HYBRID FAULT MODELS

- The material in the following slides is courtesy of Dr. Azad Azadmanesh (UNO), i.e., they were prepared using many slides he had given to me.

- Thanks Azad!

- This discussion of fault models uses the “dependability” fault assumptions and does not focus on malicious act. We will discuss what that really means in class.
REFERENCES

OVERVIEW

• The Byzantine Fault Model (BYZ-1)
• Hybrid Fault Models
 • MPH-2
 • TPH-3
 • OTH-5
• Taxonomy of Fault Models
• Advantages of Hybrid Fault Models
• Summary of Fault-Tolerance
BYZANTINE FAULT MODEL

• Assumes that every fault is Byzantine (asymmetric)
• Oral t-fault-tolerance requires
 • $N \geq 3t+1$ -- independent processes
 • $r \geq t$ -- rounds of re-broadcast
• Observations (in the classic dependability sense):
 • Asymmetry is hard to achieve (especially with busses).
 • Asymmetric faults are very rare.
 • The majority of faults are very likely to be less severe.
 • Designs based on this model are likely to be strongly over-conservative.
 • Designs based on this model are normally used for applications which can not afford to tolerate any form of faults.
HYBRID FAULT MODELS

• Objective of Hybrid Fault Modeling is:
 • A fault model with fault “modes” of different severities.
 • Fault modes must be:
 • Mutually Exclusive
 • Collectively Exhaustive

• Motivation:
 • Allow a set of coincident faults to be of mixed modes (severities).
 • Design systems which are not so over-conservative.
 • Analyze agreement algorithms in the presence of mixed-mode faults.
MPH-2 FAULT MODEL (MEYER/PRADHAN)

• Partitions all faults into:
 • Benign faults
 • Malicious faults
• Benign fault: Immediately self-evident to all receivers.
 • Can not send an erroneous value that can not be detected.
 • Can not cause the system to undergo incorrect state transition.
 • Also called self-incriminating, fail-notify, dormant, manifest.
• Must be pre-agreed upon by all non-faulty nodes:
 • Not immediately evident in all authors' definitions
 • Embedded in assumptions of proofs.
 • All nodes simply ignore benign faults.
MPH-2 FAULT MODEL

• Examples of Benign faults:
 • Out of bound data
 • Timing-fault
 • Crash fault

• Malicious fault: Does not identify itself as faulty:
 • Any faulty behavior that is not considered benign.
 • Not self-evident to all nodes.
 • Can behave symmetrically or asymmetrically.
 • Must be handled as Byzantine.
MPH-2 FAULT MODEL

- Total Number of Faults
 - $m =$ number of malicious faults
 - $b =$ number of benign faults
 - Thus total number of faults $t = m + b$

- Oral Message Fault-Tolerance: $OM(m)$
 - $N \geq 3m + b + 1$ -- independent processes
 - $r \geq m$ -- rounds of re-broadcast
TPH-3 FAULT MODEL

- Thambidurai & Park model
- BenignFault: same as MPH-2
- Symmetric Malicious:
 - Can send an erroneous value.
 - Must broadcast the same error to all receivers.
- Asymmetric Malicious:
 - Can send different errors to different receivers.
TPH-3 FAULT MODEL

• Total Number of Faults:
 • \(a \) = Number of asymmetric faults
 • \(s \) = Number of symmetric faults
 • \(b \) = Number of benign faults
 • Thus: Total number of faults \(t = a + s + b \)

• Oral Message Fault-Tolerance: \(OM(a) \)
 • \(N \geq 2a + 2s + b + r + 1 \)
 • \(r \geq a \)
OTH-5 FAULT MODEL

• OTH stands for Omissive & Transmissive Hybrid model
• Benign: Same as TPH-3 and MPH-2 benign
• Omissive Symmetric:
 • Does not send a value to any receiver.
 • Unlike a benign fault, it is not previously diagnosed and agreed to by all nodes.
• Transmissive Symmetric: same as TPH-3 symmetric.
• Strictly Omissive Asymmetric: Can transmit only:
 • Correct value to some receivers.
 • And No value to other receivers.
• Transmissive Asymmetric: Same as TPH-3 asymmetric.
OTH-5 FAULT MODEL

