Cellular Wireless Networks

• Chapter 14

Principles of Cellular Networks

- Underlying technology for mobile phones, personal communication systems, wireless networking etc.
- Developed for mobile radio telephone
 - -Replace high power transmitter/receiver systems
 - Typical support for 25 channels over 80km
 - —Use lower power, shorter range, more transmitters

Cellular Network Organization

- Multiple low power transmitters
 - -100W or less
- Area divided into cells
 - -Each with own antenna
 - —Each with own range of frequencies
 - —Served by base station
 - Transmitter, receiver, control unit
 - Adjacent cells on different frequencies to avoid crosstalk

Shape of Cells

- Square
 - Width *d* cell has four neighbors at distance *d* and four at distance $\sqrt{2} d$
 - Better if all adjacent antennas equidistant
 - Simplifies choosing and switching to new antenna
- Hexagon
 - Provides equidistant antennas
 - Radius defined as radius of circum-circle
 - Distance from center to vertex equals length of side
 - Distance between centers of cells radius R is $\sqrt{3}$ R
 - Not always precise hexagons
 - Topographical limitations
 - Local signal propagation conditions
 - Location of antennas

Cellular Geometries

(a) Square pattern

Frequency Reuse

- Power of base transceiver controlled
 - Allow communications within cell on given frequency
 - Limit escaping power to adjacent cells
 - Allow re-use of frequencies in nearby cells
 - Use same frequency for multiple conversations
 - 10 50 frequencies per cell
- *E.g.*
 - -N is the number of cells in a pattern, all using same number of frequencies
 - -K total number of frequencies used in systems
 - Each cell can use *K*/*N* frequencies
 - Advanced Mobile Phone Service (AMPS) K=395, N=7 giving 57 frequencies per cell on average

Characterizing Frequency Reuse

- D = minimum distance between centers of cells that use the same band of frequencies (called co-channels)
- R = radius of a cell
- d = distance between centers of adjacent cells (d = $\sqrt{3}$ R)
- N = number of cells in repetitious pattern
 - Reuse factor
 - Each cell in pattern uses unique band of frequencies
- Hexagonal cell pattern, following values of N possible

- $N = I^2 + J^2 + (I \times J), I, J = 0, 1, 2, 3, ...$

• Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, ...

• D/R=
$$\sqrt{3N}$$

• D/d =
$$\sqrt{N}$$

Frequency Reuse Patterns

- (a) Frequency reuse pattern for N = 4
- (b) Frequency reuse pattern for N = 7

(c) Black cells indicate a frequency reuse for N = 19

Increasing Capacity (1)

- Add new channels
 - -Not all channels used to start with
- Frequency borrowing
 - -Taken from adjacent cells by congested cells
 - -Or assign frequencies dynamically
- Cell splitting
 - -Non-uniform distribution of topography and traffic
 - —Smaller cells in high use areas
 - Original cells 6.5 13 km
 - 1.5 km limit in general
 - More frequent handoff
 - More base stations

Cell Splitting

Increasing Capacity (2)

- Cell Sectoring
 - -Cell divided into wedge shaped sectors
 - -3 6 sectors per cell
 - -Each with own channel set
 - Subsets of cell's channels
 - -Directional antennas
- Microcells
 - Move antennas from tops of hills and large buildings to tops of small buildings and sides of large buildings
 - Even lamp posts
 - —Form microcells
 - -Reduced power
 - Good for city streets, along roads and inside large buildings

Frequency Reuse Example

Assume: 32 cells, cell radius = 1.6 km, frequency bandwidth supports 336 channels, reuse factor N=7.

How many channels per cell? What is total # of concurrent calls?

CS420/520 Axel Krings

Sequence 14

Operation of Cellular Systems

- Base station (BS) at center of each cell
 - Antenna, controller, transceivers
- Controller handles call process
 - Number of mobile units may in use at a time
- BS connected to Mobile Telecommunications Switching Office (MTSO)
 - One MTSO serves multiple BS
 - MTSO to BS link by wire or wireless
- MTSO:
 - Connects calls between mobile units and from mobile to fixed telecommunications network
 - Assigns voice channel
 - Performs handoffs
 - Monitors calls (billing)
- Fully automated

Overview of Cellular System

Channels

- Control channels
 - —Setting up and maintaining calls
 - -Establish relationship between mobile unit and nearest BS
- Traffic channels
 - -Carry voice and data

