USAGE MODELS

• This discussion is based on the paper:

• We will discuss the paper for what it represents and later see how the approach can benefit us with respect to our “mission”

• The paper discusses Markov Chains as models for software usage
 • uses finite state discrete parameter Markov chain
 • states of the Markov chain represent entries from the input domain of the software
 • transitions (arcs) define ordering that determines the event space, or sequence, of the experiment
USAGE MODELS

• Black box view of software system

[Whi93, fig.1]
USAGE MODELS

• Markov analysis of software specifications
 • define underlying probability law for the usage of the software under consideration
• analysis of specification done prior to design and coding
• analysis yields irreducible Markov chain (usage Markov chain)
 • unique start state S_0
 • unique final state S_F
 • set of intermediate usage states S_i
 • states set $S = \{S_0, S_F\} \cup S_i$
 • set S is ordered by probabilistic transition relation

$$(S \times [0,1] \times S)$$

• next state is independent of all past states given the present states
 • Markov property (first order chain)
USAGE MODELS

• Usage Markov chain has two properties
 • Structural Phase
 • the states and transitions of the chain are established
 • Statistical Phase
 • the transition probabilities are assigned

• Highest level transition diagram
 [Whi93, fig. 2]
• Example: a simple window application [Whi93, fig3]
Usage Models

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invocation</td>
<td>Place the window of figure 3.2 on the screen</td>
</tr>
<tr>
<td>Select ▲</td>
<td>Expand the window dimensions to cover the entire area of the screen</td>
</tr>
<tr>
<td>Select ▼</td>
<td>Remove the window and replace it with its corresponding icon</td>
</tr>
<tr>
<td>Select and choose Move from the pull down menu</td>
<td>Move the window as directed by the mouse input (obeying screen boundaries)</td>
</tr>
<tr>
<td>Select and choose Size from the pull down menu</td>
<td>Size the window as directed by the mouse input (obeying minimum and maximum limits)</td>
</tr>
<tr>
<td>Select and choose Close from the pull down menu</td>
<td>Remove the window from the screen</td>
</tr>
<tr>
<td>Select the icon and release</td>
<td>Remove the icon from the screen and restore the window</td>
</tr>
</tbody>
</table>

- Example Software Specification

 [Whi93, table I]
• Expansion of the top level usage diagram [Whi93, fig. 4]
USAGE MODELS

• Structural phase - Constructing the usage Markov chain

• phase is complete when usage is completely modeled [Whi93, fig.5]
USAGE MODELS

• **Statistical Phase**
 • assignment of transition probabilities
 • different approaches to statistical phase

 • **uninformed approach**
 • assign uniform probability distribution across the exit arcs for each state
 • useful when no information is available to make more informed choice
• **Statistical Phase**
 • **informed approach**
 • when some actual user sequences are available
 • could be captured inputs from a prototype, or profiling information
 • resulting relative frequencies can be used to estimate the transition probability in the usage chain
USAGE MODELS

• **Statistical Phase**
 • **intended approach**
 • similar to informed approach but...
 • sequences are obtained by hypothesizing runs of the software by a careful and reasonable user
 • relative frequency estimates of transition probabilities are computed from the symbol transition counts as in the informed approach

• How does one rank the approaches?
USAGE MODELS

• Captured or hypothesized sequences [Whi93, table II]

1. <Invocation> <Window> <Maximize> <Window> <Close> <Termination>
2. <Invocation> <Window> <Minimize> <Icon> <Restore> <Window> <Close> <Termination>
3. <Invocation> <Window> <Move> <Drag Mouse> <Down> <Drag-Mouse> <Right> <Drag Mouse> <Down> <Drag Mouse> <Window> <Close> <Termination>
4. <Invocation> <Window> <Size> <Drag Mouse> <Left> <Drag-Mouse> <Up> <Drag Mouse> <Left> <Drag Mouse> <Window> <Close> <Termination>
5. <Invocation> <Window> <Move> <Drag Mouse> <Down> <Drag-Mouse> <Left> <Drag Mouse> <Down> <Drag Mouse> <Window> <Close> <Termination>
6. <Invocation> <Window> <Size> <Drag Mouse> <Down> <Drag-Mouse> <Right> <Drag Mouse> <Window> <Close> <Termination>
USAGE MODELS

