Chapter 9: Spread Spectrum

Spread Spectrum

- Important encoding method for wireless communications
- Spread data over wide bandwidth
- Makes jamming and interception harder
- Frequency hoping
 - —Signal broadcast over seemingly random series of frequencies
- Direct Sequence
 - Each bit is represented by multiple bits in transmitted signal
 - -Chipping code

Spread Spectrum Concept

- Input fed into channel encoder
 - Produces narrow bandwidth analog signal around central frequency
- Signal modulated using sequence of digits
 - Spreading code/sequence
 - Typically generated by pseudonoise/pseudorandom number generator
- Increases bandwidth significantly

- Spreads spectrum

- Receiver uses same sequence to demodulate signal
- Demodulated signal fed into channel decoder

General Model of Spread Spectrum System

Spread Spectrum Advantages

- Immunity from various noise and multipath distortion
 - —Including jamming
- Can hide/encrypt signals
 - Only receiver who knows spreading code can retrieve signal
- Several users can share same higher bandwidth with little interference

-Cellular telephones

- -Code division multiplexing (CDM)
- -Code division multiple access (CDMA)

Pseudorandom Numbers

- Generated by algorithm using initial seed
- Deterministic algorithm
 - -Not actually random
 - —If algorithm good, results pass reasonable tests of randomness
- Need to know algorithm and seed to predict sequence

Frequency Hopping Spread Spectrum (FHSS)

- Signal broadcast over seemingly random series of frequencies
- Receiver hops between frequencies in sync with transmitter
- Eavesdroppers hear unintelligible blips
- Jamming on one frequency affects only a few bits

Basic Operation

- Typically 2^k carriers frequencies forming 2^k channels
- Channel spacing corresponds with bandwidth of input
- Each channel used for fixed interval
 - -300 ms in IEEE 802.11
 - —Some number of bits transmitted using some encoding scheme
 - May be fractions of bit (see later)
 - -Sequence dictated by spreading code

Frequency Hopping Example

Frequency Hopping Spread Spectrum System (Transmitter)

Frequency Hopping Spread Spectrum System (Receiver)

Slow and Fast FHSS

- Frequency shifted every T_c seconds
- Duration of signal element is T_s seconds
- Slow FHSS has $T_c \ge T_s$
- Fast FHSS has $T_c < T_s$
- Generally fast FHSS gives improved performance in noise (or jamming)

Slow Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

Fast Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

FHSS Performance Considerations

 Typically large number of frequencies used

—Improved resistance to jamming

Direct Sequence Spread Spectrum (DSSS)

- Each bit is represented by multiple bits using spreading code
- Spreading code spreads signal across wider frequency band
 - —In proportion to number of bits used
 - —e.g., 10 bit spreading code spreads signal across 10 times bandwidth of 1 bit code
- One method:
 - -Combine input with spreading code using XOR
 - Input bit 1 inverts spreading code bit
 - Input zero bit doesn't alter spreading code bit
 - —Data rate equal to original spreading code
- Performance similar to FHSS

CS420/520 Axel Krings

Direct Sequence Spread Spectrum Example

Direct Sequence Spread Spectrum Transmitter

Direct Sequence Spread Spectrum Receiver

Direct Sequence Spread Spectrum Using BPSK Example

Sequence 9

Approximate Spectrum of DSSS Signal

(b) Spectrum of pseudonoise signal

CS420/520 Axel Krings

÷.

Code Division Multiple Access (CDMA)

- Multiplexing Technique used with spread spectrum
- Start with data signal rate D
 - Called bit data rate
- Break each bit into k chips according to fixed pattern specific to each user

- User's code

- New channel has chip data rate *kD* chips per second
- E.g. *k*=6, three users (A,B,C) communicating with base receiver R

- Code for A = <1,-1,-1,1,-1,1>

-- Code for B = <1,1,-1,-1,1,1>

- Code for C = <1,1,-1,1,1,-1>

CDMA Example

CDMA Explanation

- Consider A communicating with base
- Base knows A's code
- Assume communication already synchronized
- A wants to send a 1
 - —Send chip pattern <1,-1,-1,1,-1,1>
 - A's code
- A wants to send 0
 - ---Send chip[pattern <-1,1,1,-1,1,-1>
 - Complement of A's code
- Decoder ignores other sources when using A's code to decode
 - -Orthogonal codes

CDMA for DSSS

- *n* users each using different orthogonal PN sequence
- Modulate each users data stream
 —Using BPSK
- Multiply by spreading code of user

CDMA in a DSSS Environment

nce 9

Seven Channel CDMA Encoding and Decoding

Summary

- looked at use of spread spectrum techniques, e.g.,
 - —FHSS
 - -DSSS
 - -CDMA