• Total Number of Faults
 • $a' = \text{Number of transmissive asymmetric faults}$
 • $\omega_a = \text{Number of strictly omissive asymmetric faults}$
 • $s' = \text{Number of transmissive symmetric faults}$
 • $\omega_s = \text{Number of omissive symmetric faults}$
 • $b = \text{Number of benign faults}$
 • Thus total number of faults: $t = (a' + \omega_a) + (s' + \omega_s) + b$

• Oral Message Fault-Tolerance
 • OTH has not been applied to Byzantine Agreement
 • Has been applied to “Approximate” Agreement:
 • $N \geq 3a' + 2s' + \omega_a + \omega_s + b + l$
TAXONOMY OF FAULT MODELS

All Faults

Malicious
- Asymmetric
 - Transmissive Asymmetric
 - Strictly Omissive Asymmetric

Symmetric
- Omissive Symmetric
- Transmissive Symmetric

Benign
- Benign
- Benign
FT ADVANTAGES OF HYBRID FAULT MODELS

1) More accurate model of the system: Less “overly” conservative
2) Resulting reliability estimates are better.

Consider $N = 6$:
- OM is capable of tolerating 1 fault.
- Whereas TPH-3 can tolerate: 1 asymmetric and 1 symmetric fault, or
 1 asymmetric and 2 benign faults.

Also, with $N=4$, OM is capable of still tolerating 1 fault.
Therefore the system reliability when $N=6$ is less, and
Thus, it is better to turn off the additional nodes.
FT ADVANTAGES OF HYBRID FAULT MODELS

3) Smarter degradation

Consider the incompatible fault scenarios:

Scenario 1: a=1, s=0, b=0
Scenario 2: a=0, s=2, b=0

Consider a 5-node system:

r=0 can handle scenario 2, but not scenario 1
(simple majority vote), (see N for TPH-3).

r=1 can handle scenario 1, but not scenario 2.

Thus: By specifying the number of rounds, the algorithm can be “tuned” for the most likely scenarios.
FT ADVANTAGES OF HYBRID FAULT MODELS

• Requirements for success:
 • To have a good estimate of fault rates $\lambda_a, \lambda_s, \lambda_b$
 • Typically $\lambda_a << \lambda_s << \lambda_b$
 • To have a good estimate of recovery rates ρ_a, ρ_s
 • Typically $\rho_a < \rho_s$
SUMMARY

• BYZ-1
 • $N \geq 3t + 1$
 • $r \geq t$

• MPH-2
 • $N \geq 3m + b + 1$
 • $r \geq m$

• TPH-3
 • $N \geq 2a + 2s + b + r + 1$
 • $r \geq a$

• OTH-5
 • Byzantine Agreement: Unknown at this time. Approximate Agreement: $N \geq 3a' + 2s' + \omega a + \omega s + b + 1$
DATA AGGREGATION

• There are different yet similar definitions:
 • Ability to provide global information for purposes of network management and user services.
 • A set of functions that provide components of a distributed system access to global information.

• Reasons to do Data Aggregation (DA)
 • To coordinate tasks.
 • The need for node/component duplication for higher performance.
 • The need for redundancy for higher fault tolerance.
DATA AGGREGATION

• Data Aggregation has gone by other names:
 • Data Fusion
 • Approximate Agreement
 • Consensus
 • Distributed Agreement
DATA AGGREGATION

• General Scenario
 • Each node in the network holds a value.
 • Nodes exchange values to decide on values.

