Chapter 5: Signal Encoding Techniques

Encoding Techniques

- Digital data, digital signal
- Analog data, digital signal
- Digital data, analog signal
- Analog data, analog signal
Digital Data, Digital Signal

- Digital signal
 - Discrete, discontinuous voltage pulses
 - Each pulse is a signal element
 - Binary data encoded into signal elements

Terms (1)

- Unipolar
 - All signal elements have same sign
- Polar
 - One logic state represented by positive voltage the other by negative voltage
- Data rate
 - Rate of data transmission in bits per second
- Duration or length of a bit
 - Time taken for transmitter to emit the bit
Terms (2)

- Modulation rate
 - Rate at which the signal level changes
 - Measured in baud = signal elements per second
- Mark and Space
 - Binary 1 and Binary 0 respectively

Data Transmission Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Units</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data element</td>
<td>Bits</td>
<td>A single binary one or zero</td>
</tr>
<tr>
<td>Data rate</td>
<td>Bits per second (bps)</td>
<td>The rate at which data elements are transmitted</td>
</tr>
<tr>
<td>Signal element</td>
<td>Digital: a voltage pulse of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>constant amplitude</td>
<td>That part of a signal that occupies the shortest interval of a signaling</td>
</tr>
<tr>
<td></td>
<td>Analog: a pulse of constant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequency, phase, and</td>
<td>code</td>
</tr>
<tr>
<td></td>
<td>amplitude</td>
<td></td>
</tr>
<tr>
<td>Signaling rate or</td>
<td>Signal elements per second</td>
<td>The rate at which signal elements are transmitted</td>
</tr>
<tr>
<td>modulation rate</td>
<td>(baud)</td>
<td></td>
</tr>
</tbody>
</table>
Interpreting Signals

- Need to know
 - Timing of bits - when they start and end
 - Signal levels
- Factors affecting successful interpreting of signals
 - Signal to noise ratio
 - Data rate
 - Bandwidth
 - Synchronization

Comparison of Encoding Schemes (1)

- Signal Spectrum
 - Lack of high frequencies reduces required bandwidth
 - Lack of DC component allows AC coupling via transformer, providing isolation
 - Concentrate power in the middle of the bandwidth
- Clocking
 - Synchronizing transmitter and receiver
 - External clock
 - Sync mechanism based on signal
Comparison of Encoding Schemes (2)

- Error detection
 - Can be built in to signal encoding

- Signal interference and noise immunity
 - Some codes are better than others

- Cost and complexity
 - Higher signal rate (& thus data rate) lead to higher costs
 - Some codes require signal rate greater than data rate

Encoding Schemes

- Nonreturn to Zero-Level (NRZ-L)
- Nonreturn to Zero Inverted (NRZI)
- Bipolar -AMI
- Pseudoternary
- Manchester
- Differential Manchester
- B8ZS
- HDB3
Nonreturn to Zero-Level (NRZ-L)
- Two different voltages for 0 and 1 bits
- Voltage constant during bit interval
 - no transition, i.e. no return to zero voltage
 - in general, absence of voltage for "0,
 constant positive voltage for 1
 - More often, negative voltage for “1” value
 and positive for the “0”
 - This is NRZ-L

Nonreturn to Zero Inverted (NRZI)
- 0 = no transition at beginning of interval (one bit time)
- 1 = transition at beginning of interval

Bipolar-AMI
- 0 = no line signal
- 1 = positive or negative level, alternating for successive ones

Pseudoternary
- 0 = positive or negative level, alternating for successive zeros
- 1 = no line signal

Manchester
- 0 = transition from high to low in middle of interval
- 1 = transition from low to high in middle of interval

Differential Manchester
- Always a transition in middle of interval
- 0 = transition at beginning of interval
- 1 = no transition at beginning of interval

B8ZS
- Same as bipolar AMI, except that any string of eight zeros is replaced by a string with two
code violations

HDB3
- Same as bipolar AMI, except that any string of four zeros is replaced by a string with one
code violation
Nonreturn to Zero Inverted

