who send it
 - A3: the absence of a message can be detected
 - A4: a loyal general’s signature cannot be forged, and any alteration of the contents of his signed messages can be detected. Anyone can verify the authenticity of a general’s signature