High Speed LANs

High Speed LANs

- Range of technologies
 - —Fast and Gigabit Ethernet
 - —Fibre Channel
 - —High Speed Wireless LANs

Why High Speed LANs?

- Office LANs used to provide basic connectivity
 - Connecting PCs and terminals to mainframes and midrange systems that ran corporate applications
 - Providing workgroup connectivity at departmental level
 - Traffic patterns were light
 - Emphasis on file transfer and electronic mail
- Speed and power of PCs has risen
 - Graphics-intensive applications and GUIs
- MIS organizations recognize LANs as essential
 - Began with client/server computing
 - Now dominant architecture in business environment
 - Intranetworks
 - Frequent transfer of large volumes of data

Applications Requiring High Speed LANs

- Centralized server farms
 - User needs to draw huge amounts of data from multiple centralized servers
 - E.g. Color publishing
 - Servers contain tens of gigabytes of image data
 - Downloaded to imaging workstations
- Power workgroups
- Small number of cooperating users
 - Draw massive data files across network
 - E.g. Software development group testing new software version or computer-aided design (CAD) running simulations
- High-speed local backbone
 - Processing demand grows
 - LANs proliferate at site
 - High-speed interconnection is necessary

Ethernet (CSMA/CD)

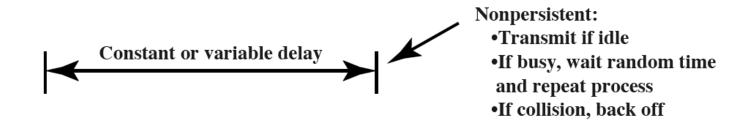
- Carriers Sense Multiple Access with Collision Detection
- Developed by Xerox original Ethernet
- IEEE 802.3

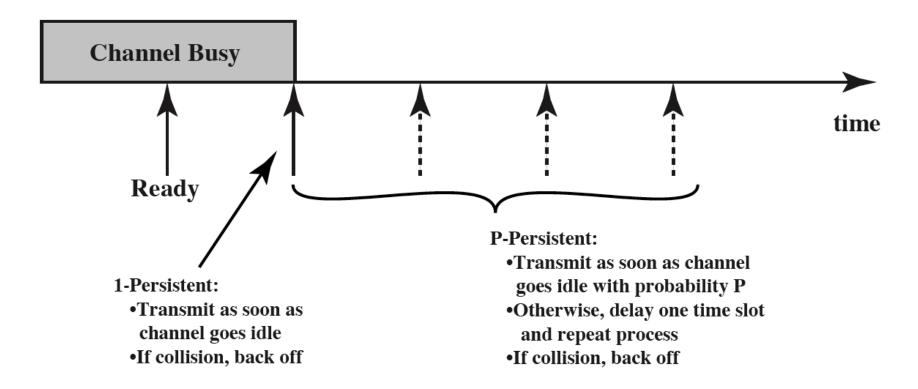
IEEE802.3 Medium Access Control

- Random Access
 - Stations access medium randomly
- Contention
 - —Stations content for time on medium

ALOHA

- Packet Radio
- When station has frame, it sends
- Station listens (for max round trip time) plus small increment
- If ACK, fine. If not, retransmit
- If no ACK after repeated transmissions, give up
- Frame check sequence (as in HDLC)
- If frame OK and address matches receiver, send ACK
- Frame may be damaged by noise or by another station transmitting at the same time (collision)
- Any overlap of frames causes collision
- Max utilization 18%


Slotted ALOHA


- Time in uniform slots equal to frame transmission time
- Need central clock (or other sync mechanism)
- Transmission begins at slot boundary
- Frames either miss or overlap totally
- Max utilization 37%

CSMA

- Propagation time is much less than transmission time
- All stations know that a transmission has started almost immediately
- First listen for clear medium (carrier sense)
- If medium idle, transmit
- If two stations start at the same instant, collision
- Wait reasonable time (round trip plus ACK contention)
- If no ACK then retransmit
- Max utilization depends on propagation time (medium length) and frame length
 - Longer frame and shorter propagation gives better utilization