Typical Call in Single MTSO Area (1)

Mobile unit initialization

- -Scan and select strongest set up control channel
- -Automatically selected BS antenna of cell
 - Usually but not always nearest (propagation anomalies)
- -Handshake to identify user and register location
- -Scan repeated to allow for movement
 - Change of cell
- —Mobile unit monitors for pages (see below)

Typical Call in Single MTSO Area (2)

- Mobile originated call
 - -Check if set up channel is free
 - Monitor forward channel (from BS) and wait for idle
 - -Send number on pre-selected channel
- Paging
 - -MTSO attempts to connect to mobile unit
 - —Paging message sent to BSs depending on called mobile number
 - -Paging signal transmitted on set up channel

Typical Call in Single MTSO Area (3)

- Call accepted
 - —Mobile unit recognizes number on set up channel
 - —Responds to BS which sends response to MTSO
 - —MTSO sets up circuit between calling and called BSs
 - —MTSO selects available traffic channel within cells and notifies BSs
 - -BSs notify mobile unit of channel

Typical Call in Single MTSO Area (4)

Ongoing call

—Voice/data exchanged through respective BSs and MTSO

- Handoff
 - —Mobile unit moves out of range of cell into range of another cell
 - -Traffic channel changes to one assigned to new BS
 - Without interruption of service to user

(a) Monitor for strongest signal

(b) Request for connection

(c) Paging

(d) Call accepted

(f) Handoff

CS420/520 Axel Krings

Other Functions

- Call blocking
 - —During mobile-initiated call stage, if all traffic channels busy, mobile tries again
 - —After number of fails, busy tone returned
- Call termination
 - —User hangs up
 - -MTSO informed
 - -Traffic channels at two BSs released

Other Functions

• Call drop

-BS cannot maintain required signal strength

- —Traffic channel dropped and MTSO informed
- Calls to/from fixed and remote mobile subscriber —MTSO connects to PSTN
 - —MTSO can connect mobile user and fixed subscriber via PSTN
 - —MTSO can connect to remote MTSO via PSTN or via dedicated lines
 - —Can connect mobile user in its area and remote mobile user

Mobile Radio Propagation Effects

- Signal strength
 - Strength of signal between BS and mobile unit strong enough to maintain signal quality at the receiver
 - Not strong enough to create too much co-channel interference
 - Noise varies
 - Automobile ignition noise greater in city than in suburbs
 - Other signal sources vary
 - Signal strength varies as function of distance from BS
 - Signal strength varies dynamically as mobile unit moves
- Fading
 - Even if signal strength in effective range, signal propagation effects may disrupt the signal

Design Factors

- Propagation effects
 - -Dynamic
 - -Hard to predict
- Maximum transmit power level at BS and mobile units
- Typical height of mobile unit antenna
- Available height of the BS antenna
- These factors determine size of individual cell
- Model based on empirical data
- Apply model to given environment to develop guidelines for cell size

Fading

- Time variation of received signal
- Caused by changes in transmission path(s)
 - -E.g. atmospheric conditions (rain)
 - -Movement of (mobile unit) antenna

Multipath Propagation

- Reflection
 - Surface large relative to wavelength of signal
 - May have phase shift from original
 - May cancel out original or increase it
- Diffraction
 - Edge of impenetrable body that is large relative to wavelength
 - May receive signal even if no **line of sight** (LOS) to transmitter
- Scattering
 - Obstacle size on order of wavelength
 - Lamp posts etc.
- If LOS, diffracted and scattered signals not significant
 - Reflected signals may be
- If no LOS, diffraction and scattering are primary means of reception

Reflection, Diffraction, Scattering

Effects of Multipath Propagation

- Signals may cancel out due to phase differences
- Inter-symbol Interference (ISI)
 - —Sending narrow pulse at given frequency between fixed antenna and mobile unit
 - -Channel may deliver <u>multiple copies</u> at different times
 - Delayed pulses act as noise making recovery of bit information difficult
 - —Timing changes as mobile unit moves
 - Harder to design signal processing to filter out multipath effects

