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Outline 
Ø  What are Petri Nets; 

Ø  Definitions and basic concepts; 

Ø  Examples; 

Ø  Stochastic Petri Net (SPN); 

Ø   Generalized SPN and Stochastic Reward Net 
(SRN). 

A Monograph on this subject is: http://www.mfn.unipmn.it/
~bobbio/BIBLIO/PAPERS/ANNO90/kluwerpetrinet.pdf 
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Petri Nets 
Petri Nets (PN) are a graphical paradigm for the formal 
description of the logical interactions among parts or of 
the flow of activities in complex systems.    

PN are particularly suited to model: 

 
Ø  Concurrency and Conflict; 
Ø  Sequencing, conditional branching and looping; 
Ø  Synchronization; 
Ø  Sharing of limited resources; 
Ø Mutual exclusion. 
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Petri Nets 
Petri Nets (PN) originated from the Phd thesis of Carl 
Adam Petri in 1962. 

A web service on PN is managed at the University of 
Aarhus in Denmark, where a bibliography with more 
that 8,500 items can be found. 

  http://www.daimi.au.dk/PetriNets/ 

Regular International Conferences:  

⇒  ATPN - Application and Theory of PN  

⇒  PNPM – PN and Performance Models 
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Timed model were subsequently extensively explored, 
following two main lines: 

q  Random durations :                   Stochastic PN (SPN) 

q  Deterministic or interval:                Timed PN (TPN) 

Petri Nets 
The original PN did not convey any notion of time. 

For performance and dependability analysis it is 
necessary to introduce the duration of the events 
associated to PN transitions. 
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Definitions 
•  A Petri net (PN) is a bipartite directed graph 

consisting of two kinds of nodes: places and 
transitions 

–  Places typically represent conditions within the system 
being modeled  

–  Transitions represent events occurring in the system 
that may cause change in the condition of the system 

–  Arcs connect places to transitions and transitions to 
places (never an arc from a place to a place or from a 
transition to a transition) 
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Example of a PN 

p1 – resource idle 
p2 – resource busy 
t1 – task arrives 
t2 – task completes 

p1 

t2 

p2 

t1 
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Example of a PN 

p1 – resource idle 
p2 – resource busy  p3 – user    
t1 – task arrives 
t2 – task completes 

p1 

t2 

p2 

t1 p3 
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Definition of PN 

A PN is a n-tuple (P,T,I,O,M) 

P  set of places 
T  set of transitions 
I  input arcs 
O  output arcs 
M  marking 
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PN Definitions 

•  Input arcs are directed arcs drawn from places to 
transitions, representing the conditions that need 
to be satisfied for the event to be activated 

•  Output arcs are directed arcs drawn from 
transitions to places, representing the conditions 
resulting from the occurrence of the event 



11 

PN Definitions 

•  Input places of a transition are the set of 
places that are connected to the transition 
through input arcs 

•  Output places of a transition are the set of 
places to which output arcs exist from the 
transition 
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•  Tokens are dots (or integers) associated with places; a 
place containing tokens indicates that the corresponding 
condition holds 

•  Marking of a Petri net is a vector listing the number of 
tokens in each place  of the net 

PN Definitions 

m 

(m1 m2 … mP)     ;     P = # of Places 
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•  When input places of a transition have the required number 
of tokens, the transition is enabled. 

•  An enabled transition may fire (event happens) removing 
one  token from each input place and depositing one  token 
in each of its output place. 

PN Definitions 
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Basic Components of PN 

transition output place input place 

token 

input arc output arc 
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The firing rules of a PN 

m  t k  m' 
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Enabling & Firing of Transitions 

up 

t_repair t_repair t_repair 

up up 

down down down 

t_fail t_fail t_fail 

“t_fail” fires “t_fail” fires 

“t_repair” fires “t_repair” fires 

A 2-processor failure/repair model 
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Example of PN 
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Concurrency (or Parallelism) 
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Synchronization 
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Limited Resources 



21 

Producer/consumer 
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Producer/consumer with buffer 
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Mutual exclusion 
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•  A marking is reachable from another marking if 
there exists a sequence of transition firings 
starting from the original marking that results in 
the new marking 

•  The reachability set of a PN is the set of all 
markings that are reachable from its initial 
marking 

Reachability Analysis 
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Reachability Analysis 

•  A reachability graph is a directed graph whose 
nodes are the markings in the reachability set, 
with directed arcs between the markings 
representing the marking-to-marking transitions 

 
•  The directed arcs are labeled with the 

corresponding transition whose firing results in a 
change of the marking from the original marking 
to the new marking 
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Generation of the reachability graph  
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Generation of the reachability graph  

By properly identifying the frontier nodes, the generation 
of the reachability graph involves a finite number of 
steps, even if the PN is unbounded.  

