Petri Nets

- **Definitions**
 - **Source Transition**: a transition without any input place
 » is unconditionally enabled
 - **Sink Transition**: a transition without any output place
 » consumes but does not create any tokens
 - **Self-Look**: P is both an input and output place of T
 - **Pure Petri Net**: does not contain self-loops
 - **Ordinary Petri Net**: all of the arc weights are unity, i.e. one.
 - **Infinite Capacity Net**: assumes that each place can accommodate an unlimited number of tokens
 - **Finite Capacity Net**: max. token-capacity $K(P)$ defined for each P
 - **Strict Transition Rule**: finite capacity net with additional rule that the number of tokens in each output place P of T cannot exceed its capacity $K(P)$ after firing T.
Petri Nets

- Modeling Constructs
 - Concurrency
 - Precendence
 - Conflict, choice or decision
 - function: “exclusive OR”
 - only one transition can fire
 - weight: probability of taking that arc
Petri Nets

- Modeling Constructs
 - Synchronization
 » AND
 » joining several paths into a single path

![Diagram of Petri Nets with synchronization example]
Example

Fig. 8. A Petri net showing a dataflow computation for $x = (a + b)/(a - b)$.

$$x = \frac{a + b}{a - b}$$
Example

Fig. 9. A simplified model of a communication protocol.
Petri Nets

- Modeling Constructs
 - Time
 » need new concept => timed transition
 » timed transition has firing delay T
 » when transition is enabled, wait T, then fire
 ▹ tokens are consumed and created at the firing instance
 » timed Petri Net symbol

- Stochastic Petri Net
 - T is not fixed
 - $T = \text{random variable with } exponential \text{ distribution}$
Petri Nets

- Generalized Stochastic Petri Nets (GSPN)
 Adds extra constructs
 - Mixed transitions
 » stochastic and instantaneous transitions
 - Multiple Arcs

same as

» needs 2 tokens to fire
Petri Nets

- Generalized Stochastic Petri Nets (cont.)
 - Inhibitory Arcs
 » token inhibits firing
 » obviously no token transfer
 » watch for deadlocks!

 - Multiple Inhibitory Arcs
 » needs at least N tokens to inhibit firing
 » less than N tokens \Rightarrow transition is firable
Petri Nets

- **Reachability**
 - fundamental basis for studying the dynamic properties of any system
 - firing of enabled transition will change token distribution
 - sequence of firings results in sequence of markings
 - marking M_n is reachable from M_0 if there exists a sequence of firings that transforms M_0 into M_n
 - firing sequence is denoted by
 - $\sigma = M_0 t_1 M_1 t_2 \ldots t_n$ or simply $\sigma = t_1 t_2 \ldots t_n$
 - in this case M_n is reachable from M_0 by σ
 - the set of all possible markings reachable from M_0 in a net (N,M_0) is denoted by $R(N,M_0)$ or simply $R(M_0)$
 - the set of all possible firing sequences from M_0 in a net (N,M_0) is denoted by $L(N,M_0)$ or simply $L(M_0)$
Petri Nets

- Reachability Graph
 - Petri Net with initial marking
 \[M(t_0) = \{m_1, m_2\} = \{2, 0\} \]
 - Reachability Graph

 » add transitions to graph and…
 » Markov chain
Petri Nets

- Reachability Graph
 - Petri Net with initial marking
 \[M(t_0) = \{m_1, m_2, m_3\} \]
 - Reachability Graph

\[
\begin{align*}
p_1 & \quad \quad \quad \quad p_2 \\
p_3 & \quad \quad \quad \quad 0.0.2 \\
1.1.0 & \quad \quad \quad \quad 0.1.1 \\
& \quad \quad \quad \quad 1.0.1
\end{align*}
\]
Petri Nets

- **Boundedness**
 - A Petri net \((N, M_0)\) is said to be \textit{k-bounded} (or simply \textit{bounded}) if the number of tokens in each place does not exceed a finite number \(k\) of any marking reachable from \(M_0\), i.e., \(M(p) \leq k\) for every place \(p\) and every marking \(M \in R(M_0)\)
 - example of 2-bound net
Petri Nets

- **Liveness**
 - closely related to the complete absence of deadlock in OS
 - A Petri net \((N,M_0)\) is said to be *live* (or equivalently \(M_0\) is said to be a *live* marking of \(N\)) if, no matter what marking has been reached from \(M_0\), it is possible to ultimately fire *any* transition of the net by progressing through some further firing sequence.

A live Petri net guarantees deadlock-free operation, no matter what firing sequence is chosen. However, this property is costly to verify, e.g. for large systems.
Petri Nets

- How did we get the net of the candy machine?
 - identify places needed

![Petri Net Diagram]

0 5 15
10 20
Petri Nets

- Example: candy machine
 - identify paths from places to places and the events that get you there (interpret the numbers as “deposit x cents”).

