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Petri Nets

Petr1 Nets (PN) are a graphical paradigm for the formal
description of the logical interactions among parts or of
the flow of activities in complex systems.

PN are particularly suited to model:

» Concurrency and Conflict;

» Sequencing, conditional branching and looping;

» Synchronization;
» Sharing of limited resources;
»Mutual exclusion.




Petri Nets

Petr1 Nets (PN) originated from the Phd thesis of Carl
Adam Petri in 1962.

A web service on PN 1s managed at the University of
Aarhus 1in Denmark, where a bibliography with more
that 8,500 1tems can be found.

hittp.//www.daimi.au.dk/PetriNets/

Regular International Conferences:
ATPN - Application and Theory of PN
PNPM — PN and Performance Models




Petri Nets

The original PN did not convey any notion of time.

For performance and dependability analysis 1t 1s
necessary to introduce the duration of the events

associated to PN transitions.

Timed model were subsequently extensively explored,
following two main lines:

Random durations : ‘ Stochastic PN (SPN)
Deterministic or interval: ‘ Timed PN (TPN)




Definitions

* A Petr1 net (PN) 1s a bipartite directed graph
consisting of two kinds of nodes: places and
transitions

— Places typically represent conditions within the system
being modeled

— Transitions represent events occurring in the system
that may cause change in the condition of the system

— Arcs connect places to transitions and transitions to
places (never an arc from a place to a place or from a
transition to a transition)




Example of a PN

tl

pl —resource idle

p2 — resource busy

t] — task arrives

t2 — task completes




Example of a PN

tl

pl

pl —resource idle
p2 — resource busy
t1 — task arrives

t2 — task completes




Definition of PN

A PN 1s a n-tuple (P,T,1,0,M)

set of places

set of transitions
input arcs
output arcs
marking




PN Definitions

 Input arcs are directed arcs drawn from places to
transitions, representing the conditions that need
to be satisfied for the event to be activated

O—

e Output arcs are directed arcs drawn from
transitions to places, representing the conditions
resulting from the occurrence of the event

—O




PN Definitions

 Input places of a transition are the set of
places that are connected to the transition
through input arcs

* Output places of a transition are the set of
places to which output arcs exist from the
transition




PN Detinitions

* Tokens are dots (or integers) associated with places; a
place containing tokens indicates that the corresponding

condition holds

©

e Marking of a Petri net 1s a vector listing the number of
tokens in each place of the net

(m;m,..my) ; P=4#ofPlaces




PN Detinitions

 When 1nput places of a transition have the required number

of tokens, the transition 1s enabled.

O——0O

* An enabled transition may (event happens) removing
one token from each input place and depositing one token

in each of its output place.

O——©




Basic Components of PN




The firing rules of a PN

m-=>tx~>m'

Piﬂ tx

!
m.=m.+ 1
1 1

’
m.=1m.
1 1




Enabling & Firing of Transitions

A 2-processor failure/repair model




P={p,p,pP;pP,P}

T:{tl t2 t3 t4 t5}

It,) ={p,} O(t,) =1{p, py}
I(t,) = {py} O(t,)=1{p,}
I(t;) = {p,} O(t,) =1{p.}
I(t,) ={p,} O(t,) ={p,y}

It,)={p,p,} O,)={p,}

M, =(1,0,0,0,0)
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Reachability Analysis

» A marking 1s reachable from another marking 1f
there exists a sequence of transition firings
starting from the original marking that results in
the new marking

The of a PN 1s the set of all
markings that are reachable from its
marking




Reachability Analysis

* A reachability graph is a whose
nodes are the markings in the reachability set,
with directed arcs between the markings
representing the marking-to-marking transitions

The directed arcs are labeled with the
corresponding transition whose firing results in a

change of the marking from the original marking
to the new marking




Generation of the reachability graph




Generation of the reachability graph

By properly 1dentifying the frontier nodes, the generation
of the reachability graph involves a finite number of
steps, even 1f the PN 1s unbounded.

hree type of frontier nodes:
terminal (dead) nodes: no transition 1s enabled;
duplicate nodes: already generated;

infinitely reproducible nodes.




Generation of the
reachability graph




Infinitely reproducible nodes

A marking M’ is an infinitely reproducible node if:
Mr I4 % M/

m i,, Wi m i’ (i: 1,2 cooey nplace)

where M’ is a marking already generated.

In fact, the sequence M™ {¥j M’ 1s firable from M
and then 1s infinitely reproducible.

