Fault Models

- Much work has been done on fault models. The discussion is based on the paper:
 - There is an interesting follow-up paper "Verification of Hybrid Byzantine Agreement Under Link Faults" by P. Lincoln and J. Rushby that addresses a problem in the algorithm of Thambidurai and Park

Fault Models

- Benign versus Malicious
 - Benign
 » error is self-evident
 » component does not undergo incorrect state transition during failure
 » examples:
 - omission fault
 - crash fault
 - timing fault
 - data out-of-bound
Fault Models

- Malicious
 » not self-evident to all non faulty receivers
 » can behave in two ways
 » symmetric
 ■ received identically by all processors
 » asymmetric
 ■ no restrictions of fault => anything goes

- Fault frequency
 » worse case every fault could behave asymmetric
 » best case all faults are benign
 » what is the best assumption for your system?

Fault Taxonomy

- Fault
 - Benign
 - Malicious

- Symmetric
- Asymmetric

Relationship & Probability of Occurrence
- note: this is not a venn diagram!
Fault Models

- Lamport Model
 - assumes that every fault is asymmetric
 \[N \geq 3t + 1 \]
 \[r' \geq t + 1 \quad \text{or} \quad r \geq t \quad \text{rebroadcasts} \]

- Meyer + Pradhan 87
 - differentiates between malicious and benign faults
 \[N > 3m + b \]
 \[r > m \]
 \[m = \text{number of malicious faults} \]
 \[b = \text{number of benign faults} \]

- Thambidurai + Park 88
 - difference between malicious faults
 » symmetric faults
 » asymmetric faults
 » result:
 \[N > 2a + 2s + b + r \]
 \[r \geq a \]
 » \(a = \text{asym.}, \ s = \text{sym.}, \ b = \text{benign}, \ r = \text{rounds} \)
 » in general \(a_{\text{max}} < s_{\text{max}} < b_{\text{max}} \)
 » or \(a << b << b \)
 » saves rounds and hardware
Fault Models

- Advantages of multi-fault model
 - 1) more accurate model of the system
 - less “overly conservative”
 - 2) resulting reliabilities are better
 - custom tailor recovery mechanisms
 - Example:
 - consider Byzantine solution using OM() algorithm
 - assume N = 4, 5, 6
 - still, only one fault is covered using the OM algorithm
 - moreover, the system reliability degrades
 - N = 6 results in worse reliability than N = 4
 - one is better off to turn the additional processors off!
 - see paper Tha88, page 98, table 1

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>P(Failure)</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG</td>
<td>4</td>
<td>(6.0 \times 10^{-8})</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>5</td>
<td>(1.0 \times 10^{-7})</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>6</td>
<td>(1.5 \times 10^{-7})</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>UM</td>
<td>4</td>
<td>(6.0 \times 10^{-8})</td>
<td>1 arbitrary, (b = 0, s = 0)</td>
</tr>
<tr>
<td>UM</td>
<td>5</td>
<td>(1.0 \times 10^{-11})</td>
<td>1 arbitrary, (b = 1, s = 0)</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>(2.0 \times 10^{-11})</td>
<td>1 arbitrary, (b = 0, s = 1)</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>(1.1 \times 10^{-15})</td>
<td>1 arbitrary, (b = 2, s = 0)</td>
</tr>
</tbody>
</table>

Table 1: Reliability data for Example 1
Fault Models

Source: Tha88

<table>
<thead>
<tr>
<th>(r = 1)</th>
<th>(a = 0)</th>
<th>(a = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>0 1 2 3</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>(b = 0)</td>
<td>4 6 8</td>
<td>4 6 8 10</td>
</tr>
<tr>
<td>(b = 1)</td>
<td>3 5 7 9</td>
<td>5 7 9 11</td>
</tr>
<tr>
<td>(b = 2)</td>
<td>4 6 8 10</td>
<td>6 8 10 12</td>
</tr>
<tr>
<td>(b = 3)</td>
<td>5 7 9 11</td>
<td>7 9 11 13</td>
</tr>
<tr>
<td>(b = 4)</td>
<td>6 8 10 12</td>
<td>8 10 12 14</td>
</tr>
<tr>
<td>(b = 5)</td>
<td>7 9 11 13</td>
<td>9 11 13 15</td>
</tr>
<tr>
<td>(b = 6)</td>
<td>8 10 12 14</td>
<td>10 12 14 16</td>
</tr>
</tbody>
</table>

Table 2: Resiliency of a System based on the Unified Model (minimum number of processors required)

3) smarter degradation
 » we can specify the number of rounds
 » example using \(N = 11 \)
 - let subscript \(\text{max} \) denote the maximum number of faults covered, assuming this is the only type of fault occurring.
 - if \(r = 1 \) then \(a_{\text{max}} = 1 \) or \(s_{\text{max}} = 4 \)
 - if \(r = 2 \) then \(a_{\text{max}} = 2 \) or \(s_{\text{max}} = 4 \)
 - why? \(s_{\text{max}} = 4 \) \(\Rightarrow \) \(N > 2 \times 4 + 2 = 10 \)
 - \(s_{\text{max}} = 5 \) \(\Rightarrow \) \(N > 2 \times 5 + 2 = 12 \)

requirements for success
 » good estimate of fail rates \(\lambda_a, \lambda_s, \lambda_b \)
 - typically \(\lambda_a << \lambda_s << \lambda_b \)
 » good estimate of recovery rates \(\rho_a, \rho_s, \rho_b \)
 - typically \(\rho_a < \rho_s < \rho_b \)
Agreement algorithms

- Azadmanesh & Kieckhafer
 - partitions further into transmissive and omissive cases of malicious faults

- Incomplete Interconnections
 - Lam82, Dol82
 - agreement only if the number of processors is less than 1/2 of the connectivity of the system’s network.

- Eventual vs. Immediate Byz. Agreement (EBA, IBA)
 - recall interactive consistency conditions IC1, IC2
 - an agreement is immediate if in addition to IC1 and IC2 all correct processors also agree (during the round) on the round number at which they reach agreement.
 - otherwise the agreement is called eventual
 - each processor has decided on its value, but cannot synchronize its decision with that of the others until some later phase.
 - Thus, agreement may not always need full t+1 rounds
Agreement algorithms

- Lamport OM \(N \geq 3m + 1 \) \(r = m + 1 \)
- Lamport SM \(N \geq m + 2 \) \(r \geq m + 1 \)
- Davis+Wakerly \(N \geq 2t + 1 \) \(S = t + 1 \)
- Meyer+Pradhan \(N > 3m + b \) \(r \geq m \)
- Thambidurai+Park \(N > 2a + 2s + b + r \) \(r \geq a \)
- Dol82a (EBA) \(N > t^2 + 3t + 4 \) \(r = \min(f + 2, t + 1) \)