The Internet Protocol

Chapter 14 in Stallings 10th Edition

<table>
<thead>
<tr>
<th>Internetworking Terms</th>
<th>Table 14.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Network</td>
<td>A facility that provides a data transfer service among devices attached to the network.</td>
</tr>
<tr>
<td>Internet</td>
<td>A collection of communication networks interconnected by bridges and/or routers.</td>
</tr>
<tr>
<td>Intranet</td>
<td>An intranet used by a single organization that provides the key Internet applications, especially the World Wide Web. An intranet operates within the organization for internal purposes and can exist as an isolated, self-contained internet, or may have links to the Internet.</td>
</tr>
<tr>
<td>Subnetwork</td>
<td>Refers to a constituent network of an internet. This avoids ambiguity because the entire internet, from a user's point of view, is a single network.</td>
</tr>
<tr>
<td>End System (ES)</td>
<td>A device attached to one of the networks of an internet that is used to support end-user applications or services.</td>
</tr>
<tr>
<td>Intermediate System (IS)</td>
<td>A device used to connect two networks and permit communication between end systems attached to different networks.</td>
</tr>
<tr>
<td>Bridge</td>
<td>An IS used to connect two LANs that use similar LAN protocols. The bridge acts as an address filter, picking up packets from one LAN that are intended for a destination on another LAN and passing those packets on. The bridge does not modify the contents of the packets and does not add anything to the packet. The bridge operates at layer 2 of the OSI model.</td>
</tr>
<tr>
<td>Router</td>
<td>An IS used to connect two networks that may or may not be similar. The router employs an internet protocol present in each router and each end system of the network. The router operates at layer 3 of the OSI model.</td>
</tr>
</tbody>
</table>
Figure 14.1 TCP/IP Concepts

Why we do not want
Connection Oriented Transfer
Connectionless Operation

- Internetworking involves connectionless operation at the level of the Internet Protocol (IP)

IP

- Initially developed for the DARPA internet project
- Protocol is needed to access a particular network

Connectionless Internetworking

- Advantages
 - Flexibility
 - Robust
 - No unnecessary overhead
- Unreliable
 - Not guaranteed delivery
 - Not guaranteed order of delivery
 - Packets can take different routes
 - Reliability is responsibility of next layer up (e.g. TCP)
Connectionless Internetworking

- Connectionless internet facility is flexible
- IP provides a connectionless service between end systems

—Advantages:
 - Is flexible
 - Can be made robust
 - Does not impose unnecessary overhead
IP Design Issues

- Routing
- Datagram lifetime
- Fragmentation and reassembly
- Error control
- Flow control

The Internet as a Network

S=station
P=packet switching node
R=router
T=transmission link
N=network

(a) Packet-switching network architecture

(b) Internetwork architecture
Routing

- Routing table indicates next router to which datagram is sent
- Can be static or dynamic

ES / routers maintain routing tables

Source routing

- Source specifies route to be followed
- Can be useful for security and priority

- Each router appends its internet address to a list of addresses in the datagram
- Useful for testing and debugging purposes

Route recording

Datagram Lifetime

- If dynamic or alternate routing is used the potential exists for a datagram to loop indefinitely
 - Consumes resources
 - Transport protocol may need upper bound on lifetime of a datagram
 - Can mark datagram with lifetime
 - When lifetime expires, datagram is discarded
Fragmentation and Re-assembly

- Protocol exchanges data between two entities
- Lower-level protocols may need to break data up into smaller blocks, called fragmentation
- Reasons for fragmentation:
 - Network only accepts blocks of a certain size
 - More efficient error control and smaller retransmission units
 - Fairer access to shared facilities
 - Smaller buffers
- Disadvantages:
 - Smaller buffers
 - More interrupts and processing time

Fragmentation and Reassembly

Issue of when to reassemble

Internet Fragmentation
- At destination
- Packets get smaller as data traverses internet