- Nonreturn to zero inverted on **ones**
 - Constant voltage pulse for duration of bit
 - Data encoded as presence or absence of **signal transition** at beginning of bit time
 - Transition denotes a binary 1
 - (low to high or high to low)
 - No transition denotes binary 0
 - An example of differential encoding

NRZ

- NRZ-L and NRZI waveforms
- Sequence 010011000011
- Diagram illustrating the encoding of bit sequences
Differential Encoding

- Data represented by changes rather than levels
 - More reliable detection of transition rather than level
 - In complex transmission layouts it is easy to lose sense of polarity

NRZ pros and cons

- Pros
 - Easy to engineer
 - Make good use of bandwidth

- Cons
 - dc component
 - Lack of synchronization capability

- Used for magnetic recording
- Not often used for signal transmission
Multilevel Binary

- Use more than two levels
- **Bipolar-AMI**
 - “0” represented by no line signal
 - “1” represented by positive or negative pulse
 - “1” pulses alternate in polarity
 - No loss of sync if a long string of “1”s (“0” still a problem)
 - No net dc component
 - Lower bandwidth
 - Easy error detection

Pseudoternary

- “1” represented by absence of line signal
- “0” represented by alternating positive and negative
- No advantage or disadvantage over bipolar-AMI
Bipolar-AMI and Pseudoternary

- Bipolar-AMI
 - (most recent preceding 1 bit has negative voltage)

- Pseudoternary
 - (most recent preceding 0 bit has negative voltage)

Trade-Off for Multilevel Binary

- Not as efficient as NRZ
 - Each signal element only represents one bit
 - 3 level system could represent \(\log_2 3 = 1.58 \) bits
 - Receiver must distinguish between three levels (+A, -A, 0)
 - Requires approx. 3dB more signal power for same probability of bit error
Manchester Encoding

- Transition in middle of each bit period
- Transition serves as clock and data
- Low to high represents one
- High to low represents zero
- Used by IEEE 802.3 (CSMA/CD, i.e. Ethernet)
Differential Manchester

- Mid-bit transition is clocking only
- Transition at start of a bit period represents zero
- No transition at start of a bit period represents one
- Note: this is a differential encoding scheme
- Used by IEEE 802.5 (token ring)

Differential Manchester Encoding

BTW: does anything seem wrong here?
Biphase Pros and Cons

Manchester and Diff. Manchester are called *Biphase*

- **Con**
 - At least one transition per bit time and possibly two
 - Maximum modulation rate is twice NRZ
 - Requires more bandwidth

- **Pros**
 - Synchronization on mid bit transition (self clocking)
 - No dc component
 - Error detection
 - Absence of expected transition

Modulation Rate

![Modulation Rate Diagram](image)

- 5 bits = 5 µsec
- 1 bit = 1 µsec
- 1 signal element = 0.5 µsec

Scrambling

- Use scrambling to replace sequences that would produce constant voltage
- Filling sequence
 - Must produce enough transitions to sync
 - Must be recognized by receiver and replace with original
 - Same length as original
- No dc component
- No long sequences of zero level line signal
- No reduction in data rate
- Error detection capability

B8ZS

- Bipolar With 8 Zeros Substitution
- Based on bipolar-AMI
- If octet of all zeros and last voltage pulse preceding was positive encode as 000+-0-+
- If octet of all zeros and last voltage pulse preceding was negative encode as 000-+0+-
- Causes two violations of AMI code
- Unlikely to occur as a result of noise
- Receiver detects and interprets as octet of all zeros
Data Encoding

- **HDB3 - (High Density Bipolar 3)**
 - Commonly used in Europe and Japan
 - Similar to bipolar AMI, except that any string of four zeros is replaced by a string with one code violation
 - **Rules:**
 - replace every string of 4 zeros by 000V
 - V is a code violation
 - this might result in DC components if consecutive strings of 4 zeros are encoded -- in this case the pattern B00V is used
 - B is a level inversion and
 - V is the code violation
 - general rule: use patterns 000V and B00V such that the violations alternate, thereby avoiding DC components

![Figure 5.6 Encoding Rules for B8ZS and HDB3](image)