   

Three type of frontier nodes: 

Ø  terminal (dead) nodes: no transition is enabled; 

Ø  duplicate nodes: already generated; 

Ø  infinitely reproducible nodes. 
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Generation of the      
reachability graph  
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Infinitely reproducible nodes 
A marking M´´ is an infinitely reproducible node if:  

M´´ ⎬  M ́
m i´´   m i´     (i= 1,2 …., nplace) 

where M´ is a marking already generated. 
 
In fact, the sequence M´   M´´ is firable from M´´ 
and then is infinitely reproducible. 

An arbitrarily large number of tokens is represented 
by a special symbol    
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Generation of an unbounded RG 

Producer/consumer 
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Extensions of PN models 
è  arc multiplicity 

è  inhibitor arcs 

è  priority levels 

è  enabling functions (guards) 

 
Note: The last three extensions destroy the 
infinitely reproducible property. 
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Petri Net: Arc Multiplicity 
•  An arc cardinality (or multiplicity) may be associated 

with input and output arcs, whereby the enabling and 
firing rules are changed as follows: 

–  Each input place must contain at least as many tokens as the 
cardinality of the corresponding input arc. 

–  When the transition fires, it removes as many tokens from 
each input place as the cardinality of the corresponding input 
arc, and deposits as many tokens in each output places as the 
cardinality of the corresponding output arc. 

m p 
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Inhibitor arcs are represented with a circle-headed arc. 

Petri Net : Inhibitor Arc 

tk 

pi 

pj 

The transition can fire iff the inhibitor place does not 
contain tokens. 
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Petri Net : Inhibitor Arc 
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•  An inhibitor arc drawn from place to a transition means that 
the transition cannot fire if the corresponding inhibitor place 
contains at least as many tokens as the cardinality of the 
corresponding inhibitor arc 

•  Inhibitor arcs are represented graphically as an arc ending in 
a small circle at the transition instead of an arrowhead 

Petri Net : Multiple Inhibitor Arc 

n 

m p 
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An Example: Before 

or cardinality of the output arc 
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or cardinality of the output arc 

An Example: After 
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Priority levels 
A priority level can be attached to each PN transition. 

 

The standard execution rules are modified in the sense 
that, among all the transitions enabled in a given 
marking, only those with associated highest priority 
level are allowed to fire.    
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Enabling Functions 
An enabling function (or guard) is a boolean expression  
composed with the PN primitives (places, trans, tokens).  

The enabling rule is modified in the sense that beside the 
standard conditions, the enabling function must evaluate 
to true. 

tk 

pi 

pj 
(tk) = #P1<2 & #P2=0 
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High Level (colored) Petri Nets 
In standard PN tokens are indistinguishable entities. 

The semantics of the model does not allow to follow 
the behavior of an individual token through the PN. 

High Level PN overcome this limitation by assigning to 
each individual token an attribute (color). 

Places, arcs and transitions can have functions and 
guards depending on the colors. 
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Colored Petri Nets 

C is a set of colors of cardinality |C| and x is an element 
of the set. 

Place p can contain tokens of any color x  C; 

Transition t can fires tokens of any color x  C. 

xC x  C 

<x> 

<x> 

p t 
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•  Petri nets are extended by associating time with the 
firing of transitions, resulting in timed Petri nets. 

•  A special case of timed Petri nets is stochastic Petri 
net (SPN) where the firing times are considered 
random variables. 

Stochastic Petri Nets (SPN) 
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•  A special case of stochastic Petri net (SPN) is 
where the firing times are exponentially distributed. 

•  The marking process is mapped into a continuous 
time Markov chain (CTMC) with state space 
isomorphic to the reachability graph of the PN. 

Stochastic Petri Nets (SPN) 
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SPN: A Simple Example 

 

. 

µ 

10 01 

 

. 

µ 
 

Reachability graph CTMC 

Server Failure/Repair 

p1 

t1 

t2 t2 

10 01 

 

µ 

t1 

t2 

t1 

p2 p1 p2 
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From SPN to CTMC: A Simple 
Example 
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From SPN to CTMC: 
An Example 
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0 1 2 ....... 