<table>
<thead>
<tr>
<th>From-State</th>
<th>To-State</th>
<th>Frequency</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invocation</td>
<td>Window</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Window</td>
<td>Maximize</td>
<td>1</td>
<td>1/12</td>
</tr>
<tr>
<td>Window</td>
<td>Minimize</td>
<td>1</td>
<td>1/12</td>
</tr>
<tr>
<td>Window</td>
<td>Move</td>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>Window</td>
<td>Size</td>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>Window</td>
<td>Close</td>
<td>6</td>
<td>1/2</td>
</tr>
<tr>
<td>Maximize</td>
<td>Window</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Minimize</td>
<td>Icon</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Icon</td>
<td>Restore</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Restore</td>
<td>Window</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Move</td>
<td>Drag Mouse</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Size</td>
<td>Drag Mouse</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Window</td>
<td>4</td>
<td>4/15</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Up</td>
<td>1</td>
<td>1/15</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Down</td>
<td>5</td>
<td>1/3</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Left</td>
<td>3</td>
<td>1/5</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Right</td>
<td>2</td>
<td>2/15</td>
</tr>
<tr>
<td>Up</td>
<td>Drag Mouse</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Down</td>
<td>Drag Mouse</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Left</td>
<td>Drag Mouse</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Right</td>
<td>Drag Mouse</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Close</td>
<td>Termination</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Termination</td>
<td>Invocation</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

- Assigning transition probabilities

[Whi93, table II]
1. \texttt{Invocation} \texttt{Window} \texttt{Maximize} \texttt{Window} \texttt{Close} \texttt{Termination}

2. \texttt{Invocation} \texttt{Window} \texttt{Minimize} \texttt{Icon} \texttt{Restore} \texttt{Window} \texttt{Close} \texttt{Termination}

3. \texttt{Invocation} \texttt{Window} \texttt{Move} \texttt{Drag Mouse} \texttt{Down} \texttt{Drag Mouse} \texttt{Right} \texttt{Drag Mouse} \texttt{Down} \texttt{Drag Mouse} \texttt{Window} \texttt{Close} \texttt{Termination}

4. \texttt{Invocation} \texttt{Window} \texttt{Size} \texttt{Drag Mouse} \texttt{Left} \texttt{Drag Mouse} \texttt{Up} \texttt{Drag Mouse} \texttt{Left} \texttt{Drag Mouse} \texttt{Window} \texttt{Close} \texttt{Termination}

5. \texttt{Invocation} \texttt{Window} \texttt{Move} \texttt{Drag Mouse} \texttt{Down} \texttt{Drag Mouse} \texttt{Left} \texttt{Drag Mouse} \texttt{Down} \texttt{Drag Mouse} \texttt{Window} \texttt{Close} \texttt{Termination}

6. \texttt{Invocation} \texttt{Window} \texttt{Size} \texttt{Drag Mouse} \texttt{Down} \texttt{Drag Mouse} \texttt{Right} \texttt{Drag Mouse} \texttt{Right} \texttt{Drag Mouse} \texttt{Window} \texttt{Close} \texttt{Termination}

\begin{tabular}{|c|c|c|c|}
\hline
From-State & To-State & Frequency & Probability \\
\hline
Invocation & Window & 6 & 1 \\
Window & Maximize & 1 & 1/12 \\
Window & Minimize & 1 & 1/12 \\
Window & Move & 2 & 1/6 \\
Window & Size & 2 & 1/6 \\
Window & Close & 6 & 1/2 \\
Maximize & Window & 1 & 1 \\
Minimize & Icon & 1 & 1 \\
Icon & Restore & 1 & 1 \\
Restore & Window & 1 & 1 \\
Move & Drag Mouse & 2 & 1 \\
Size & Drag Mouse & 2 & 1 \\
Drag Mouse & Window & 4 & 4/15 \\
Drag Mouse & Up & 1 & 1/15 \\
Drag Mouse & Down & 5 & 1/3 \\
Drag Mouse & Left & 3 & 1/5 \\
Drag Mouse & Right & 2 & 2/15 \\
Up & Drag Mouse & 1 & 1 \\
Down & Drag Mouse & 5 & 1 \\
Left & Drag Mouse & 3 & 1 \\
Right & Drag Mouse & 2 & 1 \\
Close & Termination & 6 & 1 \\
Termination & Invocation & - & 1 \\
\hline
\end{tabular}
• Test Cases
 • Statistical Test Case
 • any connected state sequence of the usage chain begins in the start state and ends in the termination state

• Usage Distribution π
 • the structure of the usage chain induces a probability distribution on the input domain of the software
 • this distribution is called usage distribution
 • each state S_i has steady-state probability π_i
 • i.e., the probability of being in state i is π_i
Usage Distribution π