Intranet Fragmentation
- Intermediate reassembly
- Need large buffers at routers
- Buffers may fill with fragments
- All fragments must go through same router
IP Fragmentation

- IP reassembles at destination only
- Uses fields in header

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Unit Identifier (ID)</td>
<td>Identifies end system originated datagram</td>
</tr>
<tr>
<td>Data length</td>
<td>Length of user data in octets</td>
</tr>
<tr>
<td>Offset</td>
<td>Position of fragment of user data in original datagram</td>
</tr>
<tr>
<td>More flag</td>
<td>Indicates that this is not the last fragment</td>
</tr>
</tbody>
</table>

Original IP datagram
- Data length = 404 octets
- Segment offset = 0; More = 0

First fragment
- Data length = 208 octets
- Segment offset = 0; More = 1

Second fragment
- Data length = 196 octets
- Segment offset = 20 64-bit units (208 octets); More = 0

Figure 14.4 Fragmentation Example
Error and Flow Control

Error control
--- Discarded datagram identification is needed
--- Reasons for discarded datagrams include:
 • Lifetime expiration
 • Congestion
 • FCS error

Flow control
--- Allows routers to limit the rate they receive data
--- Send flow control packets requesting reduced data flow

Internet Protocol (IP) v4

• Defined in RFC 791
• Part of TCP/IP suite
• Two parts

Specification of interface with a higher layer

Specification of actual protocol format and mechanisms
IP Services

- Primitives
 - Specifies functions to be performed
 - Form of primitive implementation dependent
 - Send-request transmission of data unit
 - Deliver-notify user of arrival of data unit

- Parameters
 - Used to pass data and control information

IP Parameters

- Source and destination addresses
- Protocol
- Type of Service
- Identification
- Don’t fragment indicator
- Time to live
- Data length
- Option data
- User data
IP Options

- Security
- Route recording
- Source routing
- Stream identification
- Timestamping

Figure 14.5 IPv4 and IPv6 Headers

(a) IPv4 header

- Version
- IHL
- DSCP
- ECN
- TTL
- Protocol
- Header length
- Identification
- Flags
- Fragment offset
- Fragmentation
- More
- Header checksum
- Source address
- Destination address
- Options + Padding

(b) IPv6 header

- Version
- Next header
- Hop limit
- Source address
- Destination address
- Flow label
- Payload length
- Prefix length
- Next header
- Segment routing

Field name kept from IPv4 to IPv6:
- Options + Padding

Field not kept in IPv6:
- Stream identification
- Timestamping

Name and position changed in IPv6:
- Source Address
- Destination Address

New field in IPv6:
- Flow Label

(Explicit Congestion Notification)
Figure 14.6 IPv4 Address Formats

Class A
- Network (7 bits)
- Host (24 bits)
- Start with binary 0
- Network addresses with a first octet of 0 (binary 0000000) and 127 (binary 0111111) are reserved
- 126 potential Class A network numbers
- Range 1 to 126

Class B
- Network (14 bits)
- Host (16 bits)
- Start with binary 10
- Range 128 to 191 (binary 10000000 to 10111111)
- Second octet also included in network address
- \(2^{14} = 16,384\) Class B addresses

Class C
- Network (21 bits)
- Host (8 bits)
- Start with binary 110
- Range 192 to 223
- Second and third octet also part of network address
- \(2^{21} = 2,097,152\) addresses
- Nearly all allocated
 - See IPv6

Class D
- Network (23 bits)
- Host (5 bits)
- Multicast

Class E
- Network (32 bits)
- Host (0 bits)
- Future Use

IP Addresses
- Class A
 - Start with binary 0
 - Network addresses with a first octet of 0 (binary 0000000) and 127 (binary 0111111) are reserved
 - 126 potential Class A network numbers
 - Range 1 to 126

- Class B
 - Start with binary 10
 - Range 128 to 191 (binary 10000000 to 10111111)
 - Second octet also included in network address

