Chapter 7: Data Link Control

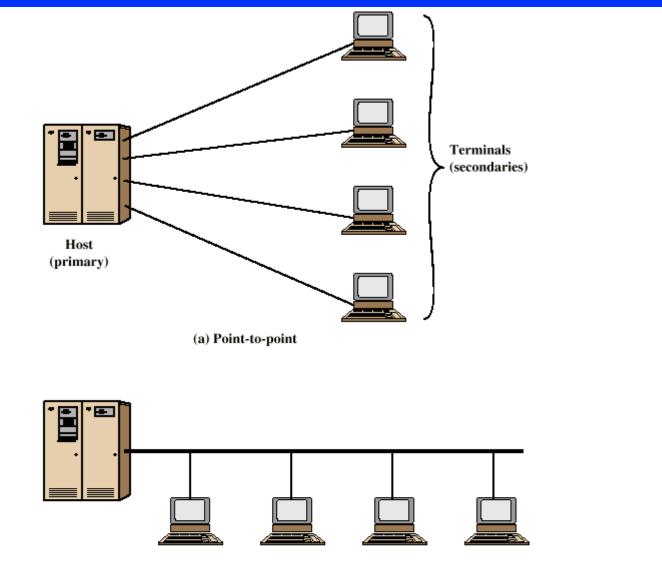
Data Link Control Protocols

- Need layer of logic above Physical to manage exchange of data over a link
 - -frame synchronization
 - -flow control
 - —error control
 - -addressing
 - -control and data
 - -link management

Background information

Begin(...

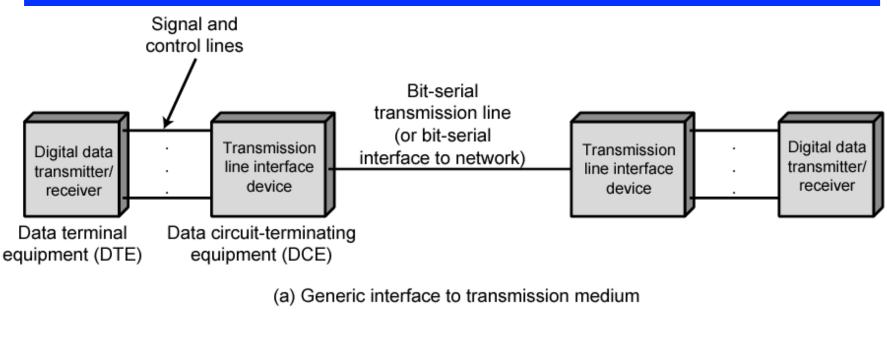
—Speaking of Physical Layer:

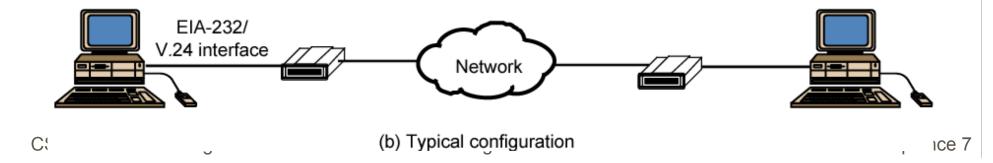

 let's consider the physical layer and the characteristics of interfaces

—Let's just quickly go though this to the ...)END slide

Line Configuration

- Topology
 - Physical arrangement of stations on medium
 - Point to point
 - Multi point
 - Computer and terminals, local area network
- Half duplex
 - Only one station may transmit at a time
 - Requires one data path
- Full duplex
 - Simultaneous transmission and reception between two stations
 - Requires two data paths (or echo canceling)


Traditional Configurations

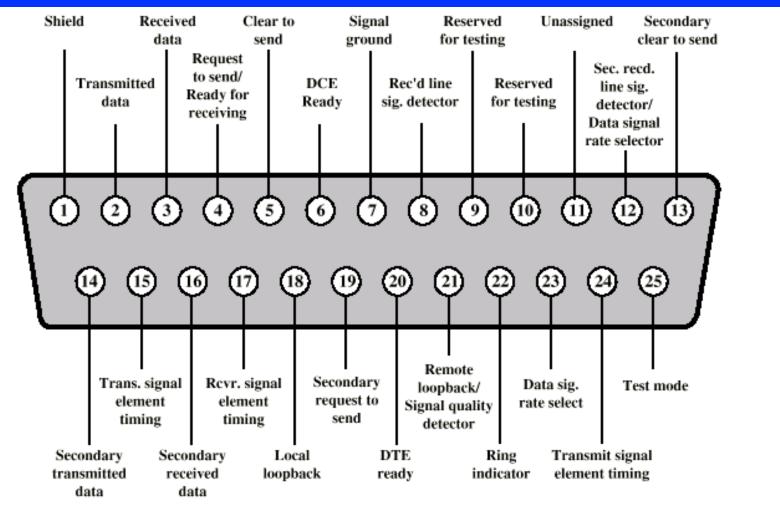


Interfacing

- Data processing devices (or data terminal equipment, DTE) do not (usually) include data transmission facilities
- Need an interface called data circuit terminating equipment (DCE)
 - -e.g. modem, NIC
- DCE transmits bits on medium
- DCE communicates data and control info with DTE
 - —Done over interchange circuits
 - -Clear interface standards required

Data Communications Interfacing

Characteristics of Interface


- Mechanical
 - -Connection plugs
- Electrical
 - -Voltage, timing, encoding
- Functional
 - —Data, control, timing, grounding
- Procedural
 - -Sequence of events

V.24/EIA-232-F

- ITU-T v.24 ITU = Intl. Telecom. Union ITU-T = ITU Telecom. Standardization Sector
- Only specifies functional and procedural
 - References other standards for electrical and mechanical
- EIA-232-F (USA) (first issued in 1962)
 - —RS-232
 - -Mechanical ISO 2110
 - -Electrical v.28
 - -Functional v.24
 - -Procedural v.24

EIA = Electronic Industry Alliance RS-232 first issued in 1962 V.24 issued in 1996 V.28 issued in 1993

Mechanical Specification

CS420/520

Figure 6.5 Pin Assignments for V.24/EIA-232 (DTE Connector Face)

Sequence 7