Two Pulses in Time-Variant Multipath

Types of Fading

- Fast fading
 - Rapid changes in strength over distances about half wavelength
 - 900MHz wavelength is 0.33m
 - 20-30dB
- Slow fading
 - Slower changes due to user passing different height buildings, gaps in buildings etc.
 - Over longer distances than fast fading
- Flat fading
 - Nonselective
 - Affects all frequencies in same proportion
- Selective fading
 - Different frequency components affected differently

Error Compensation Mechanisms (1)

- Forward error correction
 - —Applicable in digital transmission applications
 - —Typically, ratio of total bits sent to data bits between 2 and 3
 - -Big overhead
 - Capacity one-half or one-third
 - Reflects difficulty of mobile wireless environment

Error Compensation Mechanisms (2)

- Adaptive equalization
 - Applied to transmissions that carry analog or digital information
 - —Used to combat inter-symbol interference
 - -Gathering the dispersed symbol energy back together into its original time interval
 - —Techniques include so-called lumped analog circuits and sophisticated digital signal processing algorithms

Error Compensation Mechanisms (3)

- Diversity
 - Based on fact that individual channels experience independent fading events
 - Provide multiple logical channels between transmitter and receiver
 - Send part of signal over each channel
 - Does not eliminate errors
 - Reduce error rate
 - Equalization, forward error correction then cope with reduced error rate
 - May involve physical transmission path
 - Space diversity
 - Multiple nearby antennas receive message or collocated multiple directional antennas
 - More commonly, diversity refers to frequency or time diversity

Frequency Diversity

- Signal is spread out over a larger frequency bandwidth or carried on multiple frequency carriers
- E.g. spread spectrum

First Generation Analog

- Original cellular telephone networks
- Analog traffic channels
- Early 1980s in North America
- Advanced Mobile Phone Service (AMPS) —AT&T
- Also common in South America, Australia, and China

Spectral Allocation In North America

- Two 25-MHz bands are allocated to AMPS
 - One from BS to mobile unit (869–894 MHz)
 - Other from mobile to base station (824–849 MHz)
- Bands is split in two to encourage competition
 - In each market two operators can be accommodated
- Operator is allocated only 12.5 MHz in each direction
- Channels spaced 30 kHz apart
 - Total of 416 channels per operator
- Twenty-one channels allocated for control
- 395 to carry calls
- Control channels are 10 kbps data channels
- Conversation channels carry analog using frequency modulation
- Control information also sent on conversation channels in bursts as data
- Number of channels inadequate for most major markets
- For AMPS, frequency reuse is exploited

Operation

- AMPS-capable phone has numeric assignment module (NAM) in read-only memory
 - NAM contains number of phone
 - Assigned by service provider
 - Serial number of phone
 - Assigned by the manufacturer
 - When phone turned on, transmits serial number and phone number to MTSO
 - MTSO has database of mobile units reported stolen
 - Uses serial number to lock out stolen units
 - MTSO uses phone number for billing
 - If phone is used in remote city, service is still billed to user's local service provider

Call Sequence

- 1. Subscriber initiates call by keying in number and presses send
- 2. MTSO validates telephone number and checks user authorized to place call
 - Some service providers require a PIN to counter theft
- 3. MTSO issues message to user's phone indicating traffic channels to use
- 4. MTSO sends ringing signal to called party
 - All operations, 2 through 4, occur within 10 s of initiating call
- 5. When called party answers, MTSO establishes circuit and initiates billing information
- 6. When one party hangs up MTSO releases circuit, frees radio channels, and completes billing information

AMPS Control Channels

• 21 full-duplex 30-kHz control channels

—Transmit digital data using FSK

- —Data are transmitted in frames
- Control information can be transmitted over voice channel during conversation
 - -Mobile unit or the base station inserts burst of data
 - Turn off voice FM transmission for about 100 ms
 - Replacing it with an FSK-encoded message
 - —Used to exchange urgent messages
 - Change power level
 - Handoff

Second Generation (CDMA)

- Higher quality signals
- Higher data rates
- Support of digital services
- Greater capacity
- Digital traffic channels
 - Support digital data
 - Voice traffic digitized
 - User traffic (data or digitized voice) converted to analog signal for transmission
- Encryption
 - Simple to encrypt digital traffic
- Error detection and correction
 - (See chapter 6)
 - Very clear voice reception
- Channel access
 - Channel dynamically shared by users via Time division multiple access
 - (TDMA) or code division multiple access (CDMA)