• Agreement conditions:
 • Agreement: The decided values, one value by each node, are within a predefined tolerance of each other.
 • Validity: The decided values are within the range of initial values held by non-faulty nodes.
A ROUND OF COMMUNICATION

• Agreement is reached executing multiple rounds.
• Each round consists of:
 • 1. Broadcast: Each node broadcasts its value to others.
 • 2. Collect: Each node forms a multiset of values.
 • 3. Filter: Select values to vote with.
 • 4. Average: Average the selected values to vote.
MAJOR EVOLUTIONS

- Static networks
 - Multiprocessor/multiprocessing systems
 - Mostly concentrated on Fully Connected Networks (FCN)
 - Small scale critical systems: power plants, aircrafts, automobiles
- Distributed Networks
 - Limited focus on Partially Connected Networks (PCN)
 - Large scale distributed systems (Internet)
MAJOR EVOLUTIONS

- Mobile/Adhoc networks
 - Include both FCN and PCN
 - Growing PCN applications: tactical military operations, tracking endangered species, Unmanned Autonomous Vehicles (UAV), etc.
FULLY CONNECTED NETWORKS

• Most agreement algorithms are devised for FCNs.
• Full exchange of values in a round is immediate.
• Diameter of values shrinks in each round (single-step).
• Agreement is reached gradually by shrinking diameter in each round.
EXAMPLE: MEDIAN SELECT ALGORITHM

• 5 nodes with real values in \([0, 1]\)
• 4 (of 5) correct nodes possess the values: \(<0, 0, 1, 1>\)
• The faulty node behaves asymmetrically.
• After broadcasting, collecting, filtering, and selecting:
 • Node i: \(<0, 0, 0, 1, 1>\) thus median = 0
 • Node j: \(<0, 0, 1, 1, 1>\) thus median = 1
• Result:
 • Validity: voted values are within range of correct values.
 • Not convergent: values are still within \([0, 1]\).
EXAMPLE: MIDPOINT SELECT ALGORITHM

• 4 nodes with real values in \([0,1]\)
• 3 (of 4) correct nodes posses the values: \(<0,1,1,1>\)
• The faulty node behaves asymmetrically.
• After broadcasting, collecting, filtering, and selecting:
 • Node i: \(<0,0,1,1>\) thus midpoint = 0.5
 • Node j: \(<0,1,1,1>\) thus midpoint = 1

• Result:
 • Validity: voted values are within range of correct values.
 • Convergent: voted values are < diameter in \([0,1]\).
HOW TO ACHIEVE AA CONDITIONS

• Three general approaches:
 • Mean Select Reduce (MSR)
 • MSR algorithms: Remove the extreme-end values.
 • Egocentric algorithms: Replace the extreme-end values with your own value.
 • Egophbic algorithms: Replace the extreme-end values with your own plus a predefined threshold.
MSR: REMOVE THE EXTREME--END VALUES

• Example:
 • Assume 5 nodes with values in the range: 0…1
 • 4 of the nodes posses the values: <0,0,1,1,>
 • The one faulty node (t=1) behaves asymmetrically.
 • Use “fault tolerant mean” function.
 • Case 1: Assume, the faulty node transmits a value outside of the range.

\[
\begin{align*}
0 & 1 & 1 \rightarrow (0+1+1)/3 = 0.66 \\
-1 & 0 & 1 & 1 & 1
\end{align*}
\]

\[
\begin{align*}
0 & 0 & 1 & \rightarrow (0+0+1)/3 = 0.33
\end{align*}
\]

• Average is convergent \([(0.66-0.33) < (1-0)] \) & valid.
• Example, Cont.:
 • Case 2: Assume, the faulty node transmits a value within the range.

\[
\begin{array}{ccc}
0 & 0.5 & 1 \\
0 & 0.5 & 1 & \rightarrow (0+0.5+1)/3 = 0.5 \\
0 & 0.9 & 1 & \rightarrow (0+0.9+1)/3 = 0.63
\end{array}
\]

• Average is convergent \([(0.63-0.5) < (1-0)] & valid.\]
Example:
- Assume 5 nodes with values in the range: 0…1
- 4 of the nodes possess the values: <0,0,1,1,>
- The one faulty node (t=1) behaves asymmetrically.
- Assume two correct nodes i & j performing the voting hold the values 1 & 0 respectively.
- Use Fault Tolerant Mean function.
EGOCENTRIC: REPLACE THE EXTREME--END VALUES WITH YOUR OWN, CONT.

