USAGE MODELS

• This discussion is based on the paper:
 • We will discuss the paper for what it represents and later see how the approach can benefit us with respect to our “mission”
• The paper discusses Markov Chains as models for software usage
 • uses finite state discrete parameter Markov chain
 • states of the Markov chain represent entries from the input domain of the software
 • transitions (arcs) define ordering that determines the event space, or sequence, of the experiment

USAGE MODELS

• Black box view of software system

[Whi93, fig.1]
USAGE MODELS

• Markov analysis of software specifications
 • define underlying probability law for the usage of the software under consideration
 • analysis of specification done prior to design and coding
 • analysis yields irreducible Markov chain (usage Markov chain)
 • unique start state S_0
 • unique final state S_F
 • set of intermediate usage states S_i
 • states set $S = \{S_0, S_F\} \cup S_i$
 • set S is ordered by probabilistic transition relation

 \[(S \times [0,1] \times S)\]

• next state is independent of all past states given the present states
 • Markov property (first order chain)

• Usage Markov chain has two properties
 • Structural Phase
 • states and transitions of the chain are established
 • Statistical Phase
 • transition probabilities are assigned

• Highest level transition diagram
 [Whi93, fig. 2]
USAGE MODELS

• Example: a simple window application [Whi93, fig3]

![Example Window diagram]

- Move
- Close
- Size

→ (pull down menu)

USAGE MODELS

• Example Software Specification

[Whi93, table I]

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invocation</td>
<td>Place the window of figure 3.2 on the screen</td>
</tr>
<tr>
<td>Select ●</td>
<td>Expand the window dimensions to cover the entire area of the screen</td>
</tr>
<tr>
<td>Select ●</td>
<td>Remove the window and replace it with its corresponding icon</td>
</tr>
<tr>
<td>Select ● and choose Move from the pull down menu</td>
<td>Move the window as directed by the mouse input (obeying screen boundaries)</td>
</tr>
<tr>
<td>Select ● and choose Size from the pull down menu</td>
<td>Size the window as directed by the mouse input (obeying minimum and maximum limits)</td>
</tr>
<tr>
<td>Select ● and choose Close from the pull down menu</td>
<td>Remove the window from the screen</td>
</tr>
<tr>
<td>Select the icon and release</td>
<td>Remove the icon from the screen and restore the window</td>
</tr>
</tbody>
</table>
USAGE MODELS

• Expansion of the top level usage diagram \[Whi93, \text{fig. 4}\]

• Structural phase - Constructing the usage Markov chain

• phase is complete when usage is completely modeled \[Whi93, \text{fig. 5}\]
 USAGE MODELS

• **Statistical Phase**
 • assignment of transition probabilities
 • different approaches to statistical phase
 • **uninformed approach**
 • assign uniform probability distribution across the exit arcs for each state
 • useful when no information is available to make more informed choice

• **Statistical Phase**
 • **informed approach**
 • when some actual user sequences are available
 • could be captured inputs from a prototype, or profiling information
 • resulting relative frequencies can be used to estimate the transition probability in the usage chain
• **Statistical Phase**

 • **intended approach**

 • similar to informed approach but...

 • sequences are obtained by hypothesizing runs of the software by a careful and reasonable user

 • relative frequency estimates of transition probabilities are computed from the symbol transition counts as in the informed approach

 • How does one rank the approaches?

Usage Models

• Captured or hypothesized sequences [Whi93, table II]

1. `<Invocation>` `<Window>` `<Maximize>` `<Window>` `<Close>` `<Termination>`
2. `<Invocation>` `<Window>` `<Minimize>` `<Icon>` `<Restore>` `<Window>` `<Close>` `<Termination>`
3. `<Invocation>` `<Window>` `<Move>` `<Drag Mouse>` `<Down>` `<Drag Mouse>` `<Right>` `<Drag Mouse>` `<Down>` `<Drag Mouse>` `<Window>` `<Close>` `<Termination>`
4. `<Invocation>` `<Window>` `<Size>` `<Drag Mouse>` `<Left>` `<Drag Mouse>` `<Up>` `<Drag Mouse>` `<Left>` `<Drag Mouse>` `<Window>` `<Close>` `<Termination>`
5. `<Invocation>` `<Window>` `<Move>` `<Drag Mouse>` `<Down>` `<Drag Mouse>` `<Left>` `<Drag Mouse>` `<Down>` `<Drag Mouse>` `<Window>` `<Close>` `<Termination>`
6. `<Invocation>` `<Window>` `<Size>` `<Drag Mouse>` `<Down>` `<Drag Mouse>` `<Right>` `<Drag Mouse>` `<Window>` `<Close>` `<Termination>`
USAGE MODELS

<table>
<thead>
<tr>
<th>From-State</th>
<th>To-State</th>
<th>Frequency</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invocation</td>
<td>Window</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Window</td>
<td>Maximize</td>
<td>1</td>
<td>1/12</td>
</tr>
<tr>
<td>Window</td>
<td>Minimize</td>
<td>1</td>
<td>1/12</td>
</tr>
<tr>
<td>Window</td>
<td>Move</td>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>Window</td>
<td>Size</td>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>Window</td>
<td>Close</td>
<td>6</td>
<td>1/2</td>
</tr>
<tr>
<td>Maximize</td>
<td>Window</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Minimize</td>
<td>Icon</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Icon</td>
<td>Restore</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Restore</td>
<td>Window</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Move</td>
<td>Drag Mouse</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Size</td>
<td>Drag Mouse</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Window</td>
<td>4</td>
<td>4/15</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Up</td>
<td>1</td>
<td>1/15</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Down</td>
<td>5</td>
<td>1/3</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Left</td>
<td>3</td>
<td>1/5</td>
</tr>
<tr>
<td>Drag Mouse</td>
<td>Right</td>
<td>2</td>
<td>2/15</td>
</tr>
<tr>
<td>Up</td>
<td>Drag Mouse</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Down</td>
<td>Drag Mouse</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Left</td>
<td>Drag Mouse</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Right</td>
<td>Drag Mouse</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Close</td>
<td>Termination</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Termination</td>
<td>Invocation</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Assigning transition probabilities