CS420/520 Axel Krings

Code Division Multiple Access

- Each cell allocated frequency bandwidth
 - —Split in two
 - Half for reverse, half for forward
 - Direct-sequence spread spectrum (DSSS)

Code Division Multiple Access Advantages

- Frequency diversity
 - Frequency-dependent transmission impairments (noise bursts, selective fading) have less effect
- Multipath resistance
 - DSSS overcomes multipath fading by frequency diversity
 - Also, chipping codes used only exhibit low cross correlation and low autocorrelation
 - Version of signal delayed more than one chip interval does not interfere with the dominant signal as much
 - chips per second (number of bits per second)
- Privacy
 - From spread spectrum
- Graceful degradation
 - With FDMA or TDMA, fixed number of users can access system simultaneously
 - With CDMA, as more users access the system simultaneously, noise level and hence error rate increases
 - Gradually system degrades

Code Division Multiple Access

• Self-jamming

- Unless all mobile users are perfectly synchronized, arriving transmissions from multiple users will not be perfectly aligned on chip boundaries
- Spreading sequences of different users not orthogonal
- Some cross correlation
- Distinct from either TDMA or FDMA
 - In which, for reasonable time or frequency guardbands, respectively, received signals are orthogonal or nearly so
- Near-far problem
 - Signals closer to receiver are received with less attenuation than signals farther away
 - Given lack of complete orthogonality, transmissions from more remote mobile units may be more difficult to recover

RAKE Receiver

- If multiple versions of signal arrive more than one chip interval apart, receiver can recover signal by correlating chip sequence with dominant incoming signal
 - Remaining signals treated as noise
- Better performance if receiver attempts to recover signals from multiple paths and combine them, with suitable delays
- Original binary signal is spread by XOR operation with chipping code
- Spread sequence modulated for transmission over wireless channel
- Multipath effects generate multiple copies of signal
 - Each with a different amount of time delay (τ 1, τ 2, etc.)
 - Each with a different attenuation factors (a1, a2, etc.)
 - Receiver demodulates combined signal
 - Demodulated chip stream fed into multiple correlators, each delayed by different amount
 - Signals combined using weighting factors estimated from the channel

Principle of RAKE Receiver

IS-95

- Second generation CDMA scheme
- Primarily deployed in North America
- Transmission structures different on forward and reverse links

IS-95 Channel Structure

IS-95 Forward Link (1)

- Up to 64 logical CDMA channels each occupying the same 1228-kHz bandwidth
- Four types of channels:
 - —Pilot (channel 0)
 - Continuous signal on a single channel
 - Allows mobile unit to acquire timing information
 - Provides phase reference for demodulation process
 - Provides signal strength comparison for handoff determination
 - Consists of all zeros
 - —Synchronization (channel 32)
 - 1200-bps channel used by mobile station to obtain identification information about the cellular system
 - System time, long code state, protocol revision, etc.

IS-95 Forward Link (2)

- -Paging (channels 1 to 7)
 - Contain messages for one or more mobile stations
- -Traffic (channels 8 to 31 and 33 to 63)
 - 55 traffic channels
 - Original specification supported data rates of up to 9600 bps
 - Revision added rates up to 14,400 bps
- -All channels use same bandwidth
 - Chipping code distinguishes among channels
 - Chipping codes are the 64 orthogonal 64-bit codes derived from 64 \times 64 Walsh matrix

Forward Link Processing

- Voice traffic encoded at 8550 bps
- Additional bits added for error detection
 - Rate now 9600 bps
- Full capacity not used when user not speaking
- Quiet period data rate as low as 1200 bps
- 2400 bps rate used to transmit transients in background noise
- 4800 bps rate to mix digitized speech and signaling data
- Data transmitted in 20 ms blocks
- Forward error correction
 - Convolutional encoder with rate ¹/₂
 - Doubling effective data rate to 19.2 kbps
 - For lower data rates encoder output bits (called code symbols) replicated to yield 19.2-kbps
- Data interleaved in blocks to reduce effects of errors by spreading them

Scrambling

- After interleaver, data scrambled
- Privacy mask
- Prevent sending of repetitive patterns
 - Reduces probability of users sending at peak power at same time
- Scrambling done by long code
 - Pseudorandom number generated from 42-bit-long shift register
 - Shift register initialized with user's electronic serial number
 - Output of long code generator is at a rate of 1.2288 Mbps
 - 64 times 19.2 kbps
 - One bit in 64 selected (by the decimator function)
 - Resulting stream XORed with output of block interleaver