• Example, Cont.:
 • Case 1: Assume, the faulty node transmits the values (-0.5 & 1.5) outside of the range.
 • node i receives: 0 0 1 1 1.5
 • 1 0 1 1 1 => (1+0+1+1+1)/5 = 0.8
 • node j receives: -0.5 0 0 1 1
 • 0 0 0 1 0 => (0+0+0+1+0)/5 = 0.2
 • The result is both valid and convergent.
Example, Cont.:

Case 2: Assume, the faulty node transmits values (0.2 & 0.7) within the range.

- node i receives: 0 0 0.2 1 1
 - \(1 + 0 + 0.2 + 1 + 1\)/5 = 0.64
- node j receives: 0 0 0.7 1 1
 - \(0 + 0 + 0.7 + 1 + 0\)/5 = 0.34
- The result is both valid and convergent.
EGOCENTRIC: REPLACE THE EXTREME--END VALUES WITH YOUR OWN, CONT.

- Example, Cont.:
 - Case 3: Assume, the faulty node transmits value 0.2 (within range) to i and 1.5 (outside of range) to j.
 - node i receives: 0 0 0.2 1 1
 - 1 0 0.2 1 1 => (1+0+0.2+1+1)/5 = 0.64
 - node j receives: 0 0 1 1 1.5
 - 0 0 1 1 0 => (0+0+1+1+0)/5 = 0.4
 - The result is both valid and convergent.
SINGLE STEP CONVERGENCE

\[V = \langle v_1, \ldots, v_V \rangle, \text{ where } V = |V|, \text{ is the multiset of values received and sorted in ascending order.} \]

\[\rho(V) = [\min(V), \max(V)], \text{ is the range of values spanned by } V. \]

\[\delta(V) = [\max(V) - \min(V)], \text{ is the diameter of } V. \]

\[U_{all} = \text{ The multiset of all correct values received by non-faulty nodes.} \]

During each round of voting, each non-faulty node \(i \) broadcasts its initial value to all nodes including itself. Then it collects all the values received into the voting multiset \(V_i \). Node \(i \) then applies a function \(F \) to \(V_i \) to attain its latest estimate (voted value) for the round, which it uses as its initial value in the next round.
SINGLE STEP CONVERGENCE

• An algorithm is single-step-convergent if both of the following conditions are true following every round of voting:

 C1: VALIDITY—For each nonfaulty process i, the voted value is within the range of correct values, i.e., $F(V_i) \in \rho(U_{all})$.

 C2: CONVERGENCE—For each pair of nonfaulty processes, i and j, the difference between their voted values is strictly less than the diameter of the correct values received, i.e., $|F(V_i) - F(V_j)| \leq C\delta(U_{all})$, where $0 \leq C < 1$.
In convergence condition C2 above, i.e.,

$$|F(V_i) - F(V_j)| \leq C \delta(U_{all})$$

parameter C, called the Convergence Rate, is the primary performance measure of a voting algorithm. The constraint $0 \leq C < 1$ ensures that the algorithm is indeed single-step convergent. The smaller the values of C, the faster the voted values converge.
MSR ALGORITHMS

• Mean Select Reduce (MSR)
• MSR algorithms can handle the following fault modes:
 • Benign (b)
 • Symmetric (s)
 • Asymmetric (a)
• Thus: \(t = a + s + b \)
MSR ALGORITHMS

\[N = \text{The total number of processes in the system.} \]

\[\tau = \text{The maximum number of malicious errors that could be received by a process. This number is known a priori and is identical for all nonfaulty processes.} \]

\[V_i = \text{The multiset of values received in a given round by nonfaulty process } i. \text{ The number of elements in } V_i \text{ is } V_i = |V_i|. \]

\[M_i = Red^\tau(V_i), \text{ the Medial Multiset of } V_i. \text{ The number of elements in } M_i \text{ is } M_i = |M_i| = V_i - 2\tau. \]