SPN:  Poisson Process 

   

 

SPN model 

PP with rate 

RG = CTMC 
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0 1 2 ....... 

SPN: M/M/1 Queue 

   

µ µ µ 

 
µ 

SPN model 

M/M/1 

RG = CTMC 

 µ 
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0 1 2 ....... n 

SPN: M/M/1/n Queue (1) 

   

µ µ µ 

n 

 
µ 

SPN model 

M/M/1/n 

RG = CTMC 

n 

 µ 
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0 1 2 ....... n 

SPN: M/M/1/n Queue (2) 

   

µ µ µ 

n 

 
µ 

SPN model 

M/M/1/n 

RG = CTMC 

n 

 µ 
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•  A firing rate is associated with each timed transition. 

•  Firing rate of a transition may be marking 
dependent. 

Marking dependent firing rate 

# 
n 

T 

Rate of T = nλ	

λ	
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Marking dependent firing rate 

The mutual exclusion problem can be 
folded 

(t1) = #P1 
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SPN: M/M/n/n Queue 

n 

 
µ 

SPN model 

M/M/n/n 

n 

µ 

µ 

# 
 µ 

The use of marking-dependent rate 
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SPN: M/M/m/n Queue (1) 

n 

m 

n m 

(t3) = #P4  

(t1) =  

immediate trans. 

t1 à arrival 
t3 à service 
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SPN: M/M/m/n Queue (2) 
K parallel repairable components 

b) 1 repairman 
       M/M/1/n 
(t1) = #P1  
 (t2) =  

c) 2 repairmen 
       M/M/2/n 
(t1) = #P1  

 (t2) 
= 

#P2  if #P2<2 
2  otherwise 
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GSPN: M/M/i/n Queue 

# 
µ  

Tarrival 

Pqueue 

tquick 

Pserver 

Pservice 

Tservice 

n-i 
i 

immediate trans. 
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ERG for M/M/i/n Queue 

0,0,0 

1,0,0 

i=0: 

1,0,0 2,0,0 n,0,0 
    

....... 

i>0   (ERG): 

0,0,i 0,1,i-1 1,i-1,1 0,i,0 

1,i,0 n-i,i-1,1 n-i,i,0 1,i-1,1 

... 

....... 

µ 

i>0   (CTMC): 

0,0,i 0,1,i-1 0,i,0 ... 1,i,0 ... n-i,i,0 
     

2µ iµ iµ iµ iµ 

Tarrival tquick Tarrival 
tquick 

Tservice 
Tservice 

Tarrival 

tquick 

Tservice 
Tservice tquick 

tquick 
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Generalized SPN  

•  Sometimes when some events take extremely small time to 
occur, it is useful to model them as instantaneous activities 

•  SPN models were extended to allow for such modeling by 
allowing some transitions, called immediate transitions, to 
have zero firing times 

•  The remaining transitions, called timed transitions, have 
exponentially distributed firing times 
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•  The enabling rules are modified: if both an immediate 
and a timed transition are enabled in a marking, 
immediate transition has higher priority. 

•  If more than one immediate transition is enabled in a 
marking, then the conflict is resolved by assigning firing 
probabilities to the immediate transitions. 

 

Generalized SPN  

T 

t 
Immediate transition t is 

enabled! 

t2 
Transition t1 & t2 will fire 

with p and (1-p). 

t1 p 

1-p 
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GSPN Properties 
" Markings (states) enabling immediate transitions are 

passed through in 0 time and are called vanishing. 
 
" Markings (states) enabling timed transitions only, are 

called tangible. 
 
" Since the process spends zero time in vanishing 

markings they do not contribute to the time behavior 
of the system and must be eliminated 
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GSPN Properties 

" The resulting reachability graph, referred to as the 
Extended Reachability Graph (ERG), contains 
vanishing marking, and is no longer a CTMC! 

" Need to eliminate the vanishing markings to 
obtain the underlying CTMC. 
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Elimination of vanishing markings  
Situation 1 
Only timed transitions are enabled. 
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Elimination of vanishing markings 
Situation 2 
One immediate and timed transitions are enabled. 

CTMC ERG 
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Elimination of vanishing markings 
Situation 3 
Several immediate transitions are enabled. 