CSMA Persistence and Backoff

Nonpersistent CSMA

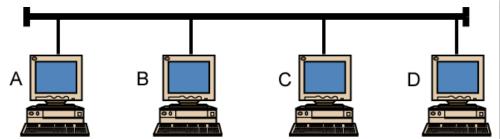
- Nonpersistent CSMA rules:
 - 1. if medium idle, transmit
 - 2. if medium busy, wait amount of time drawn from probability distribution (retransmission delay) & retry
- random delays reduces probability of collisions
- capacity is wasted because medium will remain idle following end of transmission
- nonpersistent stations are deferential

1-persistent CSMA

- To avoid idle channel time that non-persistent protocol used
- Station wishing to transmit listens and obeys following:
 - 1. If medium idle, transmit; otherwise, go to step 2
 - 2. If medium busy, listen until idle; then transmit immediately
- 1-persistent stations are selfish
- If two or more stations are waiting, collision guaranteed
 - Gets sorted out after collision

P-persistent CSMA

- Compromise that attempts to reduce collisions
 - Like nonpersistent
- And reduce idle time
 - Like1-persistent
- Rules:
 - 1. If medium idle, transmit with probability p, and delay one time unit with probability (1 p)
 - Time unit typically maximum propagation delay
 - 2. If medium busy, listen until idle and repeat step 1
 - 3. If transmission is delayed one time unit, repeat step 1
- What is an effective value of p?


Value of p?

- Avoid instability under heavy load
- If n stations waiting to send then np stations will start transmitting
- If np > 1 on average there will be a collision
 - Repeated attempts to transmit almost guaranteeing more collisions
 - Retries compete with new transmissions
 - Eventually, all stations trying to send
 - Continuous collisions; zero throughput
- So np < 1 for expected peaks of n
 - If heavy load expected, p small
 - However, as p made smaller, stations wait longer
 - At low loads, this gives very long delays

CSMA/CD

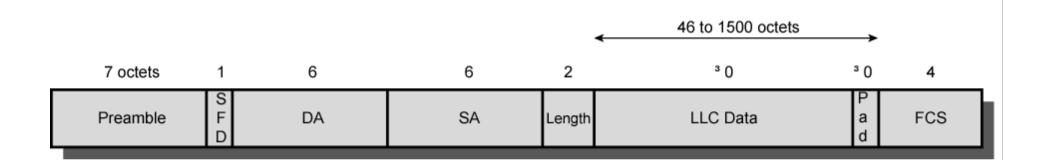
- With CSMA, collision occupies medium for duration of transmission
- Stations listen whilst transmitting
 - 1. If medium idle, transmit, otherwise, step 2
 - 2. If busy, listen for idle, then transmit
 - 3. If collision detected, jam then cease transmission
 - 4. After jam, wait random time then start from step 1

CSMA/CD Operation

			•		
TIME t ₀					
A's transmission	n				
C's transmissio	n				
Signal on bus	$\mathbb{Z}\mathbb{Z}$				
TIME t ₁					
A's transmission	n 📆 /////	////////	,		
C's transmissio	n			$\Box \Box$	
Signal on bus				$\boxtimes \boxtimes$	
TIME t ₂					
A's transmission	n 📆 /////	///////	,		
C's transmissio	n				
Signal on bus				XX ./////	
TIME t_3					
A's transmission	n 📆 /////	////////		////// / /////////////////////////////	\mathbb{Z}
C's transmissio	n ///////	Z			
Signal on bus	// XXXXX	X//////		///////////////////////////////////////	\mathbb{Z}

Which Persistence Algorithm?

- IEEE 802.3 uses 1-persistent
- Both nonpersistent and p-persistent have performance problems
- 1-persistent (p = 1) seems more unstable than p-persistent
 - —Greed of the stations
 - But wasted time due to collisions is short (if frames long relative to propagation delay
 - —With random backoff, unlikely to collide on next tries
 - —IEEE 802.3 and Ethernet use binary exponential backoff


Binary Exponential Backoff

- Attempt to transmit repeatedly if repeated collisions
- First 10 attempts, mean value of random delay doubled
- Value then remains same for 6 further attempts
- After 16 unsuccessful attempts, station gives up and reports error
- As congestion increases, stations back off by larger amounts to reduce the probability of collision.
- 1-persistent algorithm with binary exponential backoff efficient over wide range of loads
 - Low loads, 1-persistence guarantees station can seize channel once idle
 - High loads, at least as stable as other techniques
- Backoff algorithm gives last-in, first-out effect
- Stations with few collisions transmit first

Collision Detection

- On baseband bus, collision produces much higher signal voltage than signal
- Collision detected if cable signal greater than single station signal
- Signal attenuated over distance
- Special collision presence signal

