Petri Nets

- Part of this discussion is based on the paper
 - *Petri Nets: Properties, Analysis and Applications*

- Petri Nets
 - graphical and mathematical modeling tool
 - tool for describing systems characterized as being:
 - concurrent, asynchronous, distributed, parallel, nondeterministic and/or stochastic
Petri Nets

- **History**
 - **1962:** Carl Adam Petri’s submitted his dissertation at the Uni. Darmstadt, Germany
 - **1970:** early development was published by A.W. Host and in the records of the 1970 Project MAC Conference on Concurrent Systems and Parallel Computation
 - **1970-75:** Computation Structure Group and MIT was most active
 - **1975:** conference on Petri Nets and Related Methods at MIT
 - **1979:** 135 researchers assembled in Hamburg, Germany, for 2-week advanced course on General Net Theory of Processes and Systems
 - **1980:** first European Workshop on Applications and Theory of Petri Nets, Strasbourg, France.
 - check out Murata’s paper for the extensive literature discussion
Petri Nets

- General:
 - directed, weighted, bipartite graph
 - two kinds of notes (Places P, Transitions T)
 - arcs from P to T or from T to P
 - arcs have integer weights
 - non-negative Place weights are called tokens
Petri Nets

- A Petri Net is a 5-touple PN={P,T,A,W,M0}
- Place Set P = \{p_1, p_2, ..., p_m\}
 - finite set of places
 - condition = place
 - one condition or set of atomic conditions
 - symbol

- Transition Set T = \{t_1, t_2, ..., t_n\}
 - finite set of transitions
 - action = transition
 - one action or set of atomic transitions
 - symbol
Petri Nets

- Arc Set \(A \subseteq (\text{\textit{P}} \times \text{\textit{T}}) \cup (\text{\textit{T}} \times \text{\textit{P}}) \)
 - set of directed arcs
 - edge of graph = arc
 - symbol \(\rightarrow \)

- Weight Function \(W = A \rightarrow \{1, 2, 3, \ldots \} \)
 - weights are associated with arcs

- Initial Marking \(M_0 = \text{\textit{P}} \rightarrow \{0, 1, 2, \ldots \} \)
 - the initial assignment of tokens to places
Petri Nets

- example
Petri Nets

- **Dynamic Behavior**
 - during simulation of a petri net the state of the net may change
 - change of state:
 » transitions can be enabled
 » enabled transitions may fire
 » firing transition changes the marking of the net
 » the marking is the “snap-shot” of all the tokens
Petri Nets

- **Firing rules**
 - A transition T is said to be *enabled* if each input place P is marked with at least $W(P,T)$ tokens
 - $W(P,T)$ is the weight of the arc from P to T
 - An enabled transition may or may not fire (depending on whether or not the event actually takes place).
 - A *firing* of an enabled transition T removes $W(P,T)$ tokens from each input place P of T, and adds $W(T,P)$ tokens to each output place P of T
 - $W(T,P)$ is the weight of the arc from T to P
 - Common misconception: When a transition fires, it does **not** move tokens
 - i.e. the number of tokens in the system is not necessarily constant
Petri Nets

- Example: assume the following initial marking
 - Only one transition is enabled, i.e. t_2
Petri Nets

- Now several transitions are enabled, i.e. t_1, t_3, and t_5
- if t_1 fires first
Petri Nets

- if t_3 fires first
Petri Nets

- if t_5 fires first
- t_3 and t_5 are said to be in conflict
Petri Nets

- what could this Petri net represent?
Petri Nets

- Marking: Number and placement of tokens
 - let \(m_i \) = # of tokens in place \(p_i \)
 - then marking
 \[
 M = \{ m_1, m_2, ..., m_n \}
 \]
 - marking -- system state
 - Advantage: economy of model
 » e.g. assume net with 6 places
 ■ we limit each place to maximal 1 token
 ■ then there are \(2^6 \) possible markings
 ■ \(\Rightarrow \) 64 states
 ■ thus Petri Nets are a lot smaller than state diagrams, i.e. Markov chains
Petri Nets

- Firing rules
 - transition 1, 3 and 4 are enabled
Petri Nets

- **Firing rules**
 - transition 4 fires

```
  p1 -> p2 -> t2 -> p3 -> p4 -> t3 -> t4
  p1 -> t1
  p4 -> t2
  p5 -> t4
```

```
  p1 -> p2 -> t2 -> p3 -> p4
  p1 -> t1
  p4 -> t2
  p5 -> t4
```
Petri Nets

- Firing rules
 - transition 1 fires
Petri Nets

- Firing rules
 - transition 3 fires