ERG CTMC 
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Elimination of vanishing markings 
Example t1 = #P1  

t2 immed. 
t3 =  

M2 

M3 

M1 

M4 

M5 
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" Step 3-b: Or, build a system of linear, first-order, 
ordinary differential  equations 

(Transient solution) 

Traditional Methodology 

dπ(t) /dt = π(t) Q  

given   π(0) = π0 

π(t)  : state probability vector 

Q : infinitesimal generator matrix 
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" Step 3-a: Build a system of linear equations 
(Steady-state solution) 

Traditional Methodology 

π Q = 0 

π 1 = 1 

π  : steady-state probability vector 

Q : infinitesimal generator matrix 
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Measures of Reliability & 
Performance 

Solving the model means evaluating the (transient / 
steady state) probability vector over the state space 
(markings). 
 
However, the modeler wants to interact only at the PN: 
the analytical procedure must be completely transparent 
to the analyst. 
 
There is a need to define the output measures at the PN 
level, in term of the PN primitives. 
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Measures of Reliability & 
Performance 

Output measures defined at the PN level. 
 
Ø  Probability of a given condition on the PN; 
Ø  Time spent in a marking; 
Ø  Mean (first) passage time; 
Ø  Distribution of tokens in a place; 
Ø  Expected number of firing of a PN trans (throughput). 

All these measures can be reformulated in terms of 
reward functions (MRM) 
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Solving models with SPN 
The use of SPN requires only the topology of the PN, 
the firing rates of the transitions and the specification of 
the output measures. 
All the subsequent steps, which consist in: 
 
Ø  generation of the reachability graph  
Ø  generation of the associated Markov chain; 
Ø  transient and s.s. solution of the Markov chain; 
Ø  evaluation of the relevant process measures. 

must be completely automated by a computer program, 
thus making transparent to the user the associated 
mathematics. 



71 

Probability of a given condition on the PN 
Define a condition by a logical function (e.g #Pf = 0) and 
find the subset of states S where the condition holds true. 

In terms of reward rate      rs =   
1  s ∈ S 
0    otherwise 
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Expected time spent in a marking 
Define a condition by a logical function (e.g #Pf = 0) and 
find the subset of states S where the condition holds true. 

In terms of reward rate      rs =   
1  s  S 
0    otherwise 
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Mean first passage time 
If the subset of  states S is absorbing, Qs(t) is the 
probability of first visit to S. 
The mean first passage time is: 

The above formula requires the transient analysis  
to be extended over long intervals (other more direct 
techniques are available). 
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Distribution of tokens in a place 
The density mass of having k (k = 0, 1, 2, … ) tokens in a 
place pi is  fi (k,t). 
 
fi (k,t) can be evaluated by summing the probability of all 
the markings containing k (k = 0, 1, 2, … ) tokens in pi. 

fi (k,t) =        q s (t) 
s  #pi = 
k 
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Expected number of tokens in a place 
Given the density mass of having k (k = 0, 1, 2, … ) 
tokens in a place pi, the expected number of tokens in 
place pi can be evaluated by: 

In terms of reward rate      rs =  k 
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Expected number of firings 
Given an interval (0,t) this quantity indicates how many 
times, on the average, an event modeled by a PN 
transition has occurred (throughput). 
 
Let S be the subset of markings enabling tk.  

In terms of reward rate      rs =  k (s)  
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Example:  
Multiprocessor with failure 

•  Number of processors: n 
•  Single repair facility  is shared by all 

processors 
•  A reconfiguration is needed after a covered 

fault 
•  A reboot is required after an uncovered fault  
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Assumptions: 

•  The failure rate of each processor is  γ 
•  The repair times are exponentially 

distributed with mean 1/τ 
•  A processor fault is covered with 

probability c 
•  The reconfiguration times and the reboot 

times are exponentially distributed with 
parameter δ and β, respectively  

 

γ
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GSPN Model for Multiprocessor 

GSPN Model of a Multiprocessor  
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ERG for Multiprocessor Model 
(n=2) 

2,0,0,0,0 1,1,0,0,0 

1,0,0,1,0 

1,0,1,0,0 

1,0,0,0,1 

0,0,0,0,2 

0,1,0,0,1 

2,0,0,0,0 

1,0,0,1,0 

1,0,1,0,0 

1,0,0,0,1 0,0,0,0,2 

Extended Reachability Graph for Multiprocessor model  

 Reduced ERG for Multiprocessor model  

Tfail tcov 

Tuncov Trecon 

Trep 

Treboot 

Trep 

Tfail 

tquick 

γc 

γ(1-c) 

