Chapter 12 in Stallings 10th Edition

Figure 12.1 Data Center Study—Percentage of Ethernet Links by Speed
Early on...

Earliest was ALOHA

- Developed for packet radio networks
- Station may transmit a frame at any time
- If frame is determined invalid, it is ignored
- Maximum utilization of channel about 18%

Next came slotted ALOHA

- Organized slots equal to transmission time
- Increased utilization to about 37%

ALOHA

- Packet Radio
- When station has frame, it sends it!
- Station listens (for max round trip time) plus small increment
- If ACK, fine. If not, retransmit
- If no ACK after repeated transmissions, give up.
- Frame check sequence (as in HDLC)
- If frame OK and address matches receiver, send ACK
- Frame may be damaged by noise or by another station transmitting at the same time (collision)
- Any overlap of frames causes collision
- Max utilization 18%
Slotted ALOHA

- Time in uniform slots equal to frame transmission time
- Need central clock (or other sync mechanism)
- Transmission begins at slot boundary
- Frames either miss or overlap totally
- Max utilization 37%

CSMA/CD Precursors

- Carrier Sense Multiple Access (CSMA)
 - Station listens to determine if there is another transmission in progress
 - If idle, station transmits
 - Waits for acknowledgment
 - If no acknowledgment, collision is assumed and station retransmits
 - Utilization far exceeds ALOHA
Nonpersistent CSMA

If the medium is idle, transmit; otherwise, go to step 2

Disadvantage: Capacity is wasted because the medium will generally remain idle following the end of a transmission even if there are one or more stations waiting to transmit

If the medium is busy, wait an amount of time drawn from a probability distribution and repeat step 1
1-Persistent CSMA

- Avoids idle channel time
- Rules:
 1. If medium is idle, transmit
 2. If medium is busy, listen until idle; then transmit immediately
- Stations are selfish
- If two or more stations are waiting, a collision is guaranteed

P-Persistent CSMA

- A compromise to try and reduce collisions and idle time
- P-persistent CSMA rules:
 1. If medium is idle, transmit with probability p, and delay one time unit with probability $(1-p)$
 2. If medium is busy, listen until idle and repeat step 1
 3. If transmission is delayed one time unit, repeat step 1
- Issue of choosing effective value of p to avoid instability under heavy load
Value of p?

- Have n stations waiting to send
- At end of transmission, expected number of stations is np
 - If $np > 1$ on average there will be a collision
- Repeated transmission attempts mean collisions are likely
- Eventually all stations will be trying to send, causing continuous collisions, with throughput dropping to zero
- To avoid catastrophe $np < 1$ for expected peaks of n
 - If heavy load expected, p must be small
 - Smaller p means stations wait longer

Description of CSMA/CD

1. If the medium is idle, transmit; otherwise, go to step 2
2. If the medium is busy, continue to listen until the channel is idle, then transmit immediately
3. If a collision is detected, transmit a brief jamming signal to assure that all stations know that there has been a collision and cease transmission
4. After transmitting the jamming signal, wait a random amount of time, referred to as the *backoff*, then attempt to transmit again
CSMA/CD Operation

Which Persistence Algorithm?

- IEEE 802.3 uses 1-persistent
- Both nonpersistent and p-persistent have performance problems

1-persistent seems more unstable than p-persistent

- Because of greed of the stations
- Wasted time due to collisions is short
- With random backoff unlikely to collide on next attempt to send
Binary Exponential Backoff

- IEEE 802.3 and Ethernet both use binary exponential backoff
- A station will attempt to transmit repeatedly in the face of repeated collisions
 - On first 10 attempts, mean random delay doubled
 - Value then remains the same for 6 further attempts
 - After 16 unsuccessful attempts, station gives up and reports error
- 1-persistent algorithm with binary exponential backoff is efficient over wide range of loads
- Backoff algorithm has last-in, first-out effect

Collision Detection

On baseband bus
- Collision produces higher signal voltage
- Collision detected if cable signal is greater than single station signal
- Signal is attenuated over distance
- Limit to 500m (10Base5) or 200m (10Base2)

On twisted pair (star-topology)
- Activity on more than one port is collision
- Use special collision presence signal
IEEE 802.3 Frame Format

![IEEE 802.3 Frame Format Diagram](image)