An arbitrarily large number of tokens 1s represented

by a special symbol (¥

PRIVATE USE




Generation of an unbounded RG




Extensions of PN models

arc multiplicity

inhibitor arcs
priority levels

enabling functions (guards)

The last three extensions destroy the
infinitely reproducible property.




Petr1 Net: Arc Multiplicity

* An arc cardinality (or multiplicity) may be associated
with input and output arcs, whereby the enabling and
firing rules are changed as follows:

— Each mput place must contain at least as many tokens as the
cardinality of the corresponding input arc.

— When the transition fires, it removes as many tokens from
cach mput place as the cardinality of the corresponding input
arc, and deposits as many tokens in each output places as the

cardinality of the corresponding output arc.
32




Petr1i Net : Inhibitor Arc

p1

. I

PJ

Inhibitor arcs are represented with a circle-headed arc.

The transition can fire iff the inhibitor place does not
contain tokens.







Petr1 Net : Multiple Inhibitor Arc

e An inhibitor arc drawn from place to a transition means that
the transition cannot fire if the corresponding inhibitor place
contains at least as many tokens as the cardinality of the
corresponding inhibitor arc

Sa s

» Inhibitor arcs are represented graphically as an arc ending in
a small circle at the transition instead of an arrowhead




An Example: Before

. inhibtor arc

multiplicity
or cardinality of the ou




An Example: After

. inhibtor arc

multiplicity
or cardinality of the output ¢




Priority levels

A priority level can be attached to each PN transition.

The standard execution rules are modified in the sense
that, among all the transitions enabled in a given
marking, only those with associated highest priority
level are allowed to fire.




Enabling Functions

An enabling function (or guard) 1s a boolean expression
composed with the PN primitives (places, trans, tokens).

The enabling rule 1s modified in the sense that beside the
standard conditions, the enabling function must evaluate

to true.
"@
-k

(tk) = #P1<2 & #P2=0

pJ

39




High Level (colored) Petri Nets

In standard PN tokens are indistinguishable entities.

The semantics of the model does not allow to follow
the behavior of an individual token through the PN.

High Level PN overcome this limitation by assigning to
each individual token an attribute (color).

Places, arcs and transitions can have functions and
guards depending on the colors.




Colored Petri Nets

C 1s a set of colors of cardinality |C| and x 1s an element
of the set.

Place p can contain tokens of any color x [

Transition t can fires tokens of any color x




Stochastic Petr1 Nets (SPN)

» Petr1 nets are extended by associating with the
firing of transitions, resulting in timed Petr1 nets.

I] I]

e A of timed Petr1 nets 1s
where the firing times are considered
random variables.




Stochastic Petr1 Nets (SPN)

c A of stochastic Petr1 net (SPN) 1s
where the firing times are exponentially distributed.

I] I]

* The marking process 1s mapped into a
(CTMC) with state space

to the reachability graph of the PN.




SPN: A Simple Example

Server Failure/Repair
tl

p2 pl




From SPN to CTMC: A Simple
Example
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From SPN to CTMC:
An Example




SPN: Poisson Process

PP with rate % IIIIIIIII




SPN: M/M/1 Queue

W
|

SPN model

RG = CTMC




SPN: M/M/1/n Queue (1)
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SPN model

RG = CTMC




SPN: M/M/1/n Queue (2)
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SPN model

RG = CTMC




Marking dependent firing rate

* A firing rate 1s associated with each timed transition.

* Firing rate of a transition may be

Rateof T = n\A




The mutual exclusion problem can be

(t1) = #P1

Ml:(2001)

Mz2=(1101)

M3=(0201)

M4=(1010)

M5=(0110)




SPN: M/M/n/n Queue

Min/m J
—n ——|

SPN model m
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The use of markihg-dependent rate




(t3) = #P4 |

t1 = arrival
t3 = service

immediate trans.




K parallel repairable components

b) 1 repairman
M/M/1/n

¢) 2 repairmen
M/M/2/n

w)(tl) =#P1 DM

#P2 [v) if #P2<2
2 %] otheswise




GSPN: M/M/1/n Queue

T

arrival serV|ce

serV|ce




ERG for M/M/1/n Queue

0,0,0 Jﬂi n,0,0

>0 (ERG):
t

Tarrlval _—-— . Tarrival ———— _qU|ck

0,0,ir—1,0,0! "0,1,i-1 T 11,i-1,1 | 0,i,0
TSM — servic Couic
: K\I Tw : % q__k]

n-i,i,0 T_.ILn-|,|-1,1 — —.| 1,i-1,1 |

tqU|ck

service

>0 (CTMC):

0,0,i




Generalized SPN

« Sometimes when some events take extremely small time to
occur, 1t 1s useful to model them as instantaneous activities

« SPN models were extended to allow for such modeling by
allowing some transitions, called , to

have firing times @

e The remaining transitions, called timed transitions, have

firing times




Generalized SPN

* The enabling rules are modified: if both an immediate
and a timed transition are enabled in a marking,

immediate transition has higher priority.

