Introduction

- Different definitions of what survivability is
 - From AIAA (American Institute of Aeronautics and Astronautics).
 » http://www.aiaa.org
 » survivability is defined for aircrafts as “the capability of an aircraft to
 avoid or withstand hostile environments, including both man-made and
 naturally occurring environments, such as lightning strikes, mid-air
 collisions, and crashes”
 - National Communication System Technology and Standards Division
 » Federal Standard 1037C, Telecommunications: Glossary of
 telecommunication terms, 1996
 » survivability of telecommunication systems is "the property of a system,
 subsystem, equipment, process, or procedure that provides a defined
 degree of assurance that the named entity will continue to function during
 and after a natural or man-made disturbance; e.g., nuclear burst”.
 - From [M.S. Deutsch and R.R. Willis 1988].
 » survivability of software systems is “The degree to which essential
 functions are still available even though some part of the system is
 down”.
 - From Ellison et.al. (Tech Report CMU/SEI-97-TR-013) May 1999
 » “We define survivability as the capability of a system to fulfill its
 mission, in a timely manner, in the presence of attacks, failures, or
 accidents. We use the term system in the broadest possible sense,
 including networks and large-scale systems of systems.”
Introduction

Different definitions of what survivability is

- From June 2000 Neumann Report
 - ability of a computer-communication system-based application to satisfy and to continue to satisfy certain critical requirements (e.g., specific requirements for security, reliability, real-time responsiveness, and correctness) in the face of adverse conditions.
 - Survivability must be defined with respect to the set of adversities that are supposed to be withstood.
 - Types of adversities might be typically include hardware faults, software flaws, attacks on systems and networks perpetrated by malicious users, and electromagnetic interference.

- In the T1A1.2 Working Group
 - Network survivability is: (i) the ability of a network to maintain or restore an acceptable level of performance during network failures by applying various restoration techniques, and (ii) the mitigation or prevention of service outages from network failures by applying preventative techniques.
Introduction

- Liu & Trivedi capture the definition of T1A1 as
 - Suppose a measure of interest M has the value m_0 just before a failure occurs. The survivability behavior can be depicted by the following attributes: m_a is the value of M just after the failure occurs, m_u is the maximum difference between the value of M and m_a after the failure, m_r is the restored value of M after some time t_r, and t_R is the time for the system to restore the value of m_r.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Dependability</th>
<th>Survivability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>1) ability to deliver service that can justifiably be trusted</td>
<td>capability of a system to fulfill its mission in a timely manner</td>
</tr>
<tr>
<td></td>
<td>2) ability of a system to avoid failures that are more frequent or more severe,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and outage durations that are longer, than is acceptable to the user(s)</td>
<td></td>
</tr>
<tr>
<td>Threats</td>
<td>1) design faults (e.g., software flaws, hardware errata, malicious logics)</td>
<td>1) attacks (e.g., intrusions, probes, denials of service)</td>
</tr>
<tr>
<td>present</td>
<td>2) physical faults (e.g., production defects, physical deterioration)</td>
<td>2) failures (internally generated events due to, e.g., software design errors, hardware degradation, human errors, corrupted data)</td>
</tr>
<tr>
<td></td>
<td>3) interaction faults (e.g., physical interference, input mistakes, attacks,</td>
<td>3) accidents (externally generated events such as natural disasters)</td>
</tr>
<tr>
<td></td>
<td>including viruses, worms, intrusions)</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

- Knight & Sullivan 2000 in “On the Definition of Survivability” assumes that “a system is survivable if it complies with its survivability specifications”
- Survivability Specifications:
 - a four-tuple, \(\{E, R, P, M\} \) where:
 - \(E \) = A statement of the assumed operating environment for the system.
 - \(R \) = A set of specifications each of which is a complete statement of a tolerable form of service that the system must provide.
 - \(P \) = A probability distribution across the set of specifications, \(R \).
 - \(M \) = A finite-state machine denoted by the four-tuple \(\{S, s_0, V, T\} \) with the following meanings:
 - \(S \): A finite set of states each of which has a unique label which is one of the specifications defined in \(R \).
 - \(s_0 \): \(s_0 \) in \(S \) is the initial or preferred state for the machine.
 - \(V \): A finite set of customer values.
 - \(T \): A state transition matrix.
- We will discuss this later in more detail...