Introduction

- Firewall mentality
 - on the Internet the cornerstone of security is the notion of a firewall
 - a logically bounded system within a physically unbounded one
 - bounded-system thinking within unbounded domains can lead to security designs and architectures that are fundamentally flawed from a survivability perspective
 - firewalls are state of the art for security systems but not for survivable systems
 - firewalls are passive and implement filter functions

 - how “managed” is the firewall, i.e. is it configured effectively?
 » Danger: False sense of security!
Introduction

- Defining Requirements for Survivable Systems
 - Survivability requirements depend on main issues:
 » system scope
 » criticality
 » consequences of failure and interruption of service
 - In addition to software functionality, survivability must address requirements for
 » software usage,
 » development,
 » operation,
 » evolution.
Introduction

Defining Requirements for Survivable Systems (cont)

- New paradigm characterized by:
 - distributed services
 - distributed logic
 - distributed code
 - distributed hardware
 - shared communications and routing infrastructure
 - diminished trust
 - lack of unified administrative control

- Paradigms formidable effort for software engineering research
 - traditional computer security measures are augmented by comprehensive system survivability strategies
Introduction

- Survivability Requirements
 - we now discuss each of the following topics briefly:

 » System/Survivability Requirements
 » Usage/Intrusion Requirements
 » Development Requirements
 » Operations Requirements
 » Evolution Requirements
Introduction

CMU/SEI-97-TR-013 Figure 2: Requirements Definition for Survivable Systems
Introduction

- **Survivability Requirements**
 - refer to capability of system to
 - deliver essential services in the presence of intrusions
 - recover full services
 - system should be organized into essential and non-essential services
 - essential services
 - must be maintained even during successful intrusion
 - may have different levels,
 - “prioritize by severity and duration of intrusion”
 - must be augmented with survivability requirements
 - non-essential services
 - are recovered after intrusion has been handled
 - in this paper the view is “binary”, however that must not be the case
Introduction

- System Requirements
 - describe traditional user functions a system must provide
 - example: network management system must provide
 » monitoring of system, performance adjustments, etc.
 - may include non-functional aspects
 » timing, performance, reliability
Survivability Requirements (cont.)

- COTS components not developed with survivability objective
 » may provide both essential and non-essential services
 » may require functional requirements for isolation and control
 (using wrappers and filters)

- survivability imposes new requirements on system
 » resistance to, recognition of and recovery from malicious acts
 » adaptation and evolution
Introduction

Figure 3: Integrating Survivability Requirements with System Requirements
System/Survivability Requirements (cont.)
- term *emergent behavior requirements* at network level

» underlines that requirements are not associated with a particular node, but emerge from the collective behavior

» issue is survivability of the overall network capability
 ■ e.g., message routing in the presents of topology degradation

- capability of adapting
 » behavior, function, resource allocation
 » resources may be shifted from non-essential to essential services
Introduction

- System/Survivability Requirements (cont.)
 - survivability requirements may vary greatly
 - small systems may only have non-essential services
 - (recovery in hours)
 - large systems (large networks) may have core set of essential services, automated intrusion detection
 - (recovery in minutes)
 - embedded control systems may require essential services in real-time
 - (recovery in milliseconds)
 - no free lunch
 - attainment and maintenance of survivability consumes resources in
 - development,
 - operation,
 - evolution
 - cost and risk analysis to manage resources wisely
Introduction

- **Usage/Intrusion Requirements**
 - testing must demonstrate
 » correct performance of essential and non-essential system services
 » survivability of essential services under intrusion
 » “How does one do this?”
 - but this **depends totally on the system’s use**
 » use of usage scenarios derived from usage models
 - usage models
 » are developed from usage requirements
 » they specify usage environments and scenarios of system use
 - usage requirements for essential and non-essential services must be defined in parallel with system and survivability requirements

© A.K. Krings 2011
Introduction

- Usage/Intrusion Requirements (cont.)
 - relationship between legitimate and intrusion use
 - intruder may engage in scenarios beyond legitimate scenarios
 » but may use legitimate usage
Introduction

- Development Requirements
 - stringent requirements on system development and testing practices
 - inadequate functionality and software errors can have devastating effects (provide opportunities for intrusion)
 - sound engineering practices are required
 - this also holds for legacy and COTS software components
Introduction

Development Requirements (cont.)

- Some example requirements for survivable-system development and testing practices:

 For some you will say: Yeah right! - How big is the system?!

 @#$%

 » Precisely specify the system’s required functions in all possible circumstances of system use.

 » Verify the correctness of system implementations with respect to the functional specifications.

 » Specify function usage in all possible circumstances of system use, including intruder use.

 » Test and certify the system based on function usage and statistical methods.