T
Immediate transition t is

¢ enabled!
If more than one immediate transition 1s enabled 1n a
marking, then the conflict 1s resolved by assigning firing
probabilities to the immediate transitions.

Pl w1
Transition t1 & t2 will fire

1-p t2 with p and (1-p).




GSPN Properties

m Markings (states) enabling immediate transitions are
passed through 1n 0 time and are called

m Markings (states) enabling timed transitions only, are
called

m Since the process spends zero time 1n vanishing
markings they do not contribute to the time behavior
of the system and must be eliminated




GSPN Properties

m The resulting reachability graph, referred to as the
Extended Reachability Graph ( ), contains
vanishing marking, and 1s !

m Need to eliminate the vanishing markings to
obtain the underlying CTMC.




Elimination of vanishing markings

Situation 1
Only timed transitions are enabled.

M3(00100) M4(00010) M5(00001) |




Elimination of vanishing markings

Situation 2
One immediate and timed transitions are enabled.

O

A CTMC

‘>M2(0 100 0)

to

©M3(00100) @Ms

M1(10000)

b)O




Elimination of vanishing markings

Situation 3
Several immediate transitions are enabled.

M (100 0)
(O

ERG
Ay

L. M,(0100)

)

M3(0 010) M4(0001)




Elimination of vanishing markings

tl =#P1 (v
t2 1immed.
t3 =¥

M1=(2001)

\

MD Ms4=(1010)

A

Y

@ Ms5=(0110)




Traditional Methodology

m Step 3-b: Or, build a system of linear, first-order,
ordinary differential equations

dr(t) /dt = =(t) Q

given JT;(O) = JTJO

J'Ii(t) : state probability vector

Q : infinitesimal generator matrix




Traditional Methodology

m Step 3-a: Build a system of linear equations

tQ=0
1 =1
JU : steady-state probability vector

Q : infinitesimal generator matrix




Measures of Reliability &
Performance

Solving the model means evaluating the (transient /
steady state) probability vector over the state space
(markings).

However, the modeler wants to interact only at the PN:
the analytical procedure must be completely transparent
to the analyst.

There 1s a need to define the output measures at the PN
level, in term of the PN primitives.




Measures of Reliability &
Performance

Output measures defined at the PN level.

Probability of a given condition on the PN;

Time spent 1n a marking;

Mean (first) passage time;

Distribution of tokens in a place;

Expected number of firing of a PN trans (throughput).

All these measures can be reformulated in terms of
reward functions (MRM)




I

Solving models with SPN

I'he use of SPN requires only the topology of the PN,
t]

ne firing rates of the transitions and the specification of

the output measures.

All the subsequent steps, which consist in:

generation of the reachability graph
generation of the associated Markov chain;
transient and s.s. solution of the Markov chain;
evaluation of the relevant process measures.

must be completely automated by a computer program,
thus making transparent to the user the associated
mathematics. 70




Probability of a given condition on the PN

Define a condition by a logical function (e.g #Pf = 0) and
find the subset of states S where the condition holds true.

Qs(t) = Prob {condition is true at time t }

&
In terms of reward rate S {




Expected time spent 1n a marking

Define a condition by a logical function (e.g #Pf = 0) and
find the subset of states S where the condition holds true.

In terms of reward rate S {




Mean first passage time

If the subset of states S 1s absorbing, Qs(t) is the
probability of first visit to S.

The mean first passage time is:

The above formula requires the transient analysis
to be extended over long intervals (other more direct
techniques are available).




Distribution of tokens 1n a place

The density mass of having k (k=10, 1, 2, ... ) tokens 1n a
place pi 1s fi

i can be evaluated by summing the probability of all
the markings containing tokens 1n




Expected number of tokens 1n a place

Given the density mass of having k (k=0, 1, 2, ...)
tokens in a place pi, the expected number of tokens in
place pi can be evaluated by:

In terms of reward rate




Expected number of firings

Given an interval (0,t) this quantity indicates how many
times, on the average, an event modeled by a PN

transition has occurred

Let S be the subset of markings enabling tk.

