Congestion in Data Networks

Congestion in Data Networks

- What is Congestion?
 - —Congestion occurs when the number of packets being transmitted through the network approaches the packet handling capacity of the network
 - -Congestion control aims to keep number of packets below level at which performance falls off dramatically
 - —Data network is a network of queues
 - -Generally 80% utilization is critical
 - -Finite queues mean data may be lost

Queues at a Node

Effects of Congestion

- Packets arriving are stored at input buffers
- Routing decision made
- Packet moves to output buffer
- Packets queued for output transmitted as fast as possible
 - this is, in effect, statistical time division multiplexing
- If packets arrive too fast to be routed, or to be output, buffers will fill
- Can discard packets
- Can use flow control
 - Can propagate congestion through network

Interaction of Queues

Ideal Network Utilization

$$power = \frac{throughput}{delay}$$

CS420/520 Axel Krings

Practical Performance

• Ideal

—assumes infinite buffers and no overhead

Realistic

- -buffers are finite
- overheads occur in exchanging congestion control messages

Effects of Congestion -No Control

Normalized Throughput

Delay

Note:

at point B, as queues become full and packets are dropped, retransmitted packets worsen the situation...

Mechanisms for Congestion Control

Backpressure

- If node becomes congested it can slow down or halt flow of packets from other nodes
- May mean that other nodes have to apply control on incoming packet rates
- Propagates back to source
- Can restrict to logical connections generating most traffic
- Used in connection oriented that allow hop by hop congestion control (e.g. X.25)
- Not used in ATM nor frame relay
- Only recently developed for IP

Choke Packet

- Control packet
 - -Generated at congested node
 - -Sent to source node
 - -e.g. ICMP Source Quench packet
 - From router or destination
 - Source cuts back until no more source quench messages are received
 - Sent for every discarded packet, or anticipated
- Rather crude mechanism

Implicit Congestion Signaling

- Transmission delay may increase with congestion
- Packet may be discarded
- Source can detect these as implicit indications of congestion
- Useful on connectionless (datagram) networks
 - -e.g. IP based
 - (TCP includes congestion & flow control is coming up later)
- Used in frame relay LAPF
 - recall LAPF:

link access procedure for frame mode bearer service

Explicit Congestion Signaling

- Network alerts end systems of increasing congestion
- End systems take steps to reduce offered load
- Can work in one of two directions:
 - -Backward
 - Notifies the source that congestion avoidance procedures should be initiated
 - Congestion avoidance in opposite direction to packet flow required.
 - —Forward
 - Notify user that congestion avoidance procedures should be initiated
 - Congestion avoidance in same direction as packet required

Categories of Explicit Signaling

- Binary
 - —A bit set in a packet indicates congestion
- Credit based
 - -Indicates how many packets source may send
 - -Common for end-to-end flow control
- Rate based
 - —Supply explicit data rate limit
 - —e.g. ATM

Traffic Management

- Fairness
 - -provide equal treatment of various flows
- Quality of service (QoS)
 - May want different treatment for different connections
- Reservations
 - —e.g. ATM
 - —Traffic contract between user and network

Congestion Control in Packet Switched Networks

- Send control packet to some or all source nodes
 —Requires additional traffic during congestion
- Rely on routing information
 - -May react too quickly
- End-to-end probe packets
 - -Adds to overhead
- Add congestion info to packets as they cross nodes
 - -Either backwards or forwards

Frame Relay Congestion Control

- I.370 objectives for frame relay congestion control:
 - Minimize discards
 - Maintain agreed QoS
 - Minimize probability of one end user monopoly
 - Simple to implement
 - Little overhead on network or user
 - Create minimal additional traffic
 - Distribute resources fairly
 - Limit spread of congestion
 - Operate effectively regardless of traffic flow
 - Minimum impact on other systems
 - Minimize variance in QoS

Techniques

- Discard strategy
- Congestion avoidance
- Explicit signaling
- Congestion recovery
- Implicit signaling mechanism

