Routing in Switched Networks
Routing in Circuit Switched Network

- Many connections will need paths through more than one switch
- Need to find a route
 - Efficiency
 - Resilience
- Public telephone switches are a tree structure
 - Static routing uses the same approach all the time
- Dynamic routing allows for changes in routing depending on traffic
 - Uses a peer structure for nodes
Alternate Routing

• Different scenarios
 — Possible routes between end offices predefined
 — Originating switch selects appropriate route
 — Routes listed in preference order
 — Different sets of routes may be used at different times
Alternate Routing Diagram

Route a: $X \rightarrow Y$
Route b: $X \rightarrow J \rightarrow Y$
Route c: $X \rightarrow K \rightarrow Y$
Route d: $X \rightarrow I \rightarrow J \rightarrow Y$

○ = end office
○ = intermediate switching node

(a) Topology

<table>
<thead>
<tr>
<th>Time Period</th>
<th>First route</th>
<th>Second route</th>
<th>Third route</th>
<th>Fourth and final route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Afternoon</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Evening</td>
<td>a</td>
<td>d</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>Weekend</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>

(b) Routing table
Routing in Packet Switched Network

• Complex, crucial aspect of packet switched networks
• Characteristics required
 — Correctness
 — Simplicity
 — Robustness
 — Stability
 — Fairness
 — Optimality
 — Efficiency
Performance Criteria

- Used for selection of route
 - Minimum hop
 - Least cost
 - Delay
 - Throughput

—See Stallings appendix 10A for routing algorithms
Example Packet Switched Network

- Example
 - communicating nodes: node-1 to node-6
 - what is of interest?
 » Shortest path (1-3-6)
 » least cost path (1-4-5-6)
Decision Time and Place

- **Time**
 - Packet or virtual circuit basis

- **Place**
 - Distributed
 - Made by each node
 - Centralized
 - requires central node
 - Source
 - originating node
Network Information Source and Update Timing

- Routing decisions usually based on knowledge of network
 - (not always)
- Distributed routing
 - Nodes use local knowledge
 - May collect info from adjacent nodes
 - May collect info from all nodes on a potential route
- Central routing
 - Collect info from all nodes
- Update timing
 - When is network info held by nodes updated?
 - Fixed - never updated
 - Adaptive - regular updates
 - Continuous
 - Periodic
 - Major load change
 - Topology change
Routing Strategies

• We will discuss several strategies:
 — Fixed Routing
 — Flooding Routing
 — Random Routing
 — Adaptive Routing
Fixed Routing

- Single permanent route for each source-destination pair
- Determine routes using a least cost algorithm (appendix 10A)
- Route fixed, at least until a change in network topology
Fixed Routing Tables

Central Routing Directory

<table>
<thead>
<tr>
<th>Node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>—</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>—</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>—</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>—</td>
</tr>
</tbody>
</table>

Node 1 Directory

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Node 2 Directory

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Node 3 Directory

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Node 4 Directory

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Node 5 Directory

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Node 6 Directory

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Flooding

- No network info required
- Packet sent by node to every neighbor
- Incoming packets retransmitted on every link except incoming link
- Eventually a number of copies will arrive at destination
- Each packet is uniquely numbered so duplicates can be discarded
- Nodes can remember packets already forwarded to keep network load in bounds
- Can include a hop count in packets
Flooding Example

Hop Count = 3

(a) First hop

(b) Second hop

(c) Third hop
Properties of Flooding

• All possible routes are tried
 — Very robust

• At least one packet will have taken minimum hop count route
 — Can be used to set up virtual circuit

• All nodes are visited
 — Useful to distribute information (e.g. routing)
Random Routing

- Node selects one outgoing path for retransmission of incoming packet
- Selection can be random or round robin
 - Can select outgoing path based on probability calculation, i.e.
 - P_i probability of selecting link i
 - R_i data rate of link i
 - Sum is taken over all outgoing candidate links

$$P_i = \frac{R_i}{\sum_j R_j}$$

- No network info needed
- Route is typically not least cost nor minimum hop
Adaptive Routing

- Used by almost all packet switching networks
- Routing decisions change as conditions on the network change
 - Failure
 - Congestion
- Requires info about network
- Decisions are more complex
- Tradeoff between
 - quality of network info and
 - overhead
Adaptive Routing - Advantages

- Improved performance
- Aid congestion control
- Complex system
 — May not realize theoretical benefits
Adaptive Routing - Drawbacks

- routing is more complex
 - increasing processing burden on network node
- strategies often depend on information that is collected in one place and needed in another
 - traffic burden on network increases
- adaptive strategy may react too quickly
 - congestion-produced oscillation
 - if it reacts too slow, strategy will be irrelevant
Classification

