FAULT MODELS

• Much work has been done on fault models. The discussion is based on the paper:

 • Thambidurai, P., and You-Keun Park, "Interactive Consistency with Multiple Failure Modes", Reliable Distributed Systems, Volume, Issue, 10-12 Oct 1988 Page(s):93 - 100. (Only read up to Section 3).

 • There is an interesting follow-up paper "Verification of Hybrid Byzantine Agreement Under Link Faults" by P. Lincoln and J. Rushby that addresses a problem in the algorithm of Thambidurai and Park
FAULT MODELS

• Benign versus Malicious
 • Benign
 • error is self-evident
 • component does not undergo incorrect state transition during failure
 • examples:
 • omission fault
 • crash fault
 • timing fault
 • data out-of-bound
FAULT MODELS

• Malicious
 • not self-evident to all non faulty receivers
 • can behave in two ways
 • symmetric
 • received identically by all processors
 • asymmetric
 • no restrictions of fault => anything goes
• Fault frequency
 • worse case every fault could behave asymmetric
 • best case all faults are benign
 • what is the best assumption for your system?
FAULT MODELS

- Fault Taxonomy

Fault

Benign
Symmetric

Malicious
Asymmetric

Asymmetric

Symmetric

Benign

- Relationship & Probability of Occurrence
FAULT MODELS

• Lamport Model
 - assumes that every fault is asymmetric

 \[N \geq 3t + 1 \]

 \[r' \geq t + 1 \quad \text{or} \quad r \geq t \quad \text{rebroadcasts} \]

• Meyer + Pradhan 87
 - differentiates between malicious and benign faults

 \[N > 3m + b \]

 \[r > m \]

 \[m = \text{number of malicious faults} \]

 \[b = \text{number of benign faults} \]
FAULT MODELS

- Thambidurai + Park 88
 - difference between malicious faults
 - symmetric faults
 - asymmetric faults
 - result:

 \[N > 2a + 2s + b + r \]

 \[r \geq a \]

- \(a = \text{asym.}, s = \text{sym.}, b = \text{benign}, r = \text{rounds} \)
- in general \(a_{\text{max}} < s_{\text{max}} < b_{\text{max}} \)
- or \(\lambda_a << \lambda_s << \lambda_b \)
- saves rounds and hardware
FAULT MODELS

• Advantages of multi-fault model
 • 1) more accurate model of the system
 • less “overly conservative”
 • 2) resulting reliabilities are better
 • custom tailor recovery mechanisms
• Example:
 • consider Byzantine solution using OM() algorithm
 • assume N = 4, 5, 6
 • still, only one fault is covered using the OM algorithm
 • moreover, the system reliability degrades
 • N = 6 results in worse reliability than N = 4
 • one is better off to turn the additional processors off!
• see paper Tha88, page 98, table 1
FAULT MODELS

Source: Tha88

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>$P(\text{Failure})$</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>5</td>
<td>1.0×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>6</td>
<td>1.5×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>UM</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary, $b = 0, s = 0$</td>
</tr>
<tr>
<td>UM</td>
<td>5</td>
<td>1.0×10^{-11}</td>
<td>1 arbitrary, $b = 1, s = 0$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>2.0×10^{-11}</td>
<td>1 arbitrary, $b = 0, s = 1$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>1.1×10^{-15}</td>
<td>1 arbitrary, $b = 2, s = 0$</td>
</tr>
</tbody>
</table>

Table 1: Reliability data for Example 1
Fault Models

Source: Tha88

Table 2: Resiliency of a System based on the Unified Model (minimum number of processors required)

<table>
<thead>
<tr>
<th>r = 1</th>
<th>a = 0</th>
<th>a = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b = 0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>b = 1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>b = 2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>b = 3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>b = 4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>b = 5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>b = 6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>
FAULT MODELS

3) smarter degradation

- we can specify the number of rounds
- example using N = 11

let subscript max denote the maximum number of faults covered, assuming this is the only type of fault occurring.

if \(r = 1 \) then \(a_{\text{max}} = 1 \) or \(s_{\text{max}} = 4 \)
if \(r = 2 \) then \(a_{\text{max}} = 2 \) or \(s_{\text{max}} = 4 \)

why? \(s_{\text{max}} = 4 \Rightarrow N > 2 \times 4 + 2 = 10 \)
\(s_{\text{max}} = 5 \Rightarrow N < 2 \times 5 + 2 = 12 \)

requirements for success

- good estimate of fail rates \(\lambda_a, \lambda_s, \lambda_b \)
- typically \(\lambda_a << \lambda_s << \lambda_b \)
- good estimate of recovery rates \(\rho_a, \rho_s, \rho_b \)
- typically \(\rho_a < \rho_s < \rho_b \)
AGREEMENT ALGORITHMS

• Incomplete Interconnections
 • Lam82, Dol82
 • agreement only if the number of processors is less than 1/2 of the connectivity of the system’s network.
• Eventual vs. Immediate Byz. Agreement (EBA, IBA)
 • recall interactive consistency conditions IC1, IC2
 • an agreement is immediate if in addition to IC1 and IC2 all correct processors also agree (during the round) on the round number at which they reach agreement.
 • otherwise the agreement is called eventual
 • each processor has decided on its value, but cannot synchronize its decision with that of the others until some later phase.
 • Thus, agreement may not always need full t+1 rounds