Traffic Rate Management

- Must discard frames to cope with congestion
 - —Arbitrarily, no regard for source
 - No reward for restraint so end systems transmit as fast as possible
 - -Committed information rate (CIR)
 - Data in excess of this liable to discard
 - Not guaranteed
 - Aggregate CIR should not exceed physical data rate
- Committed burst size B_c
- Excess burst size B_e

Operation of CIR

Explicit Signaling

- Network alerts end systems of growing congestion
- Backward explicit congestion notification
- Forward explicit congestion notification
- Frame handler monitors its queues
- May notify some or all logical connections
- User response

-Reduce rate

ATM Traffic Management

- High speed, small cell size, limited overhead bits
- Requirements
 - -Majority of traffic not amenable to flow control
 - -Feedback slow due to reduced transmission time compared with propagation delay
 - —Wide range of application demands
 - -Different traffic patterns,
 - e.g. constant vs. variable bit rate
 - Different network services
 - e.g. video, sound, file transfer
 - High speed switching and transmission increases volatility

Latency/Speed Effects

- Consider ATM 150Mbps
 - How long does it take to send single frame?
 - (53 x 8 bits)/(150 x 10⁶ bps) ~2.8 x 10⁻⁶ seconds to insert single cell
- Time to traverse network depends on propagation delay, switching delay
 - Assume propagation at two-thirds speed of light
 - If source and destination on opposite sides of USA, round-trip propagation time $\sim 48 \times 10^{-3}$ seconds
 - Given implicit congestion control, by the time dropped cell notification has reached source, 7.2x10⁶ bits have been transmitted
 - So, this is not a good strategy for ATM

Cell Delay Variation

- For ATM voice/video, data is a stream of cells
- Delay across network must be short
- Rate of delivery must be constant
- There will always be some variation in transit
- Delay cell delivery to application so that constant bit rate can be maintained to application
- D(i) represents end-to-end delay experienced by the i' th cell
- V(i) additional time that target user delays the i'th cell

Time Re-assembly of CBR Cells

Successive cells

Network Contribution to Cell Delay Variation

- Packet switched networks
 - -Queuing delays
 - Routing decision time
- Frame relay
 - As above but to lesser extent
- ATM
 - Less than frame relay
 - ATM protocol designed to minimize processing overheads at switches
 - ATM switches have very high throughput
 - Only noticeable delay is from congestion
 - Must not accept load that causes congestion

Cell Delay Variation

- Application produces data at fixed rate
- Processing at three layers of ATM causes delay
 - —Interleaving cells from different connections
 - —Operation and maintenance cell interleaving
 - —If using synchronous digital hierarchy frames, these are inserted at physical layer

-Can not predict these delays

Origins of Cell Delay Variation

Traffic and Congestion Control Framework

- ATM layer traffic and congestion control should support QoS classes for all foreseeable network services
- Should not rely on AAL protocols that are network specific, nor higher level application specific protocols
- Should minimize network and end to end system complexity

Timings Considered

- Congestion control functions time intervals
 - Cell insertion time
 - react immediately to cells as they are transmitted
 - Round trip propagation time
 - responds within life-time of a cell in the network
 - Connection duration
 - determine whether a new connection at a given QoS can be accommodated
 - agree on performance levels will be agreed to
 - Long term
 - affect more than one ATM connection
 - established for long-term use

Traffic Management and Congestion Control Techniques

- Resource management using virtual paths
- Connection admission control
- Usage parameter control
- Selective cell discard
- Traffic shaping

Resource Management Using Virtual Paths

- Separate traffic flow according to service characteristics
- User to user application
- User to network application
- Network to network application
- Concern with:
 - -Cell loss ratio
 - -Cell transfer delay
 - -Cell delay variation

Configuration of VCCs and VPCs

VPC=Virtual path connectionVCC=Virtual channel connectionVP-Sw=Virtual path switching functionCS420/520 Axel KMiGgSw=Virtual channel switching function

