CHAPTER 17

Wireless Transmission Techniques

MIMO Antennas

• Multiple-input-multiple-output
• Has become a key technology in evolving high-speed wireless networks
• Exploits the space dimension to improve wireless systems in terms of capacity, range, and reliability
• Cornerstone of emerging broadband wireless networks
MIMO Principles
• Two types of transmission schemes:

Spatial diversity
- The same data is coded and transmitted through multiple antennas, which effectively increases the power in the channel proportional to the number of transmitting antennas.
- Improves SNR for cell edge performance.
- There is a high probability that if one antenna is suffering a high level of fading, another antenna has sufficient signal level.

Spatial multiplexing
- A source data stream is divided among the transmitting antennas.
- Gain in channel capacity is proportional to the available number of antennas at the transmitter or receiver, whichever is less.
- Can be used when transmitting conditions are favorable and for relatively short distances.
Multiple-User MIMO

- **MU-MIMO**
- Extends the basic MIMO concept to multiple endpoints, each with multiple antennas
- Advantage is that the available capacity can be shared to meet time-varying demands
- Used in both Wi-Fi and 4G cellular networks
Applications of MU-MIMO

- **Uplink – Multiple Access Channel, MAC**
 - Multiple end users transmit simultaneously to a single base station

- **Downlink – Broadcast Channel, BC**
 - The base station transmits separate data streams to multiple independent users

 - **MIMO-MAC**
 - Systems outperform point-to-point MIMO, particularly if the number of receiver antennas is greater than the number of transmit antennas at each user
 - A variety of multiuser detection techniques are used to separate the signals transmitted by the users

 - **MIMO-BC**
 - Used to enable the base station to transmit different data streams to multiple users over the same frequency band
 - More challenging to implement
 - Techniques employed involve processing of the data symbols at the transmitter to minimize interuser interference

Figure 17.3 Orthogonal Frequency Division Multiplexing
OFDM Advantages

- If the data stream is protected by a forward error-correcting code frequency selective fading is easily handled
- Overcomes intersymbol interference (ISI) in a multipath environment
- QPSK is a common modulation scheme used with OFDM
- Signal processing involves two functions:
 - Fast Fourier transform (FFT)
 - Algorithm that converts a set of uniformly spaced data points from the time domain to the frequency domain
 - Inverse fast Fourier transform (IFFT)
 - Reverses the FFT operation
 - Has the effect of ensuring that the subcarriers do not interfere with each other
Figure 17.5 OFDM and OFDMA

Figure 17.6 Simplified Block Diagram of OFDMA and SC-FDMA

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFT</td>
<td>Discrete Fourier transform</td>
</tr>
<tr>
<td>IDFT</td>
<td>Inverse discrete Fourier transform</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier transform</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse fast Fourier transform</td>
</tr>
<tr>
<td>EQ</td>
<td>Subcarrier equalization</td>
</tr>
<tr>
<td>CP</td>
<td>Cyclic prefix</td>
</tr>
</tbody>
</table>

CS420/520 Axel Krings Page 11 Sequence 17

CS420/520 Axel Krings Page 12 Sequence 17
Spread Spectrum

- Important encoding method for wireless communications
- Spread data over wide bandwidth
- Makes jamming and interception harder
- Frequency hoping
 - Signal broadcast over seemingly random series of frequencies
- Direct Sequence
 - Each bit is represented by multiple bits in transmitted signal
 - Chipping code
Spread Spectrum Concept

- Input fed into channel encoder
 - Produces narrow bandwidth analog signal around central frequency
- Signal modulated using sequence of digits
 - Spreading code/sequence
 - Typically generated by pseudonoise/pseudorandom number generator
- Increases bandwidth significantly
 - Spreads spectrum
- Receiver uses same sequence to demodulate signal
- Demodulated signal fed into channel decoder

General Model of Spread Spectrum System

[Diagram showing the spread spectrum system with input data, channel encoder, modulator, channel, demodulator, channel decoder, and output data.]
Spread Spectrum Advantages

- Immunity from various noise and multipath distortion
 - Including jamming
- Can hide/encrypt signals
 - Only receiver who knows spreading code can retrieve signal
- Several users can share same higher bandwidth with little interference
 - Cellular telephones
 - Code division multiplexing (CDM)
 - Code division multiple access (CDMA)

Pseudorandom Numbers

- Generated by algorithm using initial seed
- Deterministic algorithm
 - Not actually random
 - If algorithm good, results pass reasonable tests of randomness
- Need to know algorithm and seed to predict sequence
Frequency Hopping Spread Spectrum (FHSS)