Figure 12.4 IEEE 802.3 MAC Frame Format

Table 12.1

IEEE 802.3 10-Mbps Physical Layer Medium Alternatives

<table>
<thead>
<tr>
<th></th>
<th>10BASE5</th>
<th>10BASE2</th>
<th>10BASE-T</th>
<th>10BASE-FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission medium</td>
<td>Coaxial cable (50 ohm)</td>
<td>Coaxial cable (50 ohm)</td>
<td>Unshielded twisted pair</td>
<td>850-nm optical fiber pair</td>
</tr>
<tr>
<td>Signaling technique</td>
<td>Baseband (Manchester)</td>
<td>Baseband (Manchester)</td>
<td>Baseband (Manchester)</td>
<td>Manchester/on-off</td>
</tr>
<tr>
<td>Topology</td>
<td>Bus</td>
<td>Bus</td>
<td>Star</td>
<td>Star</td>
</tr>
<tr>
<td>Maximum segment length (m)</td>
<td>500</td>
<td>185</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Nodes per segment</td>
<td>100</td>
<td>30</td>
<td>—</td>
<td>33</td>
</tr>
<tr>
<td>Cable diameter (mm)</td>
<td>0.4 to 0.6</td>
<td>62.5/125 µm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CS420/520 Axel Krings
Page 17 Sequence 14

CS420/520 Axel Krings
Page 18 Sequence 14
Table 12.2

IEEE 802.3 100BASE-T Physical Layer Medium Alternatives

<table>
<thead>
<tr>
<th></th>
<th>100BASE-TX</th>
<th>100BASE-FX</th>
<th>100BASE-T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission medium</td>
<td>2 pair, STP</td>
<td>2 pair, Category 5 UTP</td>
<td>2 optical fibers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 pair, Category 3, 4, or 5 UTP</td>
</tr>
<tr>
<td>Signaling technique</td>
<td>MLT-3</td>
<td>MLT-3</td>
<td>4B5B, NRZI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8B6T, NRZ</td>
</tr>
<tr>
<td>Data rate</td>
<td>100 Mbps</td>
<td>100 Mbps</td>
<td>100 Mbps</td>
</tr>
<tr>
<td>Maximum segment length</td>
<td>100 m</td>
<td>100 m</td>
<td>100 m</td>
</tr>
<tr>
<td>Network span</td>
<td>200 m</td>
<td>200 m</td>
<td>400 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 m</td>
</tr>
</tbody>
</table>

100BASE-X

- Uses a unidirectional data rate 100 Mbps over single twisted pair or optical fiber link
- Encoding scheme same as FDDI
 — 4B/5B-NRZI
100BASE-X Data Rate and Encoding

- Unidirectional data rate 100 Mbps over single link
 - Single twisted pair, single optical fiber
- Encoding scheme same as FDDI
 - 4B/5B-NRZI
 - Modified for each option

100BASE-X Media

- Two physical medium specifications
- 100BASE-TX
 - Two pairs of twisted-pair cable
 - One pair for transmission and one for reception
 - STP and Category 5 UTP allowed
 - The MTL-3 signaling scheme is used
- 100BASE-FX
 - Two optical fiber cables
 - One for transmission and one for reception
 - Intensity modulation used to convert 4B/5B-NRZI code group stream into optical signals
 - 1 represented by pulse of light
 - 0 by either absence of pulse or very low intensity pulse
100BASE-T4

- 100-Mbps over lower-quality Cat 3 UTP
 - Takes advantage of large installed base
 - Does not transmit continuous signal between packets
 - Useful in battery-powered applications
- Can not get 100 Mbps on single twisted pair
 - So data stream split into three separate streams
 - Four twisted pairs used
 - Data transmitted and received using three pairs
 - Two pairs configured for bidirectional transmission
- Use ternary signaling scheme (8B6T)

100BASE-T Options

- 100BASE-T
 - 100BASE-X
 - 100BASE-TX
 - 2 Category 5 UTP
 - 100BASE-FX
 - 2 Optical Fiber
 - 100BASE-T4
 - 4 Category 3 or Category 5 UTP
Full Duplex Operation

- Traditional Ethernet half duplex
- Using full-duplex, station can transmit and receive simultaneously
- 100-Mbps Ethernet in full-duplex mode, giving a theoretical transfer rate of 200 Mbps
- Stations must have full-duplex adapter cards
- And must use switching hub
 - Each station constitutes separate collision domain
 - CSMA/CD algorithm no longer needed
 - 802.3 MAC frame format used