Power Control

- Next step inserts power control information in traffic channel
 - —To control the power output of antenna
 - —Robs traffic channel of bits at rate of 800 bps by stealing code bits
 - —800-bps channel carries information directing mobile unit to change output level
 - —Power control stream multiplexed into 19.2 kbps
 - Replace some code bits, using long code generator to encode bits

DSSS

- Direct-Sequence Spread Spectrum
- Spreads 19.2 kbps to 1.2288 Mbps
- Using one row of Walsh matrix
 - -Assigned to mobile station during call setup
 - —If 0 presented to XOR, 64 bits of assigned row sent
 - —If 1 presented, bitwise XOR of row sent
- Final bit rate 1.2288 Mbps
- Bit stream modulated onto carrier using QPSK
 - —Data split into I and Q (in-phase and quadrature) channels
 - —Data in each channel XORed with unique short code
 - Pseudorandom numbers from 15-bit-long shift register

Reverse Link

- Up to 94 logical CDMA channels
 - —Each occupying same 1228-kHz bandwidth
 - —Supports up to 32 access channels and 62 traffic channels
- Traffic channels mobile unique
 - Each station has unique long code mask based on serial number
 - 42-bit number, 2⁴² 1 different masks
 - Access channel used by mobile to initiate call, respond to paging channel message, and for location update

Reverse Link Processing and Spreading

- First steps same as forward channel
 - Convolutional encoder rate 1/3
 - Tripling effective data rate to max. 28.8 kbps
 - Data block interleaved
- Spreading using Walsh matrix
 - Use and purpose different from forward channel
 - Data from block interleaver grouped in units of 6 bits
 - Each 6-bit unit serves as index to select row of matrix $(2^6 = 64)$
 - Row is substituted for input
 - Data rate expanded by factor of 64/6 to 307.2 kbps
 - Done to improve reception at BS
 - Because possible codings orthogonal, block coding enhances decisionmaking algorithm at receiver
 - Also computationally efficient
 - Walsh modulation form of block error-correcting code
 - (n, k) = (64, 6) and d_{min} = 32
 - In fact, all distances 32

Data Burst Randomizer

- Reduce interference from other mobile stations
- Using long code mask to smooth data out over 20 ms frame

DSSS

- Long code unique to mobile XORed with output of randomizer
- 1.2288-Mbps final data stream
- Modulated using orthogonal QPSK modulation scheme
- Differs from forward channel in use of delay element in modulator to produce orthogonality
 - -Forward channel, spreading codes orthogonal
 - Coming from Walsh matrix
 - Reverse channel orthogonality of spreading codes not guaranteed

Third Generation Systems

- Objective to provide fairly high-speed wireless communications to support multimedia, data, and video in addition to voice
- ITU's International Mobile Telecommunications for the year 2000 (IMT-2000) initiative defined ITU's view of third-generation capabilities as:
 - Voice quality comparable to PSTN
 - 144 kbps available to users in vehicles over large areas
 - 384 kbps available to pedestrians over small areas
 - Support for 2.048 Mbps for office use
 - Symmetrical and asymmetrical data rates
 - Support for packet-switched and circuit-switched services
 - Adaptive interface to Internet
 - More efficient use of available spectrum
 - Support for variety of mobile equipment
 - Flexibility to allow introduction of new services and technologies

Driving Forces

- Trend toward universal personal telecommunications
 - Ability of person to identify himself and use any communication system in globally, in terms of single account
- Universal communications access
 - Using one's terminal in a wide variety of environments to connect to information services
 - e.g. portable terminal that will work in office, street, and planes equally well
- GSM cellular telephony with subscriber identity module, is step towards goals
- Personal communications services (PCSs) and personal communication networks (PCNs) also form objectives for thirdgeneration wireless
- Technology is digital using time division multiple access or codedivision multiple access
- PCS handsets low power, small and light

Alternative Interfaces (1)