- usage distribution can be computed by $\pi = \pi P$

- P is the transition matrix of the usage chain
 - P can be encoded as a 2-D matrix (P is a square matrix)
 - state labels are indices and transition probabilities are entries
 - each row sums up to one
 - each entry π_i is the expected appearance rate of state S_i in the long run
 - this tells software testers where the user spends most of its time
 - perhaps focus attention on these parts
 - there is a danger to this though, the bug may be in the less used functions
 - states can be grouped (allows comparison of subsections of software)
 - usage distributions are just summed up
 - collapsing states in a Markov chain may require adjustments to transitions
• Other useful statistics

• Number of states necessary until S_i is expected to be visited, denoted by x_i

\[x_i \pi_i = 1 \quad \Rightarrow \quad x_i = \frac{1}{\pi_i} \]

• if S_i is the termination state, then x_i is the expected number of states until termination of the software

© A. Krings 2014
USAGE MODELS

• Expected number of sequences s_i necessary until state i occurs

\[
S_i = \frac{x_i}{x_{\text{TERM}}} = \frac{\pi_{\text{TERM}}}{\pi_i}
\]

• largest element of vector s identifies the amount of expected testing until all usage states are encountered at least once

• note: TERM indicates termination state
USAGE MODELS

[Whi93, table III]

- Analytical results for example usage model

<table>
<thead>
<tr>
<th>State</th>
<th>π</th>
<th>x</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invocation</td>
<td>0.093750</td>
<td>10.7</td>
<td>1</td>
</tr>
<tr>
<td>Window</td>
<td>0.187500</td>
<td>5.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Maximize</td>
<td>0.015625</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Minimize</td>
<td>0.015625</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Icon</td>
<td>0.015625</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Restore</td>
<td>0.015625</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Move</td>
<td>0.031250</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Size</td>
<td>0.031250</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>0.234375</td>
<td>4.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Up</td>
<td>0.015635</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Down</td>
<td>0.078125</td>
<td>12.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Left</td>
<td>0.046875</td>
<td>21.3</td>
<td>2</td>
</tr>
<tr>
<td>Right</td>
<td>0.031250</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Close</td>
<td>0.093759</td>
<td>10.7</td>
<td>1</td>
</tr>
<tr>
<td>Termination</td>
<td>0.093750</td>
<td>10.7</td>
<td>1</td>
</tr>
</tbody>
</table>
Mean first passage times m_{jk}

- m_{jk} is the expected number of usage states visited starting from S_j until the first visit to S_k

$$m_{jk} = 1 + \sum_{i \neq k} p_{ji} m_{ik}$$

- p_{ij} indicate the transition probabilities
- indicates the extent to which S_i and S_k are encountered within the same sequence
- e.g. if m_{jk} is greater than the expected test case length, then
 - occurrence of S_j followed by S_k is expected to require multiple sequences
- note: in figure of next slide the diagonal is vector x
USAGE MODELS

- Mean first passage matrix (entries are rounded)

[Whi93, fig.6]
USAGE MODELS

- Source entropy of usage chain
 - the source entropy quantifies the uncertainty in a stochastic source
 - the entropy of a random variable f is the expected “surprise” of the event that $f(x) = y$

 $$H = - \sum_i \pi_i \sum_j p_{ij} \log p_{ij}$$

 - again π is the usage distribution and p_{ij} is the transition probability

- H is exponentially related to the number of sequences that are “statistically typical” of the Markov chain
 - a Markov chain has a set of typical sequences whose ensemble statistics closely match the statistics of the chain
• Source entropy of usage chain

• high H

 • => exponentially greater number of typical sequences

• more sequences exist because of the uncertainty present in the model

• => Markov chain must generate more sequences in order to accurately describe the Markov source
 USAGE MODELS

• Source entropy of usage chain
 • source entropy serves as a comparative measure for chains with same structure but different probabilities
 • example: two chains U_1 and U_2 (chains are structurally the same)
 • transition probabilities of U_1 are *uninformed*
 • transition probabilities of U_2 are *informed*
 • Let H_1 and H_2 be the source entropies for U_1 and U_2 respectively
 • If $H_1 > H_2$ then one should expect exponentially greater number of sequences using U_1 than U_2
 • U_1 could serve as frame of reference
 • in previous example $H_1 = 1.0884$ and $H_2 = 0.8711$
• Conclusions
 • Usage chains are a good tool trying to answer the question
 “What is the user likely to do when using the software?”
 or
 “What is the software to be able of doing?”
 • The paper was written to aid testing of software, not with
 survivability in mind
 • We need to determine how usage models can be used to benefit
 our “survivability” cause, e.g.,
 • How can we use usage models to define normal usage of the system?
 • How can we reverse-engineer usage patterns?
 • How can an attacker take advantage of usage models?