B = Valid bipolar signal
V = Bipolar violation

CS420/520 Axel Krings
Sequence 5
Page 29

CS420/520 Axel Krings
Sequence 5
Page 30
Test your understanding and see solutions on next slide

NRZ-L
NRZI
Bipo.AMI
Pseudoternary
Manchester
Differential Manchester

0 1 0 0 1 1 0 0 0 1 1
Test your understanding and see solutions on next slide

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

Bipol.
AMI

B8ZS

HDB3
Digital Data, Analog Signal

- Public telephone system
 - 300Hz to 3400Hz
 - Use modem (modulator-demodulator)
- Amplitude shift keying (ASK)
- Frequency shift keying (FSK)
- Phase shift keying (PSK)

Amplitude Shift Keying
Amplitude Shift Keying

- Amplitude Modulation
 - carrier frequency
 - signal to be modulated
 - spectrum

How does ASK work?

\[v_c(t) = \cos(\omega_c t) \]
\[v_s(t) = \frac{1}{2} + \frac{2}{\pi} \{ \cos(\omega_c t - \frac{1}{3} \cos 3\omega_c t + \frac{1}{5} \cos 5\omega_c t - ... \} \]
\[v_{\text{ASK}}(t) = v_c(t) \cdot v_s(t) \]
\[= \frac{1}{2} \cos(\omega_c t) + \frac{2}{\pi} \{ \cos(\omega_c t) \cdot \cos(\omega_c t - \frac{1}{3} \cos 3\omega_c t \times \cos 3\omega_c t + ... \} \]

Now, we know that

\[2 \cos A \cos B = \cos(A - B) + \cos(A + B) \]

Therefore we have:

\[v_{\text{ASK}}(t) = \frac{1}{2} \cos(\omega_c t) \]
\[+ \frac{1}{\pi} \{ \cos(\omega_c - \omega_d) t + \cos(\omega_c + \omega_d) t \} \]
\[= \frac{1}{2} \{ \cos(\omega_c - \omega_d) t + \cos(\omega_c + \omega_d) t \} + ... \]
Frequency Shift Keying

- Frequency Modulation
 - different carrier frequencies
 - signal to be modulated
 - spectrum

- Hal96 fig 2.19
How does FSK work?

\[v_{\text{FSK}}(t) = \cos \omega_1 t \cdot v_d(t) + \cos \omega_2 t \cdot v_d(t) \]

The two carriers are \(\omega_1 \) and \(\omega_2 \) and \(v_d(t) = 1 - v_s(t) \)

\[v_{\text{FSK}}(t) = \cos \omega_1 t \left(\frac{1}{2} + \frac{2}{\pi} \cos \omega_1 t - \frac{1}{3} \cos 3\omega_1 t + \ldots \right) \]

\[+ \cos \omega_2 t \left(\frac{1}{2} + \frac{2}{\pi} \cos \omega_2 t - \frac{1}{3} \cos 3\omega_2 t + \ldots \right) \]

Therefore we have:

\[v_{\text{FSK}}(t) = \frac{1}{2} \cos \omega_1 t + \frac{1}{\pi} \left(\cos(\omega_1 - \omega_0) t + \cos(\omega_1 + \omega_0) t \right) + \frac{1}{3} \cos(\omega_1 - 3\omega_0) t + \cos(\omega_1 + 3\omega_0) t + \ldots \]

\[+ \frac{1}{2} \cos \omega_2 t + \frac{1}{\pi} \left(\cos(\omega_2 - \omega_0) t + \cos(\omega_2 + \omega_0) t \right) + \frac{1}{3} \cos(\omega_2 - 3\omega_0) t + \cos(\omega_2 + 3\omega_0) t + \ldots \]

Phase Shift Keying

(a) Data signal

(b) Carrier

(c) Phase coherent

(d) Differential

Hal96 fig 2.21
Phase Shift Keying

• Phase Modulation
 — phase of carrier defines data
 — two versions
 • phase coherent
 • differential
 — spectrum

![Diagram of phase shift keying spectrum]

Hal96 fig 2.21

How does PSK work?