• Based on information sources
 — Local (isolated)
 • Route to outgoing link with shortest queue
 • Can include bias for each destination
 • Rarely used
 — Adjacent nodes
 — All nodes
Isolated Adaptive Routing

Algorithm:

\[
\text{minimize} \ Q + B_i
\]

where

- \(Q\) is queue length
- \(B_i\) is bias for destination \(i\)

Node 4’s Bias Table for Destination 6

<table>
<thead>
<tr>
<th>Next Node</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram:

A network diagram showing nodes and their connections. The diagram includes labels for node numbers and biases for destination 6.
ARPANET Routing Strategies(1)

- First Generation (1969)
 - Distributed adaptive
 - Estimated delay as performance criterion
 - Bellman-Ford algorithm
 - Node exchanges delay vector with neighbors
 - Update routing table based on incoming info
 - Doesn't consider line speed, just queue length
 - Queue length not a good measurement of delay
 - Responds slowly to congestion
ARPANET Routing Strategies(2)

- Second Generation (1979)
 - Uses delay as performance criterion
 - Delay is measured directly
 - Uses Dijkstra’s algorithm
 - Good under light and medium loads
 - Under heavy loads, little correlation between reported delays and those experienced
ARPANET Routing Strategies (3)

- Third Generation (1987)
 - Link cost calculations changed
 - Measure average delay over last 10 seconds
 - Normalize based on current value and previous results
Least Cost Algorithms

• Basis for routing decisions
 — Can minimize hop by setting each link cost to unity
 — Can have link value inversely proportional to capacity

• Given network graph
 — Nodes connected by bi-directional links
 — Each link has a cost in each direction

• Define cost of path between two nodes as sum of costs of links traversed

• For each pair of nodes, find a path with the least cost

• Link costs in different directions may be different
 — E.g. length of packet queue
Dijkstra’s Algorithm Definitions

- Find shortest paths from given source to all other nodes, by developing paths in order of increasing path length
- \(N \) = set of nodes in the network
- \(s \) = source node
- \(T \) = set of nodes so far incorporated by the algorithm
- \(w(i, j) \) = link cost from node \(i \) to node \(j \)
 - \(w(i, i) = 0 \)
 - \(w(i, j) = \infty \) if the two nodes are not directly connected
 - \(w(i, j) \geq 0 \) if the two nodes are directly connected
- \(L(n) \) = cost of least-cost path from node \(s \) to node \(n \) currently known
 - At termination, \(L(n) \) is cost of least-cost path from \(s \) to \(n \)
Dijkstra’s Algorithm Method

- **Step 1 [Initialization]**
 - $\mathbf{T} = \{s\}$ Set of nodes so far incorporated consists of only source node
 - $L(n) = w(s, n)$ for $n \neq s$
 - Initial path costs to neighboring nodes are simply link costs
- **Step 2 [Get Next Node]**
 - Find neighboring node x not in \mathbf{T} with least-cost path from s
 - Incorporate node into \mathbf{T}
- **Step 3 [Update Least-Cost Paths]**
 - $L(n) = \min[L(n), L(x) + w(x, n)]$ for all $n \notin \mathbf{T}$
 - If latter term is minimum, path from s to n is path from s to x concatenated with edge from x to n
- Algorithm terminates when all nodes have been added to \mathbf{T}
Dijkstra’s Algorithm Notes

- At termination, value \(L(x) \) associated with each node \(x \) is cost (length) of least-cost path from \(s \) to \(x \).
- In addition, \(T \) defines least-cost path from \(s \) to each other node.
- One iteration of steps 2 and 3 adds one new node to \(T \)
 - Defines least cost path from \(s \) to that node
Example of Dijkstra's Algorithm
Results of Example

Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Iteration</th>
<th>T</th>
<th>$L(2)$</th>
<th>Path</th>
<th>$L(3)$</th>
<th>Path</th>
<th>$L(4)$</th>
<th>Path</th>
<th>$L(5)$</th>
<th>Path</th>
<th>$L(6)$</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${1}$</td>
<td>2</td>
<td>1 - 2</td>
<td>5</td>
<td>1 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>∞</td>
<td>—</td>
<td>∞</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>${1, 4}$</td>
<td>2</td>
<td>1 - 2</td>
<td>4</td>
<td>1 - 4 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>2</td>
<td>1 - 4 - 5</td>
<td>∞</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>${1, 2, 4}$</td>
<td>2</td>
<td>1 - 2</td>
<td>4</td>
<td>1 - 4 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>2</td>
<td>1 - 4 - 5</td>
<td>∞</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>${1, 2, 4, 5}$</td>
<td>2</td>
<td>1 - 2</td>
<td>3</td>
<td>1 - 4 - 5 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>2</td>
<td>1 - 4 - 5</td>
<td>4</td>
<td>1 - 4 - 5 - 6</td>
</tr>
<tr>
<td>5</td>
<td>${1, 2, 3, 4, 5}$</td>
<td>2</td>
<td>1 - 2</td>
<td>3</td>
<td>1 - 4 - 5 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>2</td>
<td>1 - 4 - 5</td>
<td>4</td>
<td>1 - 4 - 5 - 6</td>
</tr>
<tr>
<td>6</td>
<td>${1, 2, 3, 4, 5, 6}$</td>
<td>2</td>
<td>1 - 2</td>
<td>3</td>
<td>1 - 4 - 5 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>2</td>
<td>1 - 4 - 5</td>
<td>4</td>
<td>1 - 4 - 5 - 6</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Bellman-Ford Algorithm

Definitions

- Essential idea
 - first, find shortest paths from given node subject to the constraint that the paths contain at most 1 link
 - next, find the shortest paths with a constraint of paths of at most 2 links
 - and so on

- Definitions
 - $s =$ source node
 - $w(i, j) =$ link cost from node i to node j
 - $w(i, i) = 0$
 - $w(i, j) = \infty$ if the two nodes are not directly connected
 - $w(i, j) \geq 0$ if the two nodes are directly connected
 - $h =$ maximum number of links in path at current stage of the algorithm
 - i.e. $h =$ max length of a path currently considered
 - $L_h(n) =$ cost of least-cost path from s to n under constraint of no more than h links
Bellman-Ford Algorithm Method

• Step 1 [Initialization]
 — $L_0(n) = \infty$, for all $n \neq s$
 — $L_h(s) = 0$, for all h

• Step 2 [Update]
 — For each successive $h \geq 0$
 — For each $n \neq s$, compute
 \[L_{h+1}(n) = \min_j [L_h(j) + w(j, n)] \]
 — Connect n with predecessor node j that achieves minimum
 — Eliminate any connection of n with different predecessor node formed during an earlier iteration
 — Path from s to n terminates with link from j to $n
Example of Bellman-Ford Algorithm
Results of Bellman-Ford Example

<table>
<thead>
<tr>
<th>h</th>
<th>$L_h(2)$</th>
<th>Path</th>
<th>$L_h(3)$</th>
<th>Path</th>
<th>$L_h(4)$</th>
<th>Path</th>
<th>$L_h(5)$</th>
<th>Path</th>
<th>$L_h(6)$</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>—</td>
<td>∞</td>
<td>—</td>
<td>∞</td>
<td>—</td>
<td>∞</td>
<td>—</td>
<td>∞</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1 - 2</td>
<td>5</td>
<td>1 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>∞</td>
<td>—</td>
<td>∞</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1 - 2</td>
<td>4</td>
<td>1 - 4 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>2</td>
<td>1 - 4 - 5</td>
<td>10</td>
<td>1 - 3 - 6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1 - 2</td>
<td>3</td>
<td>1 - 4 - 5 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>2</td>
<td>1 - 4 - 5</td>
<td>4</td>
<td>1 - 4 - 5 - 6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1 - 2</td>
<td>3</td>
<td>1 - 4 - 5 - 3</td>
<td>1</td>
<td>1 - 4</td>
<td>2</td>
<td>1 - 4 - 5</td>
<td>4</td>
<td>1 - 4 - 5 - 6</td>
</tr>
</tbody>
</table>

![Graph Diagram](image-url)
Comparison

- Results from two algorithms agree
- Information gathered
 - Bellman-Ford
 - Calculation for node \(n \) involves knowledge of link cost to all neighboring nodes plus total cost to each neighbor from \(s \)
 - Each node can maintain set of costs and paths for every other node
 - Can exchange information with direct neighbors
 - Can update costs and paths based on information from neighbors and knowledge of link costs
 - Dijkstra
 - Each node needs complete topology
 - Must know link costs of all links in network
 - Must exchange information with all other nodes
Evaluation

- Dependent on processing time of algorithms
- Dependent on amount of information required from other nodes
- Implementation specific
- Both converge under static topology and costs
- Converge to same solution
- If link costs change, algorithms will attempt to catch up
- If link costs depend on traffic, which depends on routes chosen, then feedback —May result in instability
Summary

- routing in packet-switched networks
- routing strategies
 - fixed, flooding, random, adaptive
- ARPAnet examples
- least-cost algorithms
 - Dijkstra, Bellman-Ford