The Boeing 777 has two inertia units,
 – the ADIRU (Air Data Inertial Reference Unit) and
 – the SAARU (Secondary Attitude and Arial Data Reference Unit)
We will look at the ADIRU, based on the discussion in the paper
 – A Fault-Tolerant Air Data/Inertial Reference Unit
 » Michael L. Sheffels
 » IEEE AES Systems Magazine, March 1993
Fault Tolerant ADIRU

- Main features
 - inertial and air data reference for ARINC 651 Integrated Modular Avionics distributed architecture
 - low life cycle cost
 - deferred maintenance
 - high reliability
 - high integrity fault detection
 - fault isolation
 - redundancy management
 - quad channel redundancy
 - robust partitioning
 - simple serial internal interfaces
 - simple voting
 - 3 ARINC 629 bus interfaces

Fault Tolerant ADIRU

- Architecture
 - 5 basic functions required for operation, referred to as *Fault Containment Areas* (FCA)
 - processor
 - gyro
 - accelerometer
 - ARINC 629 interface
 - power supply
 - Individual resources making up a FCA are referred to as *Fault Containment Models* (FCM)
 - each FCA can tolerate the loss of 2 FCMs
 - third failure will cause loss of the ADIRU
 - ARINC 629 interfaces differ
Fault Tolerant ADIRU

- Requirements

<table>
<thead>
<tr>
<th>FCA</th>
<th>Function</th>
<th>Dispatch</th>
<th>Deferred Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Gyro</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Power Supply</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ARINC 629 Left</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ARINC 629 Center</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ARINC 629 Right</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Fault Tolerant ADIRU

- **Interconnections**
 - FCMs communicate via serial busses
 - this keeps hardware complexity to a minimum
 - Power distribution
 - there are 3 robust power busses
 - the power of all 3 power supplies is summed for each bus
 - each FCM has own regulator
 - fault isolation keeps regulator failures independent
 - ADIRU transmits on 2 of 3 channels (left, right)
 - ADIRU receives on all 3 channels
 - 3rd channel used for SAARU (Secondary Air data Attitude Reference Unit)

- **Processor FCA**
 - contains fault tolerant clock (FTC)
 - used for 100 Hz synchronization interrupts providing processor synchronization

- **ARINC 629**
 - failures in any ARINC 629 bus are independent
 - votes on processor output before transmitting on bus
 - watchdog timers and power monitors are used to assure graceful shutdown if processor control over ARINC 629 interface is lost.
Fault Tolerant ADIRU

- Power supply
 - 3 supplies
 - each has independent inputs for +28VDC primary power and +28VDC battery backup
 - outputs are summed to produce single source of power (used by the 3 power busses)
 - each supply employs
 - over-voltage monitoring
 - shut-down circuitry in case of power surge
 - under-voltage is not problem due to the power summing

Fault Tolerant ADIRU

- Redundancy management
 - Hardware data-consistency-checks used to provide same input to all processors.
 - Fault-tolerant detection and isolation software manages gyros and accelerometers.
 - tries to eliminate benign faults
 - Outputs from processors are voted on by the ARINC 629 interfaces.
 - Power supplies are mainly tested upon power-up and shut down for deferred maintenance.
Fault Tolerant ADIRU

Fault Isolation
- Design objectives are to maximize fault independence.
- Electrical fault isolation
 - important since time to repair might be long
- Mechanical fault isolation
 - shorts caused by foreign objects
- Occam's razor approach: keep things simple.
- Multiple methods (layers) of fault isolation
 - at least 2 levels to protect interfaces between FCMs
 - serial busses and discrete interconnections via isolation resistors on both ends

Fault Tolerant ADIRU

Reliability
- Typical Inertial Reference Unit
 - Mean Time Between Failure (MTBF)
 - typical 10,000 h
 - Mean Time to First Failure (MTFF)
 - typical 8,000 h
 - using TMR: MTBF = 10,000/3 = 3,333h
- Deferred Maintenance Approach
 - Mean Time to Dispatch Alert with no maintenance
 - > 25,000h
 - assuming 1 fault sustained in each FCA
 - With better maintenance, i.e. fix unit at convenient time after annunciation
 - Mean Time to Dispatch Alert = 300,000h