- Class C
 - Start with binary 110
 - Range 192 to 223
 - Second and third octet also part of network address
 - \(2^{21} = 2,097,152\) addresses
 - Nearly all allocated
 - See IPv6
Subnets and Subnet Masks

- Allows arbitrary complexity of internetworked LANs within organization
- Insulates overall internet from growth of network numbers and routing complexity
- Site looks to rest of internet like single network
- Each LAN assigned subnet number
- Host portion of address partitioned into subnet number and host number
- Local routers route within subnetted network
- Subnet mask indicates which bits are subnet number and which are host number

Table 14.2
IPv4 Addresses and Subnet Masks

<table>
<thead>
<tr>
<th>Binary Representation</th>
<th>Dotted Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>11000000.11100100.00010001.00111001</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>11111111.11111111.11111111.11100000</td>
</tr>
<tr>
<td>Bitwise AND of address and mask (resultant network/subnet number)</td>
<td>11000000.11100100.00010001.00100000</td>
</tr>
<tr>
<td>Subnet number</td>
<td>11000000.11100100.00010001.001</td>
</tr>
<tr>
<td>Host number</td>
<td>00000000.00000000.00000000.00011001</td>
</tr>
</tbody>
</table>

(a) Dotted decimal and binary representations of IPv4 address and subnet masks

<table>
<thead>
<tr>
<th>Binary Representation</th>
<th>Dotted Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A default mask</td>
<td>11111111.00000000.00000000.00000000</td>
</tr>
<tr>
<td>Example Class A mask</td>
<td>11111111.11000000.00000000.00000000</td>
</tr>
<tr>
<td>Class B default mask</td>
<td>11111111.11111111.00000000.00000000</td>
</tr>
<tr>
<td>Example Class B mask</td>
<td>11111111.11111111.11110000.00000000</td>
</tr>
<tr>
<td>Class C default mask</td>
<td>11111111.11111111.11111111.00000000</td>
</tr>
<tr>
<td>Example Class C mask</td>
<td>11111111.11111111.11111111.11111000</td>
</tr>
</tbody>
</table>

(b) Default subnet masks
Inter-domain Routing

- Classless Inter-Domain Routing - CIDR
 - Introduced in 1993 by the Internet Engineering Task Force
 - Goal was to slow the growth of routing tables on routers across the Internet, and to help slow the rapid exhaustion of IPv4 addresses
 - CIDR appends a “/” character to the address and the decimal number of leading bits of the routing prefix
 - Example:
 - 192.168.1.0/24 for IPv4
 - 2001:db8::/32 for IPv6

Figure 14.7 Example of Subnetworking
Internet Control Message Protocol (ICMP)

- RFC 792
- Provides a means for transferring messages from routers and other hosts to a host
- Provides feedback about problems
 - Datagram cannot reach its destination
 - Router does not have buffer capacity to forward
 - Router can send traffic on a shorter route
- Encapsulated in IP datagram
 — Hence not reliable

Figure 14.8 ICMP Message Formats
Common ICMP Messages

- Destination unreachable
- Time exceeded
- Parameter problem
- Source quench
- Redirect
- Echo and echo reply
- Timestamp and timestamp reply
- Address mask request and reply

Address Resolution Protocol (ARP)

Need MAC address to send to LAN host

- Manual
- Included in network address
- Use central directory
- Use address resolution protocol

ARP (RFC 826) provides dynamic IP to Ethernet address mapping

- Source broadcasts ARP request
- Destination replies with ARP response
IP Next Generation

Address space exhaustion:
• Two level addressing (network and host) wastes space
• Network addresses used even if not connected
• Growth of networks and the Internet
• Extended use of TCP/IP
• Single address per host

Requirements for new types of service
• Address configuration routing flexibility
• Traffic support

IPv6 RFCs

• RFC 1752 - Recommendations for the IP Next Generation Protocol
 — Requirements
 — PDU formats
 — Addressing, routing security issues
• RFC 2460 - overall specification
• RFC 4291 - addressing structure
IPv6 Enhancements