IEEE 802.3 Frame Format

SFD = Start of frame delimiter

DA = Destination address

SA = Source address

FCS = Frame check sequence

100Mbps Fast Ethernet

- Use IEEE 802.3 MAC protocol and frame format
- 100BASE-X use physical medium specifications from FDDI
 - Two physical links between nodes
 - Transmission and reception
 - 100BASE-TX uses STP or Cat. 5 UTP
 - May require new cable
 - 100BASE-FX uses optical fiber
 - 100BASE-T4 can use Cat. 3, voice-grade UTP
 - Uses four twisted-pair lines between nodes
 - Data transmission uses three pairs in one direction at a time
- Star-wire topology
 - Similar to 10BASE-T

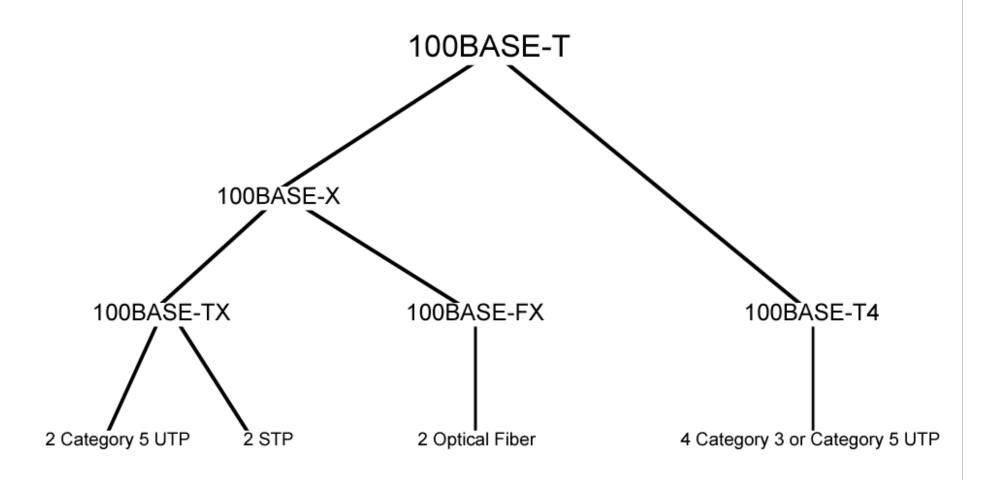
100Mbps (Fast Ethernet)

Table 16.3 IEEE 802.3 100BASE-T Physical Layer Medium Alternatives

	100BASE-TX		100BASE-FX	100BASE-T4
Transmission medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTP
Signaling technique	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ
Data rate	100 Mbps	100 Mbps	100 Mbps	100 Mbps
Maximum segment length	100 m	100 m	100 m	100 m
Network span	200 m	200 m	400 m	200 m

100BASE-X Data Rate and Encoding

- Unidirectional data rate 100 Mbps over single link
 - —Single twisted pair, single optical fiber
- Encoding scheme same as FDDI
 - **—**4B/5B-NRZI
 - —Modified for each option


100BASE-X Media

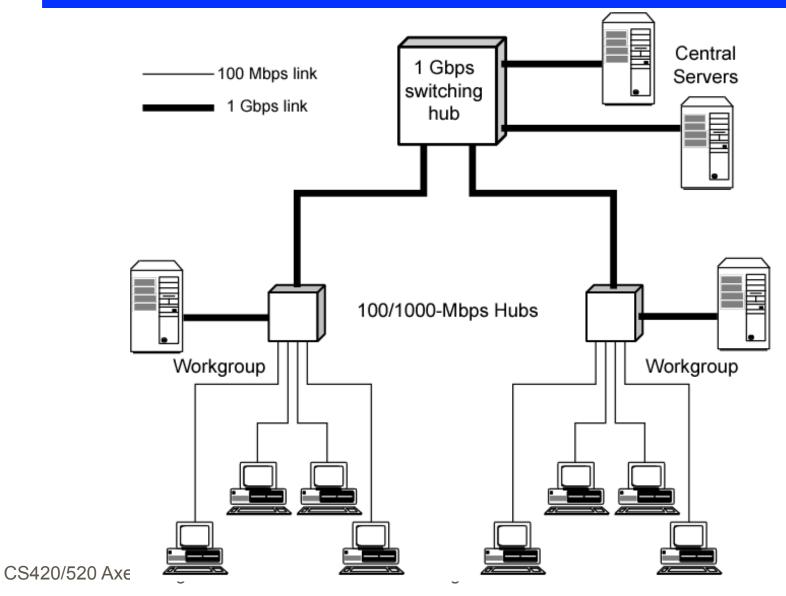
- Two physical medium specifications
- 100BASE-TX
 - Two pairs of twisted-pair cable
 - One pair for transmission and one for reception
 - STP and Category 5 UTP allowed
 - The MTL-3 signaling scheme is used
- 100BASE-FX
 - Two optical fiber cables
 - One for transmission and one for reception
 - Intensity modulation used to convert 4B/5B-NRZI code group stream into optical signals
 - 1 represented by pulse of light
 - 0 by either absence of pulse or very low intensity pulse