β 

τ δ γ 

τ 
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Example: Reward Rates for 
Multiprocessor Availability 

•  Reward rate at the net level for steady –state 
availability 

⎩
⎨
⎧ =+≥

=
otherwise     ,0

0)#(# and 1#     ,1 covcov unup
i

PPP
r

⎩
⎨
⎧ =

=
otherwise    ,0

)(1,0,0,0,1 ),0,0,0,0,2(     ,1 i
ri

•   Reward rate at the CTMC level for steady-
state availability (n=2) 
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•  Introduced by Ciardo, Muppala and Trivedi [1989] 

•  Structural characteristics 
–  Extensive Marking dependency allowed for firing rates 

and firing probabilities 
–  Transition Priorities 
–  Guards (Enabling functions) for Transitions 
–  Variable cardinality arcs 

Stochastic Reward Net (SRN) 



83 

•   Stochastic characteristics 

–   Allow definition of reward rates in terms of net level 

entities 

–   Automatically generate the reward rates for the 

markings 

–  Enables computation of required measures of interest  

Stochastic Reward Net (SRN) 
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Stochastic Reward Nets 

Extended Reachability Graphs 

Markov Reward Model 

Eliminates vanishing markings 

Reachability Analysis 

Analysis Procedure of SRN 

Measures of Interest 

Solve MRM (transient or steady-state) 
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SRN Summary 
Place 

Timed Transition 

Immediate Transition 

Input Arc 

Output Arc 

Inhibit Arc 

An SRN 
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Finite Buffer 

n 
m m 

mµ	
λ	


Poisson Arrival 
Single Server 

m-stage Erlang Service time 

SRN of M/Em/1/n Queue 

SRN Analysis: Step-1 

"  Abstract the system -> SRN Model 
Specify in SRN Tools 
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SRN Analysis: Step-2 

" Reachability Analysis: Automatically Generate ERG   

Extended 
Reachabilty 

Graph 

SRN 
Specification 

Vanishing Marking Tangible Marking 
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SRN Analysis: Step-3 

"  Reachability Analysis: Automatically Generate RG 
Extended 

Reachabilty 
Graph 

CTMC = RG 

Eliminate 
Vanishing 
Marking 
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SRN Analysis: Step-4 

"  Solve CTMC 

"  Steady-state Analysis: A System of Linear Equations 

"  Gauss-Seidel, SOR (Successive over-relaxation) 

"  Power method, etc. 

"  Transient Analysis: A coupled system of ODE 

"  Classical ODE Methods 

"  Randomization (or Uniformization), etc. 
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SRN Analysis: Step-5 

"  Compute measures of interest 
"  Measures of interests: Blocking/Dropping Probability, 

Throughput, Utilization, Delay etc. 

" Measures can be defined as reward functions which specify 

reward rates on net-level entities. 

Steps 1-5: The SPN Tool does it all! 
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Non-Markovian SPN 

Transition Firing Time: not exponentially 
distributed 

H.Choi,V.  Kulkarni, K. Trivedi  
Markov regenerative stochastic Petri net (MRSPN) 
Performance Evaluation, 20, 337-357, 1994 
(A special case: At most one general transition can be enabled in 
any marking).  
 
A. Bobbio and A. Puliafito and M. Telek and K. Trivedi. 
Recent developments in non-Markovian stochastic Petri nets. 
Journal of Systems Circuits and Computers, 8:1, 119-158, 1998. 
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Fluid Petri Net 

" Fluid stochastic Petri net (FSPN) 
" Introduced by K. Trivedi and V. Kulkarni (1993) 
" Allow both discrete and continuous places 
" Useful in fluid approximation of discrete 

queueing system 
" Powerful formalism of stochastic fluid queueing 

networks 
" Boundary conditions complicated. Solution 

techniques under investigation. 
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The Fluid Petri Net Model 
FPN's are an extension of PN able to model the 
coexistence of discrete and continuous variables. 

The primitives of FPN (places, transitions and arcs) are 
partitioned in two groups:  

  discrete primitives that handle discrete tokens (as in 
standard PN); 

  continuous (or fluid) primitives that handle 
continuous (fluid) quantities.  

  fluid arcs are assigned instantaneous flow rates.  
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Fluid Petri Nets 
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Conclusion 