- Expanded 128 bit address space
- Improved option mechanism
 - Most not examined by intermediate routes
- Dynamic address assignment
- Increased addressing flexibility
 - Anycast and multicast
- Support for resource allocation
 - Labeled packet flows

Figure 14.9 IPv6 Packet with Extension Headers (containing a TCP Segment)
IPv6 Flow Label

- Related sequence of packets
- Special handling
- Identified by source and destination address plus flow label
- Router treats flow as sharing attributes
- May treat flows differently
- Alternative to including all information in every header
- Have requirements on flow label processing
IPv6 Addresses

- 128 bits long
- Assigned to interface
- Single interface may have multiple unicast addresses

Three types of addresses:

- Unicast - single interface address
- Anycast - one of a set of interface addresses
- Multicast - all of a set of interfaces

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Binary Prefix</th>
<th>IPv6 Notation</th>
<th>Fraction of address space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded IPv4 address</td>
<td>00…1111 1111 1111 1111 (96 bits)</td>
<td>::FFFF/96</td>
<td>2⁻⁹⁶</td>
</tr>
<tr>
<td>Loopback</td>
<td>00…1 (128 bits)</td>
<td>::1/128</td>
<td>2⁻¹²⁸</td>
</tr>
<tr>
<td>Link-local unicast</td>
<td>1111 1110 10</td>
<td>FE80::/10</td>
<td>1/1024</td>
</tr>
<tr>
<td>Multicast</td>
<td>1111 1111</td>
<td>FF00::/8</td>
<td>2⁻²⁵⁶</td>
</tr>
<tr>
<td>Global unicast</td>
<td>Everything else</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hop-by-Hop Options

- Must be examined by every router
 - If unknown discard/forward handling is specified
- Next header
- Header extension length
- Options
 - Pad1
 - PadN
 - Jumbo payload
 - Router alert

Figure 14.10 IPv6 Extension Headers
Fragmentation Header

- Fragmentation only allowed at source
- No fragmentation at intermediate routers
- Node must perform path discovery to find smallest MTU of intermediate networks
- Set source fragments to match MTU
- Otherwise limit to 1280 octets

Routing Header

- Contains a list of one or more intermediate nodes to be visited on the way to a packet’s destination

 Header includes

 - **Next header**
 - **Header extension length**
 - **Routing type**
 - **Segments left**
Virtual Private Network (VPN)

- Set of computers interconnected using an unsecure network
 - e.g. linking corporate LANs over Internet
- Using encryption and special protocols to provide security
 - Eavesdropping
 - Entry point for unauthorized users
- Proprietary solutions are problematical
 - Development of IPSec standard
IPsec

- RFC 1636 (1994) identified security need
- Encryption and authentication necessary security features in IPv6
- Designed also for use with current IPv4

Applications needing security include:
- Branch office connectivity
- Remote access over Internet
- Extranet and intranet connectivity for partners
- Electronic commerce security

Figure 14.11 An IP Security Scenario
Benefits of IPsec

- Provides strong security for external traffic
- Resistant to bypass
- Below transport layer hence transparent to applications
- Can be transparent to end users
- Can provide security for individual users if needed

IPsec Functions

- **Authentication header (AH)**
 - For authentication only

- **Encapsulating Security Payload (ESP)**
 - For combined authentication/encryption

- **A key exchange function**
 - Manual or automated

- **VPNs usually need combined function**
Summary

- Principles of internetworking
 - Requirements
 - Connectionless operation
- Internet protocol operation
 - Operation of a connectionless internetworking scheme
 - Design issues
- Internet protocol
 - IP services
 - Internet protocol
 - IP addresses
 - ICMP
 - ARP
- IPv6
 - Structure
 - Header
 - Addresses
 - IP next generation
 - Hop-by-hop options header
 - Fragment header
 - Routing header
 - Destination options header
- VPNs and IP security
 - IPsec
 - Applications of IPsec
 - Benefits of IPsec
 - IPsec functions