FAULT MODELS

• Much work has been done on fault models. The discussion is based on the paper:

 • Thambidurai, P., and You-Keun Park, "Interactive Consistency with Multiple Failure Modes", Reliable Distributed Systems, Volume, Issue, 10-12 Oct 1988 Page(s):93 - 100. (Only read up to Section 3).

 • There is an interesting follow-up paper "Verification of Hybrid Byzantine Agreement Under Link Faults" by P. Lincoln and J. Rushby that addresses a problem in the algorithm of Thambidurai and Park.

FAULT MODELS

• Benign versus Malicious

 • Benign
 • error is self-evident
 • component does not undergo incorrect state transition during failure
 • examples:
 • omission fault
 • crash fault
 • timing fault
 • data out-of-bound
FAULT MODELS

• Malicious
 • not self-evident to all non faulty receivers
 • can behave in two ways
 • symmetric
 • received identically by all processors
 • asymmetric
 • no restrictions of fault => anything goes
• Fault frequency
 • worse case every fault could behave asymmetric
 • best case all faults are benign
 • what is the best assumption for your system?

FAULT MODELS

• Fault Taxonomy

Benign Malicious
Symmetric Asymmetric

• Relationship & Probability of Occurrence
FAULT MODELS

• Lamport Model
 • assumes that every fault is asymmetric
 \[N \geq 3t + 1 \]
 \[r' \geq t + 1 \quad \text{or} \quad r \geq t \] rebroadcasts

• Meyer + Pradhan 87
 • differentiates between malicious and benign faults
 \[N > 3m + b \]
 \[r > m \]
 \[m = \text{number of malicious faults} \]
 \[b = \text{number of benign faults} \]

• Thambidurai + Park 88
 • difference between malicious faults
 • symmetric faults
 • asymmetric faults
 • result:
 \[N > 2a + 2s + b + r \]
 \[r \geq a \]
 • a = asym., s = sym., b = benign, r = rounds
 • in general \(a_{\text{max}} < s_{\text{max}} < b_{\text{max}} \)
 • or \(\lambda_a << \lambda_s << \lambda_b \)
 • saves rounds and hardware
Fault Models

- Advantages of multi-fault model
 - 1) more accurate model of the system
 - less “overly conservative”
 - 2) resulting reliabilities are better
 - custom tailor recovery mechanisms
 - Example:
 - consider Byzantine solution using OM() algorithm
 - assume $N = 4, 5, 6$
 - still, only one fault is covered using the OM algorithm
 - moreover, the system reliability degrades
 - $N = 6$ results in worse reliability than $N = 4$
 - one is better off to turn the additional processors off!
 - see paper Tha88, page 98, table 1

Fault Models

Source: Tha88

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>P(Failure)</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>5</td>
<td>1.0×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>BG</td>
<td>6</td>
<td>1.5×10^{-7}</td>
<td>1 arbitrary</td>
</tr>
<tr>
<td>UM</td>
<td>4</td>
<td>6.0×10^{-8}</td>
<td>1 arbitrary, $b=0, s=0$</td>
</tr>
<tr>
<td>UM</td>
<td>5</td>
<td>1.0×10^{-11}</td>
<td>1 arbitrary, $b=1, s=0$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>2.0×10^{-11}</td>
<td>1 arbitrary, $b=0, s=1$</td>
</tr>
<tr>
<td>UM</td>
<td>6</td>
<td>1.1×10^{-15}</td>
<td>1 arbitrary, $b=2, s=0$</td>
</tr>
</tbody>
</table>

Table 1: Reliability data for Example 1
• 3) smarter degradation
 • we can specify the number of rounds
 • example using $N = 11$
 • let subscript max denote the maximum number of faults covered, assuming this is the only type of fault occurring.
 • if $r = 1$ then $a_{\text{max}} = 1$ or $s_{\text{max}} = 4$
 • if $r = 2$ then $a_{\text{max}} = 2$ or $s_{\text{max}} = 4$
 why? $s_{\text{max}} = 4 \Rightarrow N > 2 \times 4 + 2 = 10$
 $s_{\text{max}} = 5 \Rightarrow N < 2 \times 5 + 2 = 12$
 • requirements for success
 • good estimate of fail rates $\lambda_a, \lambda_s, \lambda_b$
 • typically $\lambda_a << \lambda_s << \lambda_b$
 • good estimate of recovery rates ρ_a, ρ_s, ρ_b
 • typically $\rho_a < \rho_s < \rho_b$
AGREEMENT ALGORITHMS

• Incomplete Interconnections
 • Lam82, Dol82
 • agreement only if the number of processors is less than 1/2 of the connectivity of the system’s network.
• Eventual vs. Immediate Byz. Agreement (EBA, IBA)
 • recall interactive consistency conditions IC1, IC2
 • an agreement is immediate if in addition to IC1 and IC2 all correct processors also agree (during the round) on the round number at which they reach agreement.
 • otherwise the agreement is called eventual
 • each processor has decided on its value, but cannot synchronize its decision with that of the others until some later phase.
 • Thus, agreement may not always need full t+1 rounds