Survivable Systems & Networks

Axel Krings, PhD
JEB 320, phone 885-4078
krings@uidaho.edu

Introduction

- General rules of this course…
 - Your responsibilities
 - Including other people’s materials
 - Plagiarism
Introduction

- What are Survivable Systems and Networks?
- What are the characteristics?
- Where do we need Survivable Systems and Networks?

Introduction

- What is Fault-tolerance?
- Let’s consider the paper
 - This is not a comprehensive review of all the topics, but a good “primer”
 - It is your responsibility to read the paper! We will have a brief discussion about it in class.

 - Later we will also look at the paper
 - Basic Concepts and Taxonomy of Dependable and Secure Computing, Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004
Introduction

- Faults, Errors and Failures
 - What is the difference?
 - Examples of faults,
 - Stuck-at, bridging fault
 - Fault properties
 - Transient, intermittent, permanent
 - Fault models
 - Benign, symmetric, asymmetric, …
 - Fault assumptions
 - Common mode vs. independence of faults

Introduction

- Evaluating dependability and fault tolerance
 - What is dependability anyway?
 - Reliability
 - Unreliability
 - Availability
 - Maintainability
 - “illities”
Introduction

- MTTF and MTBF
 - Mean Time to between Failure

- Bathtub curve
 - What is it and why do we care about it?
 - Is it relevant to malicious act?

Introduction

- Fault-tolerance Strategies
 - Masking
 - Detection
 - Containment
 - Diagnosis
 - Repair/Reconfiguration
 - Recovery
Introduction

- Redundancy
 - Spatial Redundancy
 - Information Redundancy
 - Time Redundancy

Figure 1. Replicated lockstep operation of modules with redundant outputs checked in each clock cycle: (a) logic compared externally; (b) logic compared on chip.
Figure 2. Continuous operation with duplex self-checking modules: (a) two self-checked modules; (b) four simple modules as two self-checked pairs.

Figure 3. Triplicated voters and modules forming one triple modular-redundant stage of a system, with voting at module inputs.