Diagram:

- Place 0: Initial state
- Place 5: 5 cents
- Place 10: 10 cents
- Place 15: 15 cents
- Place 20: 20 cents

Arrows:
- 0 → 10: 10 cents
- 10 → 0: 10 cents
- 0 → 5: 5 cents
- 5 → 0: 5 cents
- 5 → 15: 10 cents
- 15 → 5: 10 cents
- 0 → 15: 15 cents
- 15 → 0: 15 cents
- 10 → 20: 10 cents
- 20 → 10: 10 cents
- 10 → 15: 5 cents
- 15 → 10: 5 cents

Get 15c candy

Get 20c candy
Petri Nets

- Example: candy machine
 - transition events: “deposit x cents”

get 15c candy

get 20c candy
Petri Nets

- Example: candy machine
 - final Petri net
GSPN

- gspn model name (opt. param. list)
 - 1. List all places and initial marking
 » place-name expr for init num of tokens
 - 2. List all timed trans. and rates
 » trans-name ind expr for rate
 » trans-name dep place-name expr for base rate
 - 3. List instant. trans. and branch weights
 » trans-name ind expr for weight
 » trans-name dep place-name expr for base weight
 - 4. List all place to trans. arcs
 » place-name trans-name expr for mult.
 - 5. List all trans. to place arcs
 » trans-name place-name expr for mult.
 - 6. List all inhibitory arcs

(See language description)
Some general notes

- Recall: reachability graph is Markov.
- Most functions compute CDF of “time to absorption” in reachability graph.
- Must ensure net is “dead" at desired point, e.g.:
 - when 1st token enters “Failure" place,
 - when exactly k-of-N nodes are faulty,
 - when exactly k-of-N nodes are still up,
- Need Inhibitory arcs from “Failure” back to all timed transitions.
 - Causes net to become dead at instant of failure.
 - Otherwise absorption could occur well after failure.
GSPN

- **Useful Functions**
 - `etokt (t; model name, place-name {; args})`
 » Expected num of tokens in place at time t.
 - `etok (model name, place-name {; args})`
 » Steady state average of same thing (no t parameter).
 - `preemptyt (t; model name, place-name {; args})`
 » Probability place is empty at time t,
 » Useful for tracking failure modes,
 » Warning: Do not use (1 - preemptyt) !!!
 - `preempty (model name, place-name {; args})`
 » Steady state average of same thing (no t parameter).
GSPN

- **Useful Functions**
 - `tput`, `tputt`, `taveputt`
 - Difference is point-in-time of analysis.
 - **Function:**
 - The “throughput” of a transition
 - The “firing rate” of the transition
 - More useful in Performance models (jobs/sec).
 - `tput`: throughput for transition
 - `tputt`: throughput for transition at time `t`
 - `taveputt`: time-averaged throughput of a transition during interval `(0,t)`
GSPN

Useful Functions

- util, utilt, taveutil
 - Difference is point-in-time of analysis
 - Function:
 - The “utilization” of a timed transition
 - The fraction of time it is enabled.
 - Also useful in Performance models (proc. util).
 - util: utilization for a transition
 - utilt: utilization for a transition at time t
GSPN Example

- K-of-N System: Model A
* SYSTEM: K of N SYSTEM. ALTERNATE MODEL DEMONSTRATION
* MODELS: GSPN

epsilon results 1.0×10^{-11}
epsilon basic 1.0×10^{-13}
format 3

*------------------------- MODEL DEFINITION -- MODEL A

gspn KofN_A (K,N)
*
* 1. INITIAL MARKING M(0) P_NAME TOKENS
 n_up N
 n_dn 0
 end
*
* 2. TIMED TRANSITIONS T_NAME ind RATE (or) T_NAME dep P_NAME RATE
 flt dep n_up lambda
 end
*
* 3. INSTANT. TRANSITIONS T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
 end
*
* 4. PLACE - TRANS ARCS P_NAME T_NAME MULT
 n_up flt 1
 end
*
* 5. TRANS - PLACE ARCS T_NAME P_NAME MULT
 flt n_dn 1
 end
*
* 6. INHIBITORY ARCS P_NAME T_NAME MULT
 n_dn flt (N-K+1)
 end
GSPN Example

- K-of-N System: Model B
*------------------------- MODEL DEFINITION -- MODEL B

gspn KofN_B (K,N)
*
* 1. INITIAL MARKING M(0) ... P_NAME TOKENS
 n_up N
 n_dn 0
 SYS_FAIL 0
end
*

* 2. TIMED TRANSITIONS T_NAME ind RATE (or) T_NAME dep P_NAME RATE
 flt dep n_up lambda
end
*

* 3. INSTANT. TRANSITIONS T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
 fail_sys ind 1
end
*

* 4. PLACE - TRANS ARCS ... P_NAME T_NAME MULT
 n_up flt 1
 n_dn fail_sys (N-K+1)
end
*

* 5. TRANS - PLACE ARCS .. T_NAME P_NAME MULT
 flt n_dn 1
 fail_sys SYS_FAIL 1
end
*

* 6. INHIBITORY ARCS ... P_NAME T_NAME MULT
 SYS_FAIL flt 1
end
GSPN Example

- K-of-N System: Model C
*------------------------- MODEL DEFINITION -- MODEL C

gspn KofN_C (K,N)
*
* 1. INITIAL MARKING M(0) P_NAME TOKENS
n_up N
n_dn 0
sys_up 1
SYS_FAIL 0
end
*

* 2. TIMED TRANSITIONS T_NAME ind RATE (or) T_NAME dep P_NAME RATE
flt dep n_up lambda
end
*

* 3. INSTANT. TRANSITIONS T_NAME ind WEIGHT (or) T_NAME dep P_NAME WEIGHT
fail_sys ind 1
end
*

* 4. PLACE - TRANS ARCS P_NAME T_NAME MULT
n_up flt 1
sys_up fail_sys 1
end
*

* 5. TRANS - PLACE ARCS T_NAME P_NAME MULT
flt n_dn 1
fail_sys SYS_FAIL 1
end
*

* 6. INHIBITORY ARCS P_NAME T_NAME MULT
n_up fail_sys K
SYS_FAIL flt 1
end