Carrier and bipolar data signal

\[
v_c(t) = \cos \omega_c t
\]

\[
v_d(t) = \frac{4}{\pi} \{ \cos \omega_d t - \frac{1}{3} \cos 3\omega_d t + \frac{1}{5} \cos 5\omega_d t - \ldots \}
\]

\[
v_{PSK}(t) = v_c(t) \cdot v_d(t)
\]

\[
= \frac{4}{\pi} \{ \cos \omega_d t \cdot \cos \omega_d t - \frac{1}{3} \cos \omega_d t \cdot \cos 3\omega_d t + \ldots \}
\]

With the usual simplification \(2 \cos A \cos B = \cos(A - B) + \cos(A + B)\) we get:

\[
v_{PSK}(t) = \frac{2}{\pi} \{ \cos(\omega_c - \omega_d) t + \cos(\omega_c + \omega_d) t
\]

\[-\frac{1}{3} \cos(\omega_c - 3\omega_d) t + \cos(\omega_c + 3\omega_d) t + \ldots \}
Phase Shift Keying

- Multilevel Phase Modulation Methods
 - use multiple phases
 - e.g. 4-PSK or quadrature phase shift keying QPSK
 - $(0^\circ, 90^\circ, 180^\circ, 270^\circ)$
 - 4-PSK phase-time diagram
 - 4-PSK phase diagram
 - 16-QAM phase diagram

Spread Spectrum

- Spread spectrum digital communication systems
 - developed initially for military
 - spread the signal to make it hard to jam
 - became known as “frequency-hopping”
 - switches through a pseudo random sequence of frequency assignments
Data Signaling

- Transmitting on Analog Lines
 - If we use existing telephone lines (PSTN) we have to consider that they were created for voice with effective bandwidth from 300Hz to 3400Hz or total of 3000Hz.
 - We have to concern ourselves with two forms of data.
 - Analog data
 - Digital data

![Modulation Techniques Diagram]
Amplitude Shift Keying

- Values represented by different amplitudes of carrier
- Usually, one amplitude is zero
 - i.e. presence and absence of carrier is used
- Susceptible to sudden gain changes
- Inefficient
- Up to 1200bps on voice grade lines
- Used over optical fiber

Binary Frequency Shift Keying

- Most common form FSK is binary FSK (BFSK)
- Two binary values represented by two different frequencies (near carrier)
- Less susceptible to error than ASK
- Up to 1200bps on voice grade lines
- High frequency radio
Multiple FSK

- More than two frequencies used
- More bandwidth efficient
- More prone to error
- Each signalling element represents more than one bit

FSK on Voice Grade Line

Figure 5.8 Full-Duplex FSK Transmission on a Voice-Grade Line
Phase Shift Keying

- Phase of carrier signal is shifted to represent data
- Binary PSK
 - Two phases represent two binary digits
- Differential PSK
 -Phase shifted relative to previous transmission rather than some reference signal

Binary PSK

[Diagram showing waveforms for binary PSK]
Quadrature (four-level) PSK

- More efficient use by each signal element representing more than one bit
 - e.g. shifts of $\frac{\pi}{2}$ (90°)
 - Each element represents two bits
 - Can use 8 phase angles and have more than one amplitude
 - 9600bps modem use 12 angles, four of which have two amplitudes
- Offset QPSK (OQPSK)
 - also called “orthogonal QPSK”
 - Delay in Q stream

Example QPSK

- signals

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>$s(t) = A \cos(2 \pi f_c t + \frac{\pi}{4})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>$s(t) = A \cos(2 \pi f_c t + \frac{3\pi}{4})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>$s(t) = A \cos(2 \pi f_c t - \frac{3\pi}{4})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$s(t) = A \cos(2 \pi f_c t - \frac{\pi}{4})$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QPSK and OQPSK Modulators

QPSK signal: \[s(t) = \frac{1}{\sqrt{2}} I(t) \cos 2\pi f_c t - \frac{1}{\sqrt{2}} Q(t) \sin 2\pi f_c t \]

Figure 5.12 Example of QPSK and OQPSK Waveforms
Performance of Digital to Analog Modulation Schemes