100BASE-T4

- 100-Mbps over lower-quality Cat 3 UTP
 - Taking advantage of large installed base
 - Cat 5 optional
 - Does not transmit continuous signal between packets
 - Useful in battery-powered applications
- Can not get 100 Mbps on single twisted pair
 - Data stream split into three separate streams
 - Each with an effective data rate of 33.33 Mbps
 - Four twisted pairs used
 - Data transmitted and received using three pairs
 - Two pairs configured for bidirectional transmission
- NRZ encoding not used
 - Would require signaling rate of 33 Mbps on each pair
 - Does not provide synchronization
 - Ternary signaling scheme (8B6T)

100BASE-T Options

CS420/520 Axel Krings Page 26 Sequence 16


Full Duplex Operation

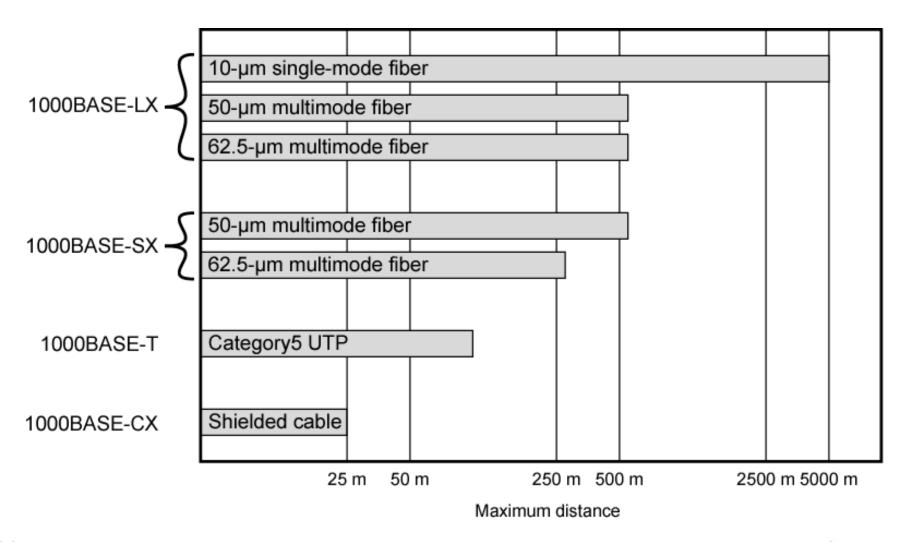
- Traditional Ethernet half duplex
 - Either transmit or receive but not both simultaneously
- With full-duplex, station can transmit and receive simultaneously
- 100-Mbps Ethernet in full-duplex mode, theoretical transfer rate 200 Mbps
- Attached stations must have full-duplex adapter cards
- Must use switching hub
 - Each station constitutes separate collision domain
 - In fact, no collisions
 - CSMA/CD algorithm no longer needed
 - 802.3 MAC frame format used
 - Attached stations can continue CSMA/CD

Mixed Configurations

- Fast Ethernet supports mixture of existing 10-Mbps LANs and newer 100-Mbps LANs
- E.g. 100-Mbps backbone LAN to support 10-Mbps hubs
 - Stations attach to 10-Mbps hubs using 10BASE-T
 - Hubs connected to switching hubs using 100BASE-T
 - Support 10-Mbps and 100-Mbps
 - High-capacity workstations and servers attach directly to 10/100 switches
 - Switches connected to 100-Mbps hubs using 100-Mbps links
 - 100-Mbps hubs provide building backbone
 - Connected to router providing connection to WAN