Sequence 13

Allocating VCCs within VPC

- All VCCs within VPC should experience similar network performance
- Options for allocation:
 - -Aggregate peak demand
 - -Statistical multiplexing

Connection Admission Control

- First line of defense
- User specifies traffic characteristics for new connection (VCC or VPC) by selecting a QoS
- Network accepts connection only if it can meet the demand
- Traffic contract
 - -Peak cell rate
 - -Cell delay variation
 - -Sustainable cell rate
 - -Burst tolerance

Usage Parameter Control

- Monitor connection to ensure traffic conforms to contract
- Protection of network resources from overload by one connection
- Done on VCC and VPC
- Peak cell rate and cell delay variation
- Sustainable cell rate and burst tolerance
- Discard cells that do not conform to traffic contract
- Called traffic policing

Traffic Shaping

- Smooth out traffic flow and reduce cell clumping
- Token bucket

Token Bucket for Traffic Shaping

GFR Traffic Management

- GFR: *Guaranteed Frame Rate* is as simple as *unspecified bit rate* (UBR) from end system viewpoint
- Places modest requirements on ATM network elements
- End system does no policing or shaping of traffic
- May transmit at line rate of ATM adaptor
- No guarantee of delivery
 - Higher layer (e.g. TCP) must do congestion control
- User can reserve capacity for each VC
 - Assures application may transmit at minimum rate without losses
 - If no congestion, higher rates maybe used

Frame Recognition

- GFR recognizes frames as well as cells
- When congested, network discards whole frame rather than individual cells
- All cells of a frame have same CLP bit setting
- CLP=1 AAL5 frames are lower priority
 Best efforts
- CLP=0 frames minimum guaranteed capacity

GFR Contract Parameters

- Peak cell rate (PCR)
- Minimum cell rate (MCR)
- Maximum burst size (MBS)
- Maximum frame size (MFS)
- Cell delay variation tolerance (CDVT)

Mechanisms for Supporting Rate Guarantees (1)

- Tagging and policing
 - Discriminate between frames that conform to contract and those that don't
 - Set CLP=1 on all cells in frame if not
 - Gives lower priority
 - Maybe done by network or source
 - Network may discard CLP=1 cells
 - Policing
- Buffer management
 - Treatment of buffered cells
 - Congestion indicated by high buffer occupancy
 - Discard tagged cells
 - Including ones already in buffer to make room
 - To be fair, per VC buffering
 - Cell discard based on queue-specific thresholds

Mechanisms for Supporting Rate Guarantees (2)

- Scheduling
 - —Give preferential treatment to untagged cells
 - —Separate queues for each VC
 - —Make per-VC scheduling decisions
 - -Enables control of outgoing rate of VCs

 - -Still meet contract

Components of GFR System

Conformance Definition

• UPC

- -Monitors each active VC
- -Ensure traffic conforms to contract
- —Tag or discard nonconforming cells
- -Frame conforms if all cells conform
- —Cell conforms if:
 - Rate of cells within contract
 - All cells in frame have same CLP
 - Frame satisfies MFS parameter (check for last cell in frame or cell count < MFS)

QoS Eligibility Test

- Two stage filtering process
 - -Frame tested for conformance to contract
 - If not, may discard
 - If not discarded, tag
 - Sets upper bound
 - Penalize cells above upper bound
 - Implementations expected to attempt delivery of tagged cells
 - —Determine frames eligible for QoS guarantees
 - Under GFR contract for VC
 - Lower bound on traffic
 - Frames making up traffic flow below threshold are eligible

GFR VC Frame Categories

- Nonconforming frame
 - -Cells of this frame will be tagged or discarded
- Conforming but ineligible frames
 - -Cells will receive a best-effort service
- Conforming and eligible frames
 - -Cells will receive a guarantee of delivery

Summary

congestion effects ideal and practical performance congestion control backpressure, choke packet, implicit/explicit traffic management fairness, QoS, reservations ATM traffic management **ATM-GFR** traffic management tagging, policing, buffer, scheduling QoS eligibility testing