Mixed Configurations

- Fast Ethernet supports mixture of existing 10-Mbps LANs and newer 100-Mbps LANs
- E.g. 100-Mbps backbone LAN to support 10-Mbps hubs
 - Stations attach to 10-Mbps hubs using 10BASE-T
 - Hubs connected to switching hubs using 100BASE-T
 - Support 10-Mbps and 100-Mbps
 - High-capacity workstations and servers attach directly to 10/100 switches
 - Switches connected to 100-Mbps hubs using 100-Mbps links
 - 100-Mbps hubs provide building backbone
 - Connected to router providing connection to WAN
Gigabit Ethernet - Differences

- Carrier extension
 - At least 4096 bit-times long (512 for 10/100)
- Frame bursting
 - Allow multiple frames to be transmitted consecutively, i.e. “together”
- Not needed if using a switched hub to provide dedicated media access

Gigabit Ethernet – Physical

- 1000Base-SX
 - Short wavelength, multimode fiber
- 1000Base-LX
 - Long wavelength, Multi or single mode fiber
- 1000Base-CX
 - Copper jumpers <25m, shielded twisted pair
- 1000Base-T
 - 4 pairs, cat 5 UTP
10Gbps Ethernet

- Growing interest in 10Gbps Ethernet
 - High-speed backbone use
 - Future wider deployment
- Alternative to ATM and other WAN technologies
- Uniform technology for LAN, MAN, or WAN
- Advantages of 10Gbps Ethernet
 - No expensive, bandwidth-consuming conversion between Ethernet packets and ATM cells
 - IP and Ethernet together offers QoS and traffic policing approach ATM
 - Have a variety of standard optical interfaces
Figure 12.6 Example 10 Gigabit Ethernet Configuration

10Gbps Ethernet Distance Options (log scale)
100-Gbps Ethernet (100GbE)

- Preferred technology for wired LAN
- Preferred carrier for bridging wireless technologies into local Ethernet networks
- Cost-effective, reliable and interoperable
- Popularity of Ethernet technology:
 - Availability of cost-effective products
 - Reliable and interoperable network products
 - Variety of vendors

Figure 12.8 Example 100-Gbps Ethernet Configuration for Massive Blade Server Site
Multilane Distribution

used to achieve the required data rates

- Multilane distribution:
 - Switches implemented as multiple parallel channels
 - Separate physical wires

- Virtual lanes:
 - If a different number of lanes are actually in use, virtual lanes are distributed into physical lanes in the PMD (physical medium dependent) sublayer
 - Form of inverse multiplexing

Figure 12.9 Multilane Distribution for 100-Gbps Ethernet
Media Options for 40-Gbps and 100-Gbps Ethernet

Table 12.3

<table>
<thead>
<tr>
<th>Media Type</th>
<th>40 Gbps</th>
<th>100 Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1m backplane</td>
<td>40GBASE-KR4</td>
<td></td>
</tr>
<tr>
<td>10 m copper</td>
<td>40GBASE-CR4</td>
<td>1000BASE-CR10</td>
</tr>
<tr>
<td>100 m multimode fiber</td>
<td>40GBASE-SR4</td>
<td>1000BASE-SR10</td>
</tr>
<tr>
<td>10 km single mode fiber</td>
<td>40GBASE-LR4</td>
<td>1000BASE-LR4</td>
</tr>
<tr>
<td>40 km single mode fiber</td>
<td></td>
<td>1000BASE-ER4</td>
</tr>
</tbody>
</table>

Naming nomenclature:
- Copper: K = backplane; C = cable assembly
- Optical: S = short reach (100m); L = long reach (10 km); E = extended long reach (40 km)
- Coding scheme: R = 64B/66B block coding
- Final number: number of lanes (copper wires or fiber wavelengths)

Figure 12.10 Tagged IEEE 802.3 MAC Frame Format
Summary

- Traditional Ethernet
 - IEEE 802.3 medium access control
 - IEEE 802.3 10-Mbps specifications (Ethernet)
- IEEE 802.1Q VLAN standard

- High-speed Ethernet
 - IEEE 802.3 100-Mbps specifications (Fast Ethernet)
 - Gigabit Ethernet
 - 10-Gbps Ethernet
 - 100-Gbps Ethernet