- Signal broadcast over seemingly random series of frequencies
- Receiver hops between frequencies in sync with transmitter
- Eavesdroppers hear unintelligible blips
- Jamming on one frequency affects only a few bits

Basic Operation

- Typically 2^k carriers frequencies forming 2^k channels
- Channel spacing corresponds with bandwidth of input
- Each channel used for fixed interval
 - 300 ms in IEEE 802.11
 - Some number of bits transmitted using some encoding scheme
 - May be fractions of bit (see later)
 - Sequence dictated by spreading code
Frequency Hopping Example

(a) Channel assignment

(b) Channel use

Frequency Hopping Spread Spectrum System (Transmitter)
Frequency Hopping Spread Spectrum System (Receiver)

Slow and Fast FHSS

- Frequency shifted every T_c seconds
- Duration of signal element is T_s seconds
- Slow FHSS has $T_c \geq T_s$
- Fast FHSS has $T_c < T_s$
- Generally fast FHSS gives improved performance in noise (or jamming)
Slow Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

MFSK = Multiple FSK

M is the number of different signal elements, frequencies to encode data, 2^k is the number of channels, each of width W_d

Fast Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)
FHSS Performance Considerations

- Typically large number of frequencies used
 - Improved resistance to jamming

Direct Sequence Spread Spectrum (DSSS)

- Each bit is represented by multiple bits using spreading code
- Spreading code spreads signal across wider frequency band
 - In proportion to number of bits used
 - e.g., 10 bit spreading code spreads signal across 10 times bandwidth of 1 bit code
- One method:
 - Combine input with spreading code using XOR
 - Input bit 1 inverts spreading code bit
 - Input zero bit doesn't alter spreading code bit
 - Data rate equal to original spreading code
- Performance similar to FHSS
Direct Sequence Spread Spectrum Example

Transmitter
- Data input A: 0 1 0 0 1 0 0 1 1
- Locally generated PN bit stream T: 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0
- Transmitted signal $C = A \oplus B$: 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1

Receiver
- Received signal C: 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1
- Locally generated PN bit stream identical to B above
- Data output $A = C \oplus B$: 0 1 0 0 0 1 0 1 1

Direct Sequence Spread Spectrum Transmitter

- Binary data
- Modulator (BPSK)
- DS Spreader
- Spread spectrum signal
- Pseudonoise bit source
Direct Sequence Spread Spectrum Receiver

Direct Sequence Spread Spectrum Using BPSK Example

(a) \(x(t) \) data

(b) \(s(t) \)

(c) \(c(t) \) spreading code

(d) \(s_d(t) \)
Approximate Spectrum of DSSS Signal

- Spectrum of data signal
- Spectrum of pseudonoise signal
- Spectrum of combined signal

Code Division Multiple Access (CDMA)
- Multiplexing Technique used with spread spectrum
- Start with data signal rate \(D \)
 - Called bit data rate
- Break each bit into \(k \) chips according to fixed pattern specific to each user
 - User's code
- New channel has chip data rate \(kD \) chips per second
- E.g. \(k=6 \), three users (A,B,C) communicating with base receiver R
 - Code for A = \(<1,-1,-1,1,-1,1> \)
 - Code for B = \(<1,1,-1,-1,1,1> \)
 - Code for C = \(<1,1,-1,1,1,-1> \)
CDMA Example

- Consider A communicating with base
- Base knows A’s code
- Assume communication already synchronized
- A wants to send a 1
 - Send chip pattern <1,-1,-1,1,-1,1>
 - A’s code
- A wants to send 0
 - Send chip[pattern <-1,1,1,-1,1,-1>
 - Complement of A’s code
- Decoder ignores other sources when using A’s code to decode
 - Orthogonal codes
CDMA for DSSS

- n users each using different orthogonal PN sequence
- Modulate each users data stream
 - Using BPSK
- Multiply by spreading code of user

CDMA in a DSSS Environment
Seven Channel CDMA Encoding and Decoding

<table>
<thead>
<tr>
<th>Channel number</th>
<th>Data value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Individual channel waveforms

Channel 0 code

Composite signal

positive number = 1
negative number = 0

Summary

- MIMO antennas
 - MIMO principles
 - Multiple-user MIMO
- OFDM
- OFDMA
- SC-FDMA
- Spread spectrum
- Direct sequence spread spectrum
 - DSSS using BPSK
 - DSSS performance considerations
- Code division multiple access
 - Basic principles
 - CDMA for DSSS