- IMT-2000 specification covers set of radio interfaces for optimized performance in different radio environments
- Five alternatives to enable smooth evolution from existing systems
- Alternatives reflect evolution from second generation
- Two specifications grow out of work at European Telecommunications Standards Institute (ETSI)
 - Develop a UMTS (universal mobile telecommunications system) as Europe's 3G wireless standard
 - Includes two standards
 - Wideband CDMA, or W-CDMA
 - Fully exploits CDMA technology
 - Provides high data rates with efficient use of bandwidth
 - IMT-TC, or TD-CDMA
 - Combination of W-CDMA and TDMA technology
 - Intended to provide upgrade path for TDMA-based GSM systems

CS420/520 Axel Krings

Sequence 14

Alternative Interfaces (2)

- CDMA2000
 - -North American origin
 - —Similar to, but incompatible with, W-CDMA
 - W-DCMA = Wideband Code Division Multiple Access
 - In part because standards use different chip rates
 - Also, cdma2000 uses multicarrier, not used with W-CDMA
- IMT-SC designed for TDMA-only networks
- IMT-FC can be used by both TDMA and FDMA carriers
 - —To provide some 3G services
 - -Outgrowth of Digital European Cordless Telecommunications (DECT) standard

IMT-2000 Terrestrial Radio Interfaces

source: wikipedia

ITU IMT-2000	common name(s)		bandwidth of data	pre-4G	duplex	channel	description	geographical areas
TDMA Single-Carrier (IMT-SC)	EDGE (UWT-136)		EDGE Evolution	none	FDD	TDMA	evolutionary upgrade to GSM/GPRS ^[nb 1]	worldwide, except Japan and South Korea
CDMA Multi-Carrier (IMT-MC)	CDMA2000		EV-DO	UMB ^[nb 2]			evolutionary upgrade to cdmaOne (IS-95)	Americas, Asia, some others
CDMA Direct Spread (IMT-DS)	UMTS ^[nb 3]	W-CDMA ^[nb 4]	HSPA	LTE		CDMA	family of revolutionary standards.	worldwide
CDMA TDD (IMT-TC)		TD-CDMA ^[nb 5]						Europe
		TD-SCDMA ^[nb 6]						China
FDMA/TDMA (IMT-FT)	DECT		none		TDD	FDMA/TDMA	short-range; standard for cordless phones	Europe, USA
IP-OFDMA			WiMAX (IEEE 802.16)			OFDMA		worldwide

Overview of 3G/IMT-2000 standards^[4]

1. ^ Can also be used as an upgrade to PDC or D-AMPS.

- 2. A development halted in favour of LTE.^[5]
- 3. A also known as FOMA^[6]; UMTS is the common name for a standard that encompasses multiple air interfaces.
- 4. A also known as UTRA-FDD; W-CDMA is sometimes used as a synonym for UMTS, ignoring the other air interface options.^[6]
- 5. A also known as UTRA-TDD 3.84 Mcps high chip rate (HCR)
- 6. A also known as UTRA-TDD 1.28 Mcps low chip rate (LCR)

While EDGE fulfills the 3G specifications, most GSM/UMTS phones report EDGE ("2.75G") and UMTS ("3G") network availability as separate functionality.

CDMA Design Considerations – Bandwidth and Chip Rate

- Dominant technology for 3G systems is CDMA
 - Three different CDMA schemes have been adopted
 - Share some common design issues
- Bandwidth
 - Limit channel usage to 5 MHz
 - Higher bandwidth improves the receiver's ability to resolve multipath
 - But available spectrum is limited by competing needs
 - 5 MHz reasonable upper limit on what can be allocated for 3G
 - 5 MHz is enough for data rates of 144 and 384 kHz
- Chip rate
 - Given bandwidth, chip rate depends on desired data rate, need for error control, and bandwidth limitations
 - Chip rate of 3 Mcps or more reasonable

CDMA Design Considerations – Multirate

- Provision of multiple fixed-data-rate logical channels to a given user
- Different data rates provided on different logical channels
- Traffic on each logical channel can be switched independently through wireless fixed networks to different destinations
- Flexibly support multiple simultaneous applications from user
- Efficiently use available capacity by only providing the capacity required for each service
- Achieved with TDMA scheme within single CDMA channel
 - Different number of slots per frame assigned for different data rates
 - Subchannels at a given data rate protected by error correction and interleaving techniques
- Alternative: use multiple CDMA codes
 - Separate coding and interleaving
 - Map them to separate CDMA channels

Time and Code Multiplexing

Summary

- principles of wireless cellular networks
- operation of wireless cellular networks
- first-generation analog
- second-generation CDMA
- third-generation systems