Gigabit Ethernet Configuration

Sequence 16


Gigabit Ethernet - Differences

- Carrier extension
- At least 4096 bit-times long
 - —(for 10/100 Mbps minimum is 512)
- Frame bursting
 - —allow multiple frames to be transmitted consecutively, i.e. "together"

Gigabit Ethernet – Physical

- 1000Base-SX
 - —Short wavelength, multimode fiber
- 1000Base-LX
 - —Long wavelength, Multi or single mode fiber
- 1000Base-CX
 - —Copper jumpers <25m, shielded twisted pair</p>
- 1000Base-T
 - —4 pairs, cat 5 UTP

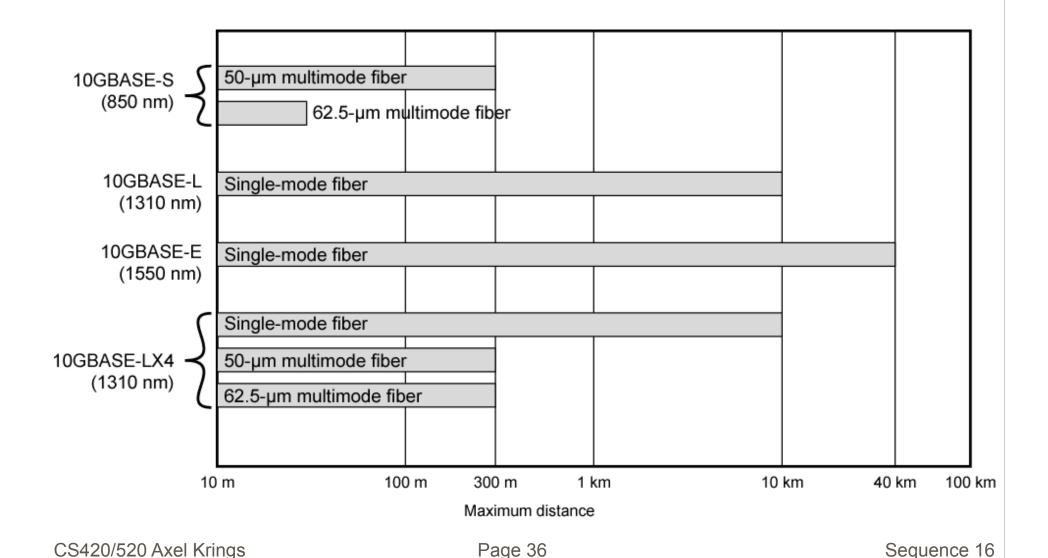
Gbit Ethernet Medium Options (log scale)

10Gbps Ethernet - Uses

- High-speed, local backbone interconnection between large-capacity switches
- Server farm, Campus wide connectivity
- Enables Internet service providers (ISPs) and network service providers (NSPs) to create very high-speed links at very low cost
- Allows construction of (MANs) and WANs
 - Connect geographically dispersed LANs between campuses or points of presence (PoPs)
- Ethernet competes with ATM and other WAN technologies
- 10-Gbps Ethernet provides substantial value over ATM

10Gbps Ethernet - Advantages

- No expensive, bandwidth-consuming conversion between Ethernet packets and ATM cells
 - Network is Ethernet, end to end
- IP and Ethernet together offer QoS and traffic policing capabilities approach those provided by ATM
- Variety of standard optical interfaces (wavelengths and link distances) specified for 10 Gb Ethernet


Sequence 16

Optimizing operation and cost for LAN, MAN, or WAN

10Gbps Ethernet - Advantages

- Maximum link distances cover 300 m to 40 km
- Full-duplex mode only
- 10GBASE-S (short):
 - 850 nm on multimode fiber
 - Up to 300 m
- 10GBASE-L (long)
 - 1310 nm on single-mode fiber
 - Up to 10 km
- 10GBASE-E (extended)
 - 1550 nm on single-mode fiber
 - Up to 40 km
- 10GBASE-LX4:
 - 1310 nm on single-mode or multimode fiber
 - Up to 10 km
 - Wavelength-division multiplexing (WDM) bit stream across four light waves

10Gbps Ethernet Distance Options (log scale)

Token Ring (802.5)

One should at least know the basic issues

Token Ring (802.5)