\[S_i = Sel_{\sigma_i}(M_i) = Sel_{\sigma_i}(Red^\tau(V_i)), \text{ the Selected Multiset generated by } F(V_i). \text{ The number of elements in } S_i \text{ is } \sigma_i = |S_i|. \]
The voting function:
\[F(V) = \text{mean} [\text{Sel}_\sigma (\text{Red}^\tau (V))] \]
where
\[\tau = (a + s), \text{ maximum number of erroneous values} \]
\[\text{Red}^\tau = \text{The subsequence } M \text{ remaining after removing the } \tau \text{ extreme values} \]
\[\text{Sel}_\sigma = \text{The subsequence } S \text{ of size } \sigma, \text{ after selecting } \sigma \text{ elements from } M \]
\[V = v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10} \]

\[M = m_1, m_2, m_3, m_4, m_5, m_6 \]

\[S = s_1, s_2, s_3 \]

\[\Rightarrow s_i = m_{k(i)} \]
TPH-3 MODEL

- With TPH-3 we have $N \geq 3a + 2s + b + 1$
- With Lamport we have $N \geq 3t + 1$
- It was shown [Kieckhafer & Azadmanesh 1994] that single-step convergent MSR voting algorithms can exist if

\[N \geq 3a + 2s + b + 1 = 3t - (s + 2b) + 1 \]

- Examples of algorithms that achieve this bound are
 - Fault-Tolerant Midpoint (if $a>0$)
 - Simple Median Select (if $a=0$)
DEFINITION

\(g, h \in \{1, \ldots, \sigma\} \), where \(g \leq h \):

\[(h - g) \equiv \text{the distance between } s_g \text{ and } s_h, \]

\[k(h) - k(g) \equiv \text{the distance between } m_{k(g)} \text{ and } m_{k(h)}, \]

Define:

\[\gamma_\alpha \equiv \min(h - g) \text{ such that } k(h) - k(g) \geq \alpha, \]

\[\forall \ g, h \in \{1, \ldots, (\sigma - \gamma_\alpha)\} \]

\[\gamma_\alpha \equiv \text{the minimum distance between any two elements of } S \text{ which guarantees that the distance between the corresponding elements of } M \text{ is at least } \alpha. \]
Example

Let \(S = \langle s_1, s_2, s_3, s_4 \rangle = \langle m_1, m_3, m_6, m_8 \rangle \)

\[
S = \begin{array}{cccc}
s_1, & s_2, & s_3, & s_4 \\
\downarrow, & \downarrow, & \downarrow, & \downarrow \\
\end{array}
\]

\[
M = \begin{array}{cccccccc}
m_1, & m_2, & m_3, & m_4, & m_5, & m_6, & m_7, & m_8 \\
\end{array}
\]

If \(\alpha = 2 \):
- A distance of 1 in \(S \) always yields a distance of at least 2 in \(M \).
- Since \(k(g+1) - k(g) \geq 2 \), \(\gamma_2 = (g+1) - g = 1 \).

If \(\alpha = 3 \):
- A distance of 1 in \(S \) can yield a distance of less than 3 in \(M \).
- A distance of 2 in \(S \) always yields a distance of 5 in \(M \).
- Since \(k(g+2) - k(g) \geq 3 \), \(\gamma_3 = (g+2) - g = 2 \).
DEFINITIONS

$V_i \equiv$ Multiset of values received by node i.

$U_i \equiv$ Multiset of values received by node i from non faulty nodes.

$U_{i \cap j} \equiv U_i \cap U_j$

$\delta(U) \equiv \max(U) - \min(U)$, for some multiset U.

$C \equiv \text{Convergence Rate} = \frac{\max|F(V_i) - F(V_j)|}{\delta(U_{i \cap j})}, \quad \delta(U_{i \cap j}) > 0$

If $0 \leq C < 1$, then the algorithm is convergent.
MSR PERFORMANCE FOR FCN

\[C = \frac{\gamma_a}{\sigma} \]

\[N \geq 3a + 2s + b + 1 \]

\[V = N - b \]

\[\tau \geq a + s \]
SUMMARY

• Hybrid Fault Models were discussed with the 5-mode model being offering special value, as they consider the impact of omissive behavior on symmetric and asymmetric faults,
 • transmissive
 • omissive

• Approximate agreement algorithms were considered in the context of their convergence rates
 • allows to see how fast algorithms converge
 • some algorithms may work fast, but convergence is not guaranteed, e.g., simple median with a >0