In terms of reward rate




Example:
Multiprocessor with failure

Number of processors:

Single repair facility is shared by all
processors

A reconfiguration 1s needed after a covered
fault

A reboot 1s required after an uncovered fault




Assumptions:

The failure rate of each processor 1s

The repair times are exponentially
distributed with mean

A processor fault 1s covered with
probability

The reconfiguration times and the reboot
times are exponentially distributed with
parameter o and 3, respectively




GSPN Model for Multlprocessor

GSPN Model of a Multiprocessor




ERG for Multiprocessor Model
(n=2)

2,0,0,0,0

______________

T

recon

— )

1,0,1,0,0 | "rep
rebooty /

1,0,0,0,1 = 10,1,0,0,1

_____

______________

‘ Extended Reachability Graph for Multiprocessor model ‘

2,0,0,0,0

yC

y(1-c)]

1,0,0,1,0

»1,0,1,0,0
T

000 =l
[3 I~¥I~Yr~j] N ‘E

0,0,0,0,2

‘ Reduced ERG for Multiprocessor model




Example: Reward Rates for
Multiprocessor Availability

« Reward rate at the net level for steady —state

availability
I, #P =zland(#P_+#F, . )=0

cov uncov

0, otherwise

 Reward rate at the CTMC level for steady-
state availability (n=2)

i =(2,0,0,0,0), (1,0,0,0,1)

0, otherwise




Stochastic Reward Net (SRN)

 Introduced by Ciardo, Muppala and Trivedi [1989]

e Structural characteristics

— Extensive Marking dependency allowed for firing rates
and firing probabilities

— Transition Priorities
— Guards (Enabling functions) for Transitions

— Variable cardinality arcs




Stochastic Reward Net (SRN)

e Stochastic characteristics

— Allow definition of reward rates in terms of net level

entities

— Automatically generate the reward rates for the

markings

— Enables computation of required measures of interest




Analysis Procedure of SRN

Stochastic Reward Nets

Reachability Analysis

Extended Reachability Graphs

Eliminates vanishing markings

Markov Reward Model

Solve MRM (transient or steady-state)

Measures of Interest




SRN Summary

Place

Timed Transition

Immediate Transition

Input Arc

Output Arc

Inhibit Arc




SRN Analysis: Step-1

m Abstract the system -> SRN Model

Specify in SRN Tools

Finite Buffer

Single Server
Poisson Arrival m-stage Erlang Service time

SRN of M/E_/1/n Queue




SRN Analysis: Step-2

¥ Reachability Analysis: Automatically Generate ERG

SRN
Specification

!

Extended
Reachabilty
Graph

Extended Reachability Graph (ERG)

Vanishing Marking O Tangible Marking




SRN Analysis: Step-3

B Reachability Analysis: Automatically Generate RG

Extended
Reachabilty
Graph

Eliminate
Vanishing
Marking

CTMC = RG




SRN Analysis: Step-4

m Solve CTMC

m Steady-state Analysis: A System of Linear Equations

m Gauss-Seidel, SOR (Successive over-relaxation)

m Power method, etc.

B Transient Analysis: A coupled system of ODE
m Classical ODE Methods

m Randomization (or Uniformization), etc.




SRN Analysis: Step-5

m Compute measures of interest
m Measures of interests: Blocking/Dropping Probability,
Throughput, Utilization, Delay etc.

m Measures can be defined as which specify
reward rates on net-level entities.




Non-Markovian SPN

Transition Firing Time: not exponentially
distributed

H.Choi,V. Kulkarni, K. Trivedi
Markov regenerative stochastic Petri net (MRSPN)

Performance Evaluation, 20, 337-357, 1994

(A special case: At most one general transition can be enabled in
any marking).

A. Bobbio and A. Puliafito and M. Telek and K. Trivedi.
Recent developments in non-Markovian stochastic Petri nets.
Journal of Systems Circuits and Computers, 8:1, 119-158, 1998.




Fluid Petr1 Net

m Fluid stochastic Petri net (FSPN)
m Introduced by K. Trivedi and V. Kulkarni (1993)
m Allow both discrete and continuous places

m Useful in fluid approximation of discrete
queueing system

m Powerful formalism of stochastic fluid queueing
networks

m Boundary conditions complicated. Solution
techniques under investigation.




The Fluid Petri Net Model

FPN's are an extension of PN able to model the
coexistence of discrete and continuous variables.

The primitives of FPN (places, transitions and arcs) are
partitioned in two groups:

discrete primitives that handle discrete tokens (as in
standard PN);

continuous (or fluid) primitives that handle
continuous (fluid) quantities.

fluid arcs are assigned instantaneous flow rates.




Fluid Petri Nets
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