- Bandwidth
 - ASK and PSK bandwidth directly related to bit rate
 - FSK bandwidth is larger. Why?
 - Note the difference in the derivation of the math in Stallings compared to the previous arguments based on the spectrum.
- In the presence of noise, bit error rate of PSK and QPSK are about 3dB superior to ASK and FSK

Quadrature Amplitude Modulation

- QAM used on asymmetric digital subscriber line (ADSL) and some wireless
- Combination of ASK and PSK
- Send two different signals simultaneously on same carrier frequency
 - Use two copies of carrier, one shifted 90°
 - Each carrier is ASK modulated
 - Two independent signals over same medium
 - binary 0 = absence of signal, binary 1 = carrier
 - same holds for path that uses the shifted carrier
 - Demodulate and combine for original binary output
QAM Modulator

QAM signal: \[s(t) = d_1(t) \cos 2\pi f_c t + d_2(t) \sin 2\pi f_c t \]

QAM Levels

- Two level ASK
 - Each of two streams in one of two states
 - Four state system
- Essentially this is a four level ASK
 - Combined stream in one of 16 states
- 64 and 256 state systems have been implemented
- Improved data rate for given bandwidth
 - Increased potential error rate
Analog Data, Digital Signal

- Digitization
 - Conversion of analog data into digital data
 - Digital data can then be transmitted using NRZ-L
 - Digital data can then be transmitted using code other than NRZ-L
 - Digital data can then be converted to analog signal
 - Analog to digital conversion done using a codec
 - Pulse code modulation
 - Delta modulation
Digitizing Analog Data

![Diagram showing the process of digitizing analog data](image)

Figure 5.16 Digitizing Analog Data

Sampling theorem

- If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all the information of the original signal
 - in short: sample with rate more than twice the highest signal frequency
 - e.g. Voice data limited to below 4000Hz, thus, require 8000 sample per second
 - the samples are analog samples
 - think of a slice of the signal
 - the signal can be reconstructed from the samples using a lowpass filter
PAM and PCM

- Pulse Amplitude Modulation (PAM)
 - “get slices of analog signals”
- Pulse Code Modulation (PCM)
 - “assign digital code to the analog slice”
 - n bits give 2^n levels, e.g. 4 bit give 16 levels
- Quantizing error
 - error depends on granularity of encoding
 - it is impossible to recover original exactly
- Example
 - 8000 samples per second of 8 bits each gives 64kbps

PCM Example

<table>
<thead>
<tr>
<th>Code number</th>
<th>Normalized magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

| PAM value | 1.1 | 9.2 | 15.2 | 10.8 | 5.6 | 2.8 | 2.7 |
| quantized code number | 1 | 9 | 15 | 10 | 5 | 2 | 2 |

<table>
<thead>
<tr>
<th>PCM code</th>
<th>0001</th>
<th>1001</th>
<th>1111</th>
<th>1010</th>
<th>0101</th>
<th>0010</th>
<th>0010</th>
</tr>
</thead>
</table>
Nonlinear Encoding

- Quantization levels not evenly spaced
- Reduces overall signal distortion
- Can also be done by companding
Effect of Non-Linear Coding

Typical Companding Functions
Delta Modulation

- Analog input is approximated by a staircase function
- Move up or down one level (δ) at each sample interval
- Binary behavior
 - Function moves up or down at each sample interval

Delta Modulation - example
Delta Modulation - Operation

![Diagram of Delta Modulation](image)

Delta Modulation - Performance

- Good voice reproduction
 - PCM - 128 levels (7 bit)
 - Voice bandwidth 4khz
 - Should be 8000 x 7 = 56kbps for PCM
- Data compression can improve on this
 - e.g. Interframe coding techniques for video
Analog Data, Analog Signals

- Why modulate analog signals?
 - Higher frequency can give more efficient transmission
 - Permits frequency division multiplexing (chapter 8)

- Types of modulation
 - Amplitude
 - Frequency
 - Phase

Analog Modulation

- Carrier
- Modulating sine-wave signal
- Amplitude-modulated (OSBIC) wave
- Phase-modulated wave
- Frequency-modulated wave
Summary

- looked at signal encoding techniques
 - digital data, digital signal
 - analog data, digital signal
 - digital data, analog signal
 - analog data, analog signal