Signed Messages

- Traitors ability to lie makes Byzantine General Problem so difficult.
- If we restrict this ability, then the problem becomes easier
- Use authentication, i.e. allow generals to send unforgeable signed messages.

Signed Messages

- Assumptions about Signed Messages
 A1: every message that is sent is delivered correctly
 A2: the receiver of a message knows who send it
 A3: the absence of a message can be detected
 A4: a loyal general’s signature cannot be forged, and any alteration of the contents of his signed messages can be detected. Anyone can verify the authenticity of a general’s signature

Note: no assumptions are made about a traitor general, i.e. a traitor can forge the signature of another traitor.
Signed Messages

Signed message algorithm assumes a choice function
- if a set V has one single element v, then $\text{choice}(V) = v$
- $\text{choice}(\emptyset) = R$, where \emptyset is the empty set
 » RETREAT is default
- $\text{choice}(A,R) = R$
 » RETREAT is default
- set V is not a multiset (recall definition of a multiset)
- thus set V can have at most 2 elements, e.g. $V = \{A,R\}$.

Signed Messages

Signing notation
- let $v:i$ be the value v signed by general i
- let $v:i:j$ be the message $v:i$ counter-signed by general j
- each general i maintains his own set V_i containing all orders he received
- Note: do not confuse the set V_i of orders the general received with the set of all messages he received. Many different messages may have the same order.
BGP: Signed Message Solution

SM(m) -- from Lam82

Initially $V_i = \emptyset$

1) The commander signs and sends his value to every lieutenant
2) For each i
 A) If lieutenant i receives a message of the form $v:0$ from the commander and he has not yet received any order, then
 i) he lets V_i equal \{v\}
 ii) he sends the message $v:0:i$ to every other lieutenant
 B) If lieutenant i receives a message of the form $v:0:j_1,...,j_k$ and v is not in the set V_i, then
 i) he adds v to V_i
 ii) if $k < m$, then he sends the message $v:0:j_1,...,j_k:i$ to every lieutenant other than $j_1,...,j_k$

Algorithm SM(m)

- the SM(m) algorithm for signed messages works for $N \geq m + 2$
 i.e. want non faulty commander and at least one non faulty lieutenant
- How does one know when one does not receive any more messages?
 - by missing message assumption A3, we can tell when all messages have been received
 - this can be implemented by using synchronized rounds
- Now traitor can be detected!
 - e.g. 2 correctly signed values \Rightarrow general is traitor
Algorithm SM(m)

- example, general is traitor

![Diagram of a network showing connections between General, lieutenant 1, and lieutenant 2 with labels attack:0, retreat:0, attack:0:1, retreat:0:2.]

Algorithm SM(m)

- example, lieutenant 2 is traitor

![Diagram of a network showing connections between General, lieutenant 1, and lieutenant 2 with labels attack:0, attack:0, attack:0:1, retreat:0:2.]
Algorithm SM(m)

- example:
 - SM(0)
 » general sends v:0 to all lieutenants
 » processor i receives v:0 $V_i = \{v\}$
 - SM(1)
 » each lieut. countersigns and rebroadcasts v:0
 » processor i receives (v:0:1, v:0:2,..., v:0:(N-1))

- case 1: commander loyal, lieutenant j = traitor
 » all values except v:0:j are v
 $$\Rightarrow v \in V_i \quad \forall \text{ loyal lieut. } i$$
 » processor j cannot tamper
 $$\Rightarrow V_i = \{v\} \quad \forall \text{ loyal lieut. } i$$

- case 2: commander = traitor, => all lieut. loyal
 » all lieutenants correctly forward what they received
 - agreement: yes
 - validity: N/A
Algorithm SM(m)

- e.g.:
 - SM(2)
 - each lieut. countersigns and rebroadcasts all messages from the previous round
 - processor i has/receives
 - v:0
 - v:0:1, v:0:2, ..., v:0:(N-1)
 - after 1st rebroadcast
 - v:0:1:1, v:0:1:2, ..., v:0:1:N-1
 - v:0:2:1, v:0:2:2, ..., v:0:2:N-1
 - after 2nd rebroadcast

- case 1: commander loyal, 2 lieutenants are traitors
 - want each loyal lieut to get V={v}
 - round 0 => all loyal lieuts get v from commander
 - other rounds:
 - traitor cannot tamper
 - => all messages are v or \(\Phi \)

- case 2: commander traitor + 1 lieut. traitor
 - round 0: all loyal lieuts receive v:0
 - round 1:
 - traitors send one value or \(\Phi \)
 - round 2:
 - another exchange (in case traitor caused split in last round)
 - traitor still can not introduce new value
 - agreement: yes
 - validity: N/A
Algorithm SM(m)

- Cost of signed message
 - encoding one bit in a code-word so faulty processor cannot “stumble” on it.
 - e.g.
 » unreliability of the system \(F_s = 10^{-10}/h \)
 » unreliability of single processor \(F_p = 10^{-4}/h \)
 » want: Probability of randomly generated valid code word
 \[
 P = \frac{10^{-10}}{10^{-4}} = 10^{-6} = 2^{-20}
 \]
 » given \(2^i \) valid codewords, want \((20+i)\) bits/signature
 » e.g. Attack/Retrieve
 \(\Rightarrow 2^1 \)
 \(\Rightarrow 21 \) bit signature

Agreement

- Important notes:
 - there is no way to guarantee that different processors will get the same value from a possibly faulty input device, except having the processors communicate among themselves to solve the Byz.Gen. Problem.
 - faulty input device may provide meaningless input values
 » all that Byz.Gen. solution can do is guarantee that all processors use the same input value.
 » if input is important, then use redundant input devices
 » redundant inputs cannot achieve reliability. It is still necessary to insure that all non-faulty processors use the redundant data to produce the same output.
Agreement

- Implementing BGP is no problem
- The problem is implementing a message passing system that yields respective assumptions, i.e.:
 - A1: every message that is sent is delivered correctly
 - A2: the receiver of a message knows who send it
 - A3: the absence of a message can be detected
 - A4: a loyal general’s signature cannot be forged, and any alteration of the contents of his signed messages can be detected. Anyone can verify the authenticity of a general’s signature