[Whi93, table II]
Test Cases

- Statistical Test Case
 - any connected state sequence of the usage chain begins in the start state and ends in the termination state

Usage Distribution π

- the structure of the usage chain induces a probability distribution on the input domain of the software
- this distribution is called *usage distribution*
- each state S_i has steady-state probability π_i
 - i.e., the probability of being in state i is π_i

Usage Distribution π

- usage distribution can be computed by $\pi = \pi P$

- P is the transition matrix of the usage chain
 - P can be encoded as a 2-D matrix (P is a square matrix)
 - state labels are indices and transition probabilities are entries
 - each row sums up to one
 - each entry π_i is the expected appearance rate of state S_i in the long run
 - this tells software testers where the user spends most of its time
 - perhaps focus attention on these parts
 - there is a danger to this though, the bug may be in the less used functions
 - states can be grouped (allows comparison of subsections of software)
 - usage distributions are just summed up
 - collapsing states in a Markov chain may require adjustments to transitions
• Other useful statistics

• Number of states necessary until S_i is expected to be visited, denoted by x_i

\[x_i \pi_i = 1 \implies x_i = \frac{1}{\pi_i} \]

• if S_i is the termination state, then x_i is the expected number of states until termination of the software

• Expected number of sequences s_i necessary until state i occurs

\[S_i = \frac{x_i}{x_{TERM}} = \frac{\pi_{TERM}}{\pi_i} \]

• largest element of vector s identifies the amount of expected testing until all usage states are encountered at least once

• note: TERM indicates termination state
USAGE MODELS

Mean first passage times \(m_{jk} \)

- \(m_{jk} \) is the expected number of usage states visited starting from \(S_j \) until the first visit to \(S_k \)

\[
m_{jk} = 1 + \sum_{i \neq k} p_{ij} m_{ik}
\]

- \(p_{ij} \) indicate the transition probabilities
- \(m_{ik} \) indicates the extent to which \(S_i \) and \(S_k \) are encountered within the same sequence
- e.g. if \(m_{jk} \) is greater than the expected test case length, then
 - occurrence of \(S_j \) followed by \(S_k \) is expected to require multiple sequences
 - note: in figure of next slide the diagonal is vector \(x \)

USAGE MODELS

- Analytical results for example usage model

\[
\begin{array}{|c|c|c|c|}
\hline
\text{State} & \pi & x & \sigma \\
\hline
\text{Invocation} & 0.093750 & 10.7 & 1 \\
\text{Window} & 0.187500 & 5.3 & 0.5 \\
\text{Maximize} & 0.015625 & 64 & 6 \\
\text{Minimize} & 0.015625 & 64 & 6 \\
\text{Icon} & 0.015625 & 64 & 6 \\
\text{Restore} & 0.015625 & 64 & 6 \\
\text{Move} & 0.031250 & 32 & 3 \\
\text{Size} & 0.031250 & 32 & 3 \\
\text{Drag Mouse} & 0.234375 & 4.3 & 6.4 \\
\text{Up} & 0.015625 & 64 & 6 \\
\text{Down} & 0.078125 & 12.8 & 1.2 \\
\text{Left} & 0.046875 & 21.3 & 2 \\
\text{Right} & 0.031250 & 32 & 3 \\
\text{Close} & 0.093750 & 10.7 & 1 \\
\text{Termination} & 0.093750 & 10.7 & 1 \\
\hline
\end{array}
\]
Source entropy of usage chain

- the source entropy quantifies the uncertainty in a stochastic source
- the entropy of a random variable f is the expected “surprise” of the event that $f(x)=y$

$$H = -\sum_i \pi_i \sum_j p_{ij} \log p_{ij}$$

- again π_i is the usage distribution and p_{ij} is the transition probability

- H is exponentially related to the number of sequences that are “statistically typical” of the Markov chain
- a Markov chain has a set of typical sequences whose ensemble statistics closely match the statistics of the chain
• Source entropy of usage chain
 • high H
 • => exponentially greater number of typical sequences
 • more sequences exist because of the uncertainty present in the model
 • => Markov chain must generate more sequences in order to accurately describe the Markov source

• Source entropy serves as a comparative measure for chains with same structure but different probabilities
 • example: two chains U_1 and U_2 (chains are structurally the same)
 • transition probabilities of U_1 are uninformed
 • transition probabilities of U_2 are informed
 • Let H_1 and H_2 be the source entropies for U_1 and U_2 respectively
 • If $H_1 > H_2$ then one should expect exponentially greater number of sequences using U_1 than U_2
 • U_1 could serve as frame of reference
 • in previous example $H_1 = 1.0884$ and $H_2 = 0.8711$
• Conclusions
 • Usage chains are a good tool trying to answer the question
 “What is the user likely to do when using the software?”
 or
 “What is the software to be able of doing?”
 • The paper was written to aid testing of software, not with survivability in mind
 • We need to determine how usage models can be used to benefit our “survivability” cause, e.g.,
 • How can we use usage models to define normal usage of the system?
 • How can we reverse-engineer usage patterns?
 • How can an attacker take advantage of usage models?