Congestion in Data Networks
Congestion in Data Networks

- What is Congestion?
 - Congestion occurs when the number of packets being transmitted through the network approaches the packet handling capacity of the network
 - Congestion control aims to keep number of packets below level at which performance falls off dramatically
 - Data network is a network of queues
 - Generally 80% utilization is critical
 - Finite queues mean data may be lost
Queues at a Node

Diagram showing a node with queues connected to other nodes and subscribers.
Effects of Congestion

- Packets arriving are stored at input buffers
- Routing decision made
- Packet moves to output buffer
- Packets queued for output transmitted as fast as possible
 - this is, in effect, statistical time division multiplexing
- If packets arrive too fast to be routed, or to be output, buffers will fill
- Can discard packets
- Can use flow control
 - Can propagate congestion through network
Interaction of Queues
Ideal Network Utilization

\[\text{power} = \frac{\text{throughput}}{\text{delay}} \]
Practical Performance

• Ideal
 — assumes infinite buffers and no overhead

• Realistic
 — buffers are finite
 — overheads occur in exchanging congestion control messages
Effects of Congestion - No Control

Note:
at point B, as queues become full and packets are dropped, retransmitted packets worsen the situation…

![Graph showing the effects of congestion with point A and B, indicating no congestion, moderate congestion, and severe congestion.]
Mechanisms for Congestion Control

- Implicit (delay, discard)
- Policing
- Explicit (binary, credit, rate)
- Choke packet
- Backpressure
- Source
- Destination
Backpressure

- If node becomes congested it can slow down or halt flow of packets from other nodes
- May mean that other nodes have to apply control on incoming packet rates
- Propagates back to source
- Can restrict to logical connections generating most traffic
- Used in connection oriented that allow hop by hop congestion control (e.g. X.25)
- Not used in ATM nor frame relay
- Only recently developed for IP
Choke Packet

- Control packet
 - Generated at congested node
 - Sent to source node
 - e.g. ICMP Source Quench packet
 - From router or destination
 - Source cuts back until no more source quench messages are received
 - Sent for every discarded packet, or anticipated

- Rather crude mechanism
Implicit Congestion Signaling

- Transmission delay may increase with congestion
- Packet may be discarded
- Source can detect these as implicit indications of congestion
- Useful on connectionless (datagram) networks
 - e.g. IP based
 - (TCP includes congestion & flow control is coming up later)
- Used in frame relay LAPF
 - recall LAPF:
 - link access procedure for frame mode bearer service
Explicit Congestion Signaling

- Network alerts end systems of increasing congestion
- End systems take steps to reduce offered load
- Can work in one of two directions:
 - Backward
 - Notifies the source that congestion avoidance procedures should be initiated
 - Congestion avoidance in opposite direction to packet flow required.
 - Forward
 - Notify user that congestion avoidance procedures should be initiated
 - Congestion avoidance in same direction as packet required.
Categories of Explicit Signaling

- **Binary**
 - A bit set in a packet indicates congestion

- **Credit based**
 - Indicates how many packets source may send
 - Common for end-to-end flow control

- **Rate based**
 - Supply explicit data rate limit
 - e.g. ATM
Traffic Management

• Fairness
 — provide equal treatment of various flows

• Quality of service (QoS)
 — May want different treatment for different connections

• Reservations
 — e.g. ATM
 — Traffic contract between user and network
Congestion Control in Packet Switched Networks

- Send control packet to some or all source nodes
 - Requires additional traffic during congestion
- Rely on routing information
 - May react too quickly
- End-to-end probe packets
 - Adds to overhead
- Add congestion info to packets as they cross nodes
 - Either backwards or forwards
Frame Relay Congestion Control

- I.370 objectives for frame relay congestion control:
 - Minimize discards
 - Maintain agreed QoS
 - Minimize probability of one end user monopoly
 - Simple to implement
 - Little overhead on network or user
 - Create minimal additional traffic
 - Distribute resources fairly
 - Limit spread of congestion
 - Operate effectively regardless of traffic flow
 - Minimum impact on other systems
 - Minimize variance in QoS
Techniques

- Discard strategy
- Congestion avoidance
- Explicit signaling
- Congestion recovery
- Implicit signaling mechanism
Traffic Rate Management

- Must discard frames to cope with congestion
 - Arbitrarily, no regard for source
 - No reward for restraint so end systems transmit as fast as possible
 - Committed information rate (CIR)
 - Data in excess of this liable to discard
 - Not guaranteed
 - Aggregate CIR should not exceed physical data rate