 » Establish permanent readiness teams for system monitoring, adaptation, and evolution.
Introduction

- Operation Requirements
 - demands for system operation and administration
 - defining and communicating survivability policies
 - monitoring system use
 - response to intrusion
 - evolving system functions as needed to ensure survivability under consideration of changes over time in usage environments and intrusion patterns
Introduction

Evolution Requirements

- System evolution responds to user requirements for new functions

- Evolution necessary to respond to increasing intruder knowledge of system behavior and structure

 - Survivability requires system capabilities to evolve faster than intrusion knowledge

- Rapid evolution prevents intruders from accumulating information about otherwise invariant system behavior
Introduction

- Requirements Definition for Essential Services
 - set of essential services must form viable subsystem
 » complete and coherent

 - What if multiple levels of essential services are used?
 » each level must be examined for completeness and coherence
 » requirements needed to define transition to and from different levels

 - Provisions for tracing survivability requirements through design, code and test must be established
Introduction

- Requirements Definition for Survivable Services
 - need to define a set of requirements for survivable services
 - four general categories
 » resistance
 » recognition
 » recovery
 » adaptation & evolution

- these requirements operate in environment with phases of intrusions
 » penetration
 » exploration
 » exploitation
Introduction

- Requirements Definition for Survivable Services (cont.)
 - Penetration Phase
 » attempt to gain access through various attack scenarios
 » amateur and professional hackers
 » capitalization on known system vulnerabilities

 - Exploration Phase
 » system has been penetrated
 » intruder is exploring internal system organization
 » learns to exploit the access to achieve intrusion objective

 - Exploitation Phase
 » performance of operations to **compromise** system capabilities
Introduction

- Requirements Definition for Survivable Services (cont.)

 - Exploitation Phase (cont.)

 » penetration at user level as stepping stone to find root-level vulnerabilities

 » exploit those vulnerabilities to achieve root-level penetration

 » compromise of the weakest host in network as stepping stone to compromise more protected hosts.
Survivability Life Cycle Definition

- This discussion is based on section 3 of:

Survivable Network Analysis Method

CMU/SEI-2000-TR-013
ESC-TR-2000-013

Nancy R. Mead
Robert J. Ellison
Richard C. Linger
Thomas Longstaff
John McHugh
Waterfall Model

- Model utilizes following steps:
 - Document of system concept
 - Identify of system requirements and analyze them
 - Break the System into Pieces
 » Architectural Design
 - Design Each Piece
 » Detailed Design
 - Code the System Components and Test them Individually
 » Coding, Debugging, and Unit Testing
 - Integrate the Pieces and Test the System
 » System Testing
 - Deploy the System and Operate it
Waterfall vs. Spiral Model

- Shortcomings of Waterfall Model
 - does not quite apply to today’s development realities
 - represents a “linear process in batch-oriented world”
 - missing
 - flexibility
 - robustness
 - risk management capabilities

- Spiral Model
 - “accommodates” activities such as prototyping, reuse, automatic coding as part of the process”
 - very important to us is risk management
 - need to augment spiral model by survivability considerations
Spiral Model

- Overcome limitations of Waterfall Model

Figure 1: A Project Spiral Cycle
Specialization of Spiral Model

Figure 2: Specialization of the Spiral Model for Survivability Driver

[source CMU/SEI-2000-TR-013]
Life-Cycle Activities

Table 2: Life-Cycle Activities and Corresponding Survivability Elements

<table>
<thead>
<tr>
<th>Life-Cycle Activities</th>
<th>Key Survivability Elements</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Definition</td>
<td>Analysis of mission criticality and consequences of failure</td>
<td>Estimation of cost impact of denial of service attacks</td>
</tr>
<tr>
<td>Concept of Operations</td>
<td>Definition of system capabilities in adverse environments</td>
<td>Enumeration of critical mission functions that must withstand attacks</td>
</tr>
<tr>
<td>Project Planning</td>
<td>Integration of survivability into life-cycle activities</td>
<td>Identification of defensive coding techniques for implementation</td>
</tr>
<tr>
<td>Requirements Definition</td>
<td>Definition of survivability requirements from mission perspective</td>
<td>Definition of access requirements for critical system assets during attacks</td>
</tr>
<tr>
<td>System Specification</td>
<td>Specification of essential service and intrusion scenarios</td>
<td>Definition of steps that compose critical system transactions</td>
</tr>
<tr>
<td>System Architecture</td>
<td>Integration of survivability strategies into architecture definition</td>
<td>Creation of network facilities for replication of critical data assets</td>
</tr>
<tr>
<td>System Design</td>
<td>Development and verification of survivability strategies</td>
<td>Correctness verification of data encryption algorithms</td>
</tr>
<tr>
<td>System Implementation</td>
<td>Application of survivability coding and implementation techniques</td>
<td>Definition of methods to avoid buffer overflow vulnerabilities</td>
</tr>
<tr>
<td>System Testing</td>
<td>Treatment of intruders as users in testing and certification</td>
<td>Addition of intrusion usage to usage models for statistical testing</td>
</tr>
<tr>
<td>System Evolution</td>
<td>Improvement of survivability to prevent degradation over time</td>
<td>Redefinition of architecture in response to changing threat environment</td>
</tr>
</tbody>
</table>