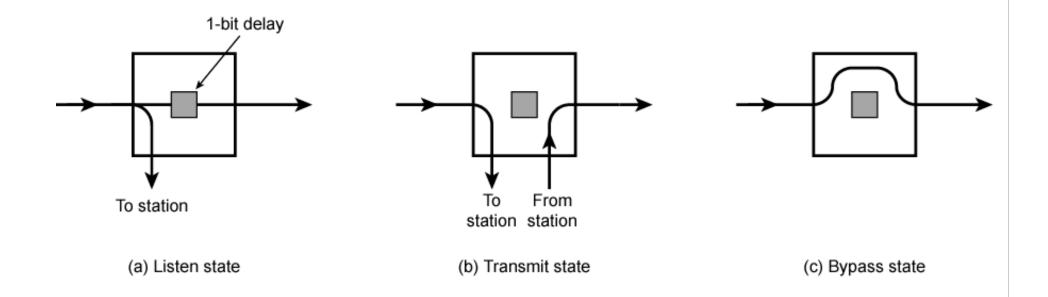
- Developed from IBM's commercial token ring
- Because of IBM's presence, token ring has gained broad acceptance
- Never achieved popularity of Ethernet
- Currently, there is still large installed base of token ring products
 - —Market share likely to decline

Ring Operation

- Each repeater connects to two others via unidirectional transmission links
- Single closed path
- Data transferred bit by bit from one repeater to the next
- Repeater regenerates and retransmits each bit
- Repeater performs data insertion, data reception, data removal
- Repeater acts as attachment point
- Packet removed by transmitter after one trip round ring

Listen State Functions

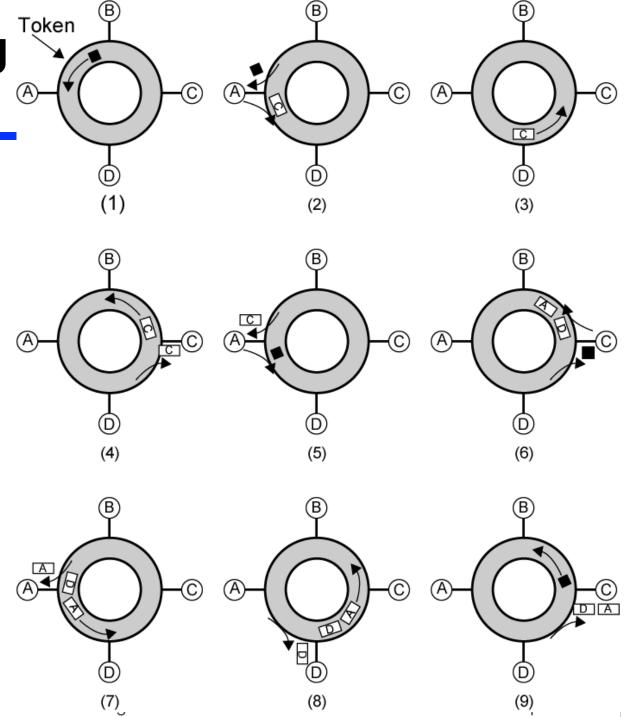
- Scan passing bit stream for patterns
 - —Address of attached station
 - —Token permission to transmit
- Copy incoming bit and send to attached station
 - -Whilst forwarding each bit
- Modify bit as it passes
 - —e.g. to indicate a packet has been copied (ACK)


Transmit State Functions

- Station has data
- Repeater has permission
- May receive incoming bits
 - —If ring bit length shorter than packet
 - Pass back to station for checking (ACK)
 - —May be more than one packet on ring
 - Buffer for retransmission later

Bypass State

- Signals propagate past repeater with no delay (other than propagation delay)
- Partial solution to reliability problem (see later)
- Improved performance


Ring Repeater States

802.5 MAC Protocol

- Small frame (token) circulates when idle
- Station waits for token
- Changes one bit in token to make it SOF for data frame
- Append rest of data frame
- Frame makes round trip and is absorbed by transmitting station
- Station then inserts new token when transmission has finished and leading edge of returning frame arrives
- Under light loads, some inefficiency
- Under heavy loads, round robin

Token Ring Operation

Dedicated Token Ring

- Central hub
- Acts as switch
- Full duplex point to point link
- Concentrator acts as frame level repeater
- No token passing