- Committed burst size B_c
- Excess burst size B_e
Operation of CIR
Relationship Among Congestion Parameters

DE bit (Discard Eligibility)
used in the LAPF frame to discriminate
CIR: committed information rate

\[B_c = \text{committed burst size} \]
\[B_e = \text{excess burst size, i.e. the max excess of } B_c \text{ that the system will attempt to transfer} \]
Explicit Signaling

- Network alerts end systems of growing congestion
- Backward explicit congestion notification
- Forward explicit congestion notification
- Frame handler monitors its queues
- May notify some or all logical connections
- User response
 - Reduce rate
ATM Traffic Management

- High speed, small cell size, limited overhead bits
- Requirements
 - Majority of traffic not amenable to flow control
 - Feedback slow due to reduced transmission time compared with propagation delay
 - Wide range of application demands
 - Different traffic patterns,
 - e.g. constant vs. variable bit rate
 - Different network services
 - e.g. video, sound, file transfer
 - High speed switching and transmission increases volatility
Latency/Speed Effects

- Consider ATM 150Mbps
 - How long does it take to send single frame?
 - \((53 \times 8 \text{ bits})/(150 \times 10^6 \text{ bps}) \approx 2.8 \times 10^{-6} \text{ seconds to insert single cell}\)

- Time to traverse network depends on propagation delay, switching delay
 - Assume propagation at two-thirds speed of light
 - If source and destination on opposite sides of USA, round-trip propagation time \(\approx 48 \times 10^{-3} \text{ seconds}\)
 - Given implicit congestion control, by the time dropped cell notification has reached source, \(7.2 \times 10^6 \text{ bits have been transmitted}\)
 - So, this is not a good strategy for ATM
Cell Delay Variation

- For ATM voice/video, data is a stream of cells
- Delay across network must be short
- Rate of delivery must be constant
- There will always be some variation in transit
- Delay cell delivery to application so that constant bit rate can be maintained to application

- $D(i)$ represents end-to-end delay experienced by the i'th cell
- $V(i)$ additional time that target user delays the i’th cell
Time Re-assembly of CBR Cells

CBR: constant bit rate

\[d = \text{cell insertion time} \]

\[t_0 \quad t_1 \quad t_2 \quad t_3 \quad t_4 \]

\[D(0) \quad V(0) \]

\[D(1) \quad V(1) \]

\[D(2) \quad V(2) \]

\[D(3) \quad V(4) \]

\[\text{slope} = \frac{R \text{ cells/sec}}{1/d} \]

cell arrives late; discarded
Network Contribution to Cell Delay Variation

- Packet switched networks
 - Queuing delays
 - Routing decision time
- Frame relay
 - As above but to lesser extent
- ATM
 - Less than frame relay
 - ATM protocol designed to minimize processing overheads at switches
 - ATM switches have very high throughput
 - Only noticeable delay is from congestion
 - Must not accept load that causes congestion
Cell Delay Variation

- Application produces data at fixed rate
- Processing at three layers of ATM causes delay
 - Interleaving cells from different connections
 - Operation and maintenance cell interleaving
 - If using synchronous digital hierarchy frames, these are inserted at physical layer
 - Can not predict these delays
Origins of Cell Delay Variation

48 octets, X Mbps
(Connection A, X Mbps)

48 octets, Y Mbps
(Connection B, Y Mbps)

AAL

ATM Layer

ATM layer SAP

Physical layer SAP

Physical Layer

Physical layer overhead
Traffic and Congestion Control Framework

- ATM layer traffic and congestion control should support QoS classes for all foreseeable network services
- Should not rely on AAL protocols that are network specific, nor higher level application specific protocols
- Should minimize network and end to end system complexity
Timings Considered

- Congestion control functions time intervals
 - Cell insertion time
 - react immediately to cells as they are transmitted
 - Round trip propagation time
 - responds within life-time of a cell in the network
 - Connection duration
 - determine whether a new connection at a given QoS can be accommodated
 - agree on performance levels will be agreed to
 - Long term
 - affect more than one ATM connection
 - established for long-term use
Traffic Management and Congestion Control Techniques

- Resource management using virtual paths
- Connection admission control
- Usage parameter control
- Selective cell discard
- Traffic shaping
Resource Management Using Virtual Paths

- Separate traffic flow according to service characteristics
- User to user application
- User to network application
- Network to network application

- Concern with:
 - Cell loss ratio
 - Cell transfer delay
 - Cell delay variation
Configuration of VCCs and VPCs

