Chapter 3: Data Transmission

Terminology (1)

- Transmitter
- Receiver
- Medium
 - Guided medium
 - e.g. twisted pair, coaxial cable, optical fiber
 - Unguided medium
 - e.g. air, seawater, vacuum
Terminology (2)

• Direct link
 — No intermediate devices
• Point-to-point
 — Direct link
 — Only 2 devices share link
• Multi-point
 — More than two devices share the link

Terminology (3)

• Simplex
 — One direction
 — One side transmits, the other receives
 • e.g. Television
• Half duplex
 — Either direction, but only one way at a time
 • e.g. police radio
• Full duplex
 — Both stations may transmit simultaneously
 — Medium carries signals in both direction at same time
 • e.g. telephone
Frequency, Spectrum and Bandwidth

- Time domain concepts
 - Analog signal
 - Varies in a smooth way over time
 - Digital signal
 - Maintains a constant level then changes to another constant level
 - Periodic signal
 - Pattern repeated over time
 - Aperiodic signal
 - Pattern not repeated over time

Analogue & Digital Signals

(a) Analog

(b) Digital
Periodic Signals

- **Sine Wave**
 - Peak Amplitude (A)
 - maximum strength of signal, in volts
 - Frequency (f)
 - Rate of change of signal, in Hertz (Hz) or cycles per second
 - Period (T): time for one repetition, $T = 1/f$
 - Phase (ϕ)
 - Relative position in time
 - Periodic signal $s(t + T) = s(t)$
 - General wave $s(t) = A\sin(2\pi ft + \Phi)$
Periodic Signal: e.g. Sine Waves

\[s(t) = A \sin(2\pi ft + \Phi) \]

- Period of the signal is \(\frac{2\pi}{f} \)
- Wavelength \(\lambda \) is the distance occupied by one cycle
- Distance between two points of corresponding phase in two consecutive cycles
- Wavelength formula:
 \[\lambda = \frac{\text{distance}}{\text{number of cycles}} \]
- Assuming signal velocity \(v \):
 \[\lambda f = v \]
 \[c = 3 \times 10^8 \text{ m/s (speed of light in free space)} \]
Frequency Domain Concepts

• Signal is usually made up of many frequencies
• Components are sine waves
• It can be shown (Fourier analysis) that any signal is made up of component sine waves
• One can plot frequency domain functions

Building block for waves

• What is a square wave?
 — What frequency components are digital signals composed of?
 — How many components do I need to recreate a square wave?
 — What is a realistic spectrum?
 — Where is the main energy of the signal?
 — Below is a representation of a square wave with amplitude A:

\[
s(t) = \frac{A4}{\pi} \sum_{k_{\text{odd}}, k=1}^{\infty} \frac{1}{k} \sin(2\pi kft)
\]
Physical Aspects

• Limited Bandwidth
 — Fourier Analysis

\[v(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + \sum_{n=1}^{\infty} b_n \sin n\omega_0 t \]

\[a_0 = \frac{1}{T} \int_0^T v(t) dt \]

\[a_n = \frac{2}{T} \int_0^T v(t) \cos(n\omega_0 t) dt \]

\[b_n = \frac{2}{T} \int_0^T v(t) \sin(n\omega_0 t) dt \]

\[v(t) = \text{voltage as a function of time} \]

\[\omega_0 = \text{fundamental frequency component in radians / second} \]

\[f_s = \text{fundamental frequency in Hz} \]

\[T = 1/f_s = \text{period in seconds} \]

Physical Aspects (cont.)

• Limited Bandwidth (cont.)
 — Unipolar

\[v(t) = \frac{V}{2} + \frac{2V}{\pi} \left\{ \cos \omega_0 t - \frac{1}{3} \cos 3\omega_0 t + \frac{1}{5} \cos 5\omega_0 t - \ldots \right\} \]

— Bipolar

\[v(t) = \frac{4V}{\pi} \left\{ \cos \omega_0 t - \frac{1}{3} \cos 3\omega_0 t + \frac{1}{5} \cos 5\omega_0 t - \ldots \right\} \]

How much bandwidth do we need?
What are the trade-offs if we compromise bandwidth?
Addition of Frequency Components ($T=1/f$)

Spectrum of previous example

Single pulse: between $-X/2$ and $X/2$
Spectrum & Bandwidth

- Spectrum
 - range of frequencies contained in signal
- Absolute bandwidth
 - width of spectrum
- Effective bandwidth
 - Often just bandwidth
 - Narrow band of frequencies containing most of the energy
- DC Component
 - Component of zero frequency

Signal with DC Component
Data Rate and Bandwidth

- Any transmission system has a limited band of frequencies
- This limits the data rate that can be carried
- Issues
 - The more bandwidth the less distortion
 - Where is the bulk of the energy?

Analog and Digital Data Transmission

- Data
 - Entities that convey meaning
- Signals
 - Electric or electromagnetic representations of data
- Transmission
 - Communication of data by propagation and processing of signals
Analog and Digital Data

- Analog
 - Continuous values within some interval
 - e.g. sound, video
- Digital
 - Discrete values
 - e.g. text, integers

Acoustic Spectrum (Analog)
Analog and Digital Signals

- Means by which data are propagated
- Analog
 - Continuously variable
 - Various media
 - Wire, fiber optic, space
 - Speech bandwidth 100Hz to 7kHz
 - Telephone bandwidth 300Hz to 3400Hz
 - Video bandwidth 4MHz
- Digital
 - Use two DC components

Advantages & Disadvantages of Digital

- Cheaper
- Less susceptible to noise
- Greater attenuation
 - Pulses become rounded and smaller
 - Leads to loss of information
Components of Speech

- Frequency range (of hearing) 20Hz-20kHz
 - This upper bound is over-optimistic though!
 - Speech 100Hz-7kHz
- Easily converted into electromagnetic signal for transmission
- Sound frequencies with varying volume converted into electromagnetic frequencies with varying voltage
- Limit frequency range for voice channel
 - 300-3400Hz

Attenuation of Digital Signals

Voltage at transmitting end

Voltage at receiving end
Video Components

- USA - 483 lines scanned per frame at 30 frames per second
 - 525 lines but 42 lost during vertical retrace
- So 525 lines x 30 scans = 15750 lines per second
 - 63.5 μs per line, (11 μs for retrace, so 52.5 μs per video line)
- Max frequency if line alternates black and white
- Horizontal resolution is about 450 lines giving 225 cycles of wave in 52.5 μs
- Max frequency of 4.2MHz

Binary Digital Data

- From computer terminals etc.
- Two dc components
- Bandwidth depends on data rate
Conversion of PC Input to Digital Signal

- as generated by computers etc.
- has two dc components
- bandwidth depends on data rate

![Graph demonstrating the conversion of PC input to digital signal.](image)

User input at a PC is converted into a stream of binary digits (1s and 0s). In this graph of a typical digital signal, binary one is represented by +5 volts and binary zero is represented by -5 volts. The signal for each bit has a duration of 0.02 msec, giving a data rate of 50,000 bits per second (50 kbps).

Data and Signals

- Usually use digital signals for digital data and analog signals for analog data
- Can use analog signal to carry digital data
 - Modem
- Can use digital signal to carry analog data
 - Compact Disc audio
Analog Signals Carrying Analog and Digital Data

Analog Signals: Represent data with continuously varying electromagnetic wave

Analog Data (voice sound waves) → Analog Signal → Telephone

Digital Data (binary voltage pulses) → Analog Signal (modulated on carrier frequency) → Modem

Digital Signals Carrying Analog and Digital Data

Digital Signals: Represent data with sequence of voltage pulses

Analog Signal → Digital Signal → Codec

Digital Data → Digital Signal → Digital Transceiver
Transmission Impairments

- Signal received may differ from signal transmitted causing:
 - analog - degradation of signal quality
 - digital - bit errors
- Most significant impairments are
 - attenuation and attenuation distortion
 - delay distortion
 - noise

Attenuation

- Signal strength falls off with distance
- Depends on medium
- Received signal strength:
 - must be enough to be detected
 - must be sufficiently higher than noise to be received without error
- Attenuation is an increasing function of frequency
Noise (1)

- Additional signals inserted between transmitter and receiver
- Thermal
 - Due to thermal agitation of electrons
 - Uniformly distributed
 - White noise
- Intermodulation
 - Signals that are the sum and difference of original frequencies sharing a medium
Noise (2)

- Crosstalk
 - A signal from one line is picked up by another
- Impulse
 - Irregular pulses or spikes
 - e.g. External electromagnetic interference
 - Short duration
 - High amplitude

Digital Transmission

- Concerned with content
- Integrity endangered by noise, attenuation etc.
- Repeaters
 - Repeater receives signal
 - Extracts bit pattern
 - Retransmits
 - Attenuation is overcome
 - Noise is not amplified
Analog Transmission

- Analog signal transmitted without regard to content
- May be analog or digital data
- Attenuated over distance
- Use amplifiers to boost signal
- Also amplifies noise

Advantages of Digital Transmission

- Digital technology
 - Low cost LSI/VLSI technology
- Data integrity
 - Longer distances over lower quality lines
- Capacity utilization
 - High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- Security & Privacy
 - Encryption
- Integration
 - Can treat analog and digital data similarly
Delay Distortion

—Different frequency components of a signal
 • are attenuated differently, and
 • travel at different speeds through guided media