802.5 Physical Layer

Date rate	4	16	100	100	1000
transmission medium	UTP or STP or fiber	UTP or STP or fiber	UTP or STP	Fiber	Fiber
Signaling	Diff Manchester	Diff. Manchester	MLT-3	4B5B, NRZI	8B/10B
Max frame size	4550	18,200	18,200	18,200	18,200
Access control	TP or DTR	TP or DTR	DTR	DTR	DTR

TP = token passing access control

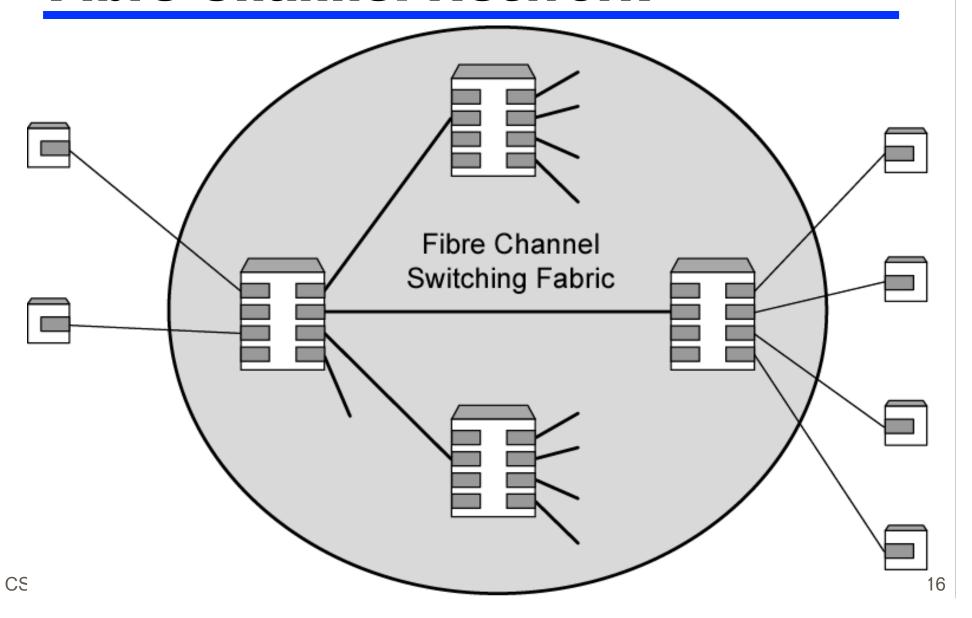
DTR = dedicated token ring

Fibre Channel - Background

- I/O channel
 - Direct point to point or multipoint communication link
 - Hardware based
 - High Speed
 - Very short distance
 - User data moved from source buffer to destination buffer
- Network connection
 - Interconnected access points
 - Software based protocol
 - Flow control, error detection &recovery
 - End systems connections

Fibre Channel

- Best of both technologies
- Channel oriented
 - Data type qualifiers for routing frame payload
 - —Link level constructs associated with I/O ops
 - Protocol interface specifications to support existing I/ O architectures
 - e.g. SCSI
- Network oriented
 - —Full multiplexing between multiple destinations
 - Peer to peer connectivity
 - —Internetworking to other connection technologies


Fibre Channel Requirements

- Full duplex links with two fibers per link
- 100 Mbps to 800 Mbps on single line
 - Full duplex 200 Mbps to 1600 Mbps per link
- Up to 10 km
- Small connectors
- High-capacity utilization, distance insensitivity
- Greater connectivity than existing multidrop channels
- Broad availability
 - i.e. standard components
- Multiple cost/performance levels
 - Small systems to supercomputers
- Carry multiple existing interface command sets for existing channel and network protocols
- Uses generic transport mechanism based on point-to-point links and a switching network
- Supports simple encoding and framing scheme
- In turn supports a variety of channel and network protocols

Fibre Channel Elements

- End systems Nodes
- Switched elements the network or fabric
- Communication across point to point links

Fibre Channel Network

Fibre Channel Protocol Architecture (1)

- FC-0 Physical Media
 - Optical fiber for long distance
 - coaxial cable for high speed short distance
 - STP for lower speed short distance
- FC-1 Transmission Protocol
 - 8B/10B signal encoding
- FC-2 Framing Protocol
 - Topologies
 - Framing formats
 - Flow and error control
 - Sequences and exchanges (logical grouping of frames)

Fibre Channel Protocol Architecture (2)