VC-Sw

VPC b

VPC c

VPC a

VPC = Virtual path connection
VCC = Virtual channel connection
VP-Sw = Virtual path switching function
VC-Sw = Virtual channel switching function
Allocating VCCs within VPC

- All VCCs within VPC should experience similar network performance
- Options for allocation:
 - Aggregate peak demand
 - Statistical multiplexing
Connection Admission Control

- First line of defense
- User specifies traffic characteristics for new connection (VCC or VPC) by selecting a QoS
- Network accepts connection only if it can meet the demand
- Traffic contract
 - Peak cell rate
 - Cell delay variation
 - Sustainable cell rate
 - Burst tolerance
Usage Parameter Control

- Monitor connection to ensure traffic conforms to contract
- Protection of network resources from overload by one connection
- Done on VCC and VPC
- Peak cell rate and cell delay variation
- Sustainable cell rate and burst tolerance
- Discard cells that do not conform to traffic contract
- Called traffic policing
Traffic Shaping

- Smooth out traffic flow and reduce cell clumping
- Token bucket
Token Bucket for Traffic Shaping
GFR Traffic Management

- GFR: *Guaranteed Frame Rate* is as simple as *unspecified bit rate* (UBR) from end system viewpoint
- Places modest requirements on ATM network elements
- End system does no policing or shaping of traffic
- May transmit at line rate of ATM adaptor
- No guarantee of delivery
 - Higher layer (e.g. TCP) must do congestion control
- User can reserve capacity for each VC
 - Assures application may transmit at minimum rate without losses
 - If no congestion, higher rates maybe used
Frame Recognition

- GFR recognizes frames as well as cells
- When congested, network discards whole frame rather than individual cells
- All cells of a frame have same CLP bit setting
- CLP=1 AAL5 frames are lower priority
 - Best efforts
- CLP=0 frames minimum guaranteed capacity
GFR Contract Parameters

- Peak cell rate (PCR)
- Minimum cell rate (MCR)
- Maximum burst size (MBS)
- Maximum frame size (MFS)
- Cell delay variation tolerance (CDVT)
Mechanisms for Supporting Rate Guarantees (1)

• Tagging and policing
 — Discriminate between frames that conform to contract and those that don’t
 — Set CLP=1 on all cells in frame if not
 • Gives lower priority
 — Maybe done by network or source
 — Network may discard CLP=1 cells
 • Policing

• Buffer management
 — Treatment of buffered cells
 — Congestion indicated by high buffer occupancy
 — Discard tagged cells
 • Including ones already in buffer to make room
 — To be fair, per VC buffering
 — Cell discard based on queue-specific thresholds
Mechanisms for Supporting Rate Guarantees (2)

- Scheduling
 - Give preferential treatment to untagged cells
 - Separate queues for each VC
 - Make per-VC scheduling decisions
 - Enables control of outgoing rate of VCs
 - VCs get fair capacity allocation
 - Still meet contract
Components of GFR System

- **UPC**: Service conformance mechanism
- **F-GCRA**: QoS eligibility test mechanism
- **Buffer Management**: Frame forwarding mechanism
- **Scheduler**
Conformance Definition

- **UPC**
 - Monitors each active VC
 - Ensure traffic conforms to contract
 - Tag or discard nonconforming cells
 - Frame conforms if all cells conform
 - Cell conforms if:
 - Rate of cells within contract
 - All cells in frame have same CLP
 - Frame satisfies MFS parameter (check for last cell in frame or cell count < MFS)
QoS Eligibility Test

- Two stage filtering process
 - Frame tested for conformance to contract
 - If not, may discard
 - If not discarded, tag
 - Sets upper bound
 - Penalize cells above upper bound
 - Implementations expected to attempt delivery of tagged cells
 - Determine frames eligible for QoS guarantees
 - Under GFR contract for VC
 - Lower bound on traffic
 - Frames making up traffic flow below threshold are eligible
GFR VC Frame Categories

- Nonconforming frame
 - Cells of this frame will be tagged or discarded
- Conforming but ineligible frames
 - Cells will receive a best-effort service
- Conforming and eligible frames
 - Cells will receive a guarantee of delivery
Summary

congestion effects
 ideal and practical performance
congestion control
 backpressure, choke packet, implicit/explicit
traffic management
 fairness, QoS, reservations
ATM traffic management
ATM-GFR traffic management
 tagging, policing, buffer, scheduling
QoS eligibility testing