—This may lead to **delay distortion**

Channel Capacity

• Data rate
 —In bits per second, bps (not Bps)
 —Rate at which data can be communicated

• Bandwidth
 —In cycles per second, Hertz, Hz
 —Constrained by transmitter and medium

• Convention: not all “k”s are equal
 —data rates are given as power of 10
 • e.g., kHz is 1000Hz
 —data is given in terms of power of 2
 • e.g., KByte is 1024 Bytes
Nyquist Bandwidth

• If rate of signal transmission is 2B then a signal with frequencies no greater than B is sufficient to carry the signal rate.
 — Why? Assume we have a square wave of repeating 101010. If a positive pulse is a 1 and a negative pulse is 0, then each pulse lasts 1/2 \(T_1 \) \((T_1 = 1/f_1) \) and the data rate is 2\(f_1 \) bits per second.

Nyquist Bandwidth

• If we limit the components to a maximum frequency (restrict the bandwidth) we need to make sure the signal is accurately represented.
• Based on the accuracy we require, the bandwidth can carry a particular data rate. The theoretical maximum communication limit is given by the **Nyquist** formula:

\[
C = 2B \log_2 M
\]

\(C \) = capacity or data transfer rate in bps
\(B \) = bandwidth (in hertz)
\(M \) = number of possible signaling levels
Signal Strength

— An important parameter in communication is the strength of the signal transmitted. Even more important is the strength being received.

— As signal propagates it will be attenuated (decreased)

— Amplifiers are inserted to increase signal strength

— Gains, losses and relative levels of signals are expressed in decibels
 - This is a logarithmic scale, but strength usually falls logarithmically
 - Calculation of gains and losses involves simple addition and subtraction

— Decibel measure of difference in two power levels is

\[
N_{dB} = 10 \log_{10} \frac{P_1}{P_2}
\]

Physical Aspects

— Signal Attenuation and Distortion
 - As a signal propagates across a transmission medium its amplitude decreases. This is known as signal attenuation.

 — A typical signal consists of a composition of many frequency components (Fourier Analysis). Due to the limited transmission bandwidth of a medium, the higher frequency components may not be able to be transmitted.
 - Recall the Nyquist formula

\[
C = 2B \log_2 M \quad \quad \log_2(x) = \frac{\ln (x)}{\ln (2)}
\]
Shannon capacity

—A transmission line may experience interference from a number of sources, called noise. Noise is measured in terms of signal to noise power ratio, expressed in decibels:

\[
\left(\frac{S}{N} \right)_\text{dB} = 10 \log_{10} \left(\frac{S}{N} \right)
\]

—The effects of noise on channel capacity can be seen using the Shannon-Hartley Law:

\[
C = B \log_2 \left(1 + \frac{S}{N} \right) \text{bps}
\]

\[C = \text{data transfer rate in bps}\]
\[B = \text{bandwidth (in Hertz)}\]

Cross Talk -- NEXT canceling

—near-end crosstalk (NEXT), cross talk of strong transmit (output) signal to weak receive (input) signal.

—adaptive NEXT canceling using op-amp
Noise

• Impulse Noise
 —impulse caused by switching, lightning etc.

• Thermal Noise
 —present irrespective of any external effects
 —caused by thermal agitation of electrons

Noise

• White Noise
 —random noise – entire spectrum

• Pink Noise
 —“realistic spectrum”
 —the power spectral density is inversely proportional to the frequency
Combined Effects

- Attenuation
- Limited Bandwidth
- Noise

It all adds up!

Thermal Noise

— Energy (in joules = watts x seconds) per bit in a signal:

\[E_b = ST_b \]

\(S = \text{signal power in watts} \)

\(T_b = \text{time period for 1 bit in seconds} \)

— Data Transmission rate \(R = 1/T_b \)

— Thermal noise \(N_0 \) in a line is: (\(T \) is temperature in K)

\[N_0 = kTW \text{ where } k = 1.3803 \times 10^{-23}\text{ joule K}^{-1} \]

\(k \) is Boltzmann constant

\[W \] is the bandwidth

\[\frac{E_b}{N_0} = \frac{S/R}{N_0} = \frac{S/R}{kTW} \]
Signal Delay

— There exists a **transmission propagation delay** in any medium
 - Speed of light $3 \times 10^8 \text{ ms}^{-1}$
 - Speed of EM in cable/wire $2 \times 10^8 \text{ ms}^{-1}$

— Important parameter is **round-trip-delay**
 (time from first bit sent to last bit acknowledged)

Signal Delay

— Propagation delay T_p and transmission delay T_x

$$ T_p = \frac{d}{V}, \quad T_x = \frac{n}{R} $$

— Important ratio

$$ \frac{T_p}{T_x} $$

d = distance in meters
V = EM speed
n = number of bits transmitted
R = link bit rate in bits per second