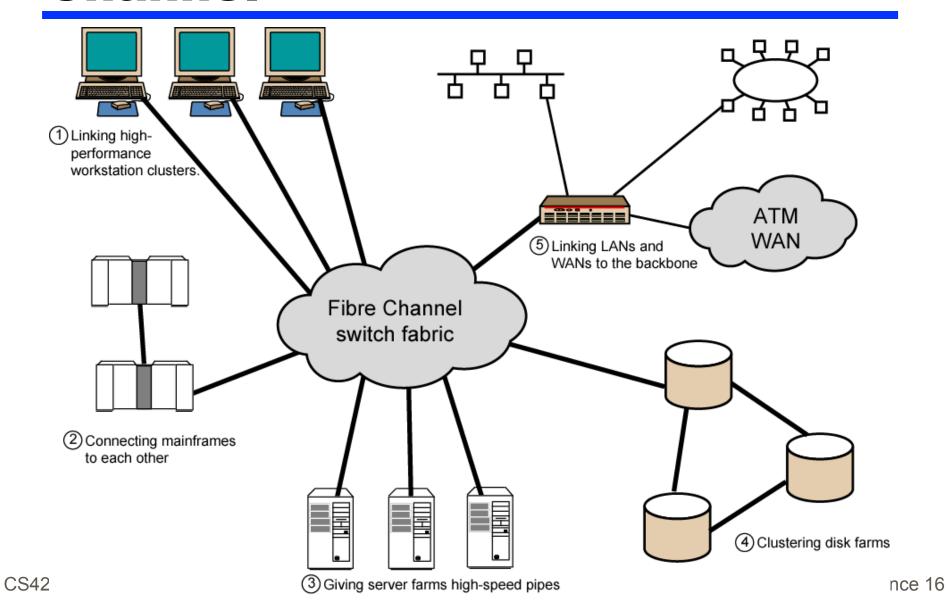
- FC-3 Common Services
 - Including multicasting
- FC-4 Mapping
 - —Mapping of channel and network services onto fibre channel
 - e.g. IEEE 802, ATM, IP, SCSI

Fibre Channel Physical Media

	800 Mbps	400 Mbps	200 Mbps	100 Mbps
Single mode fiber	10 km	10 km	10 km	
50-μm multimode fiber	0.5 km	1 km	2 km	
62.5-μm multimode fiber	175 m	1 km	1 km	_
Video coaxial cable	50 m	71 m	100 m	100 m
Miniature coaxial cable	14 m	19 m	28 m	42 m
Shielded twisted pair	28 m	46 m	57 m	80 m

Fibre Channel Fabric

- General topology called fabric or switched topology
- Arbitrary topology includes at least one switch to interconnect number of end systems
- May also consist of switched network
 - Some of these switches supporting end nodes
- Routing transparent to nodes
 - Each port has unique address
 - When data transmitted into fabric, edge switch to which node attached uses destination port address to determine location
 - Either deliver frame to node attached to same switch or transfers frame to adjacent switch to begin routing to remote destination


Fabric Advantages

- Scalability of capacity
 - As additional ports added, aggregate capacity of network increases
 - Minimizes congestion and contention
 - Increases throughput
- Protocol independent
- Distance insensitive
- Switch and transmission link technologies may change without affecting overall configuration
- Burden on nodes minimized
 - Fibre Channel node responsible for managing point-to-point connection between itself and fabric
 - Fabric responsible for routing and error detection

Alternative Topologies

- Point-to-point topology
 - —Only two ports
 - —Directly connected, with no intervening switches
 - —No routing
- Arbitrated loop topology
 - —Simple, low-cost topology
 - —Up to 126 nodes in loop
 - Operates roughly equivalent to token ring
- Topologies, transmission media, and data rates may be combined

Five Applications of Fibre Channel

Fibre Channel Prospects

- Backed by Fibre Channel Association
- Interface cards for different applications available
- Most widely accepted as peripheral device interconnect
 - To replace such schemes as SCSI
- Technically attractive to general high-speed LAN requirements
- Must compete with Ethernet and ATM LANs
- Cost and performance issues should dominate the consideration of these competing technologies

Summary

- High speed LANs emergence
- Ethernet technologies
 - —CSMA & CSMA/CD media access
 - —10Mbps ethernet
 - —100Mbps ethernet
 - —1Gbps ethernet
 - —10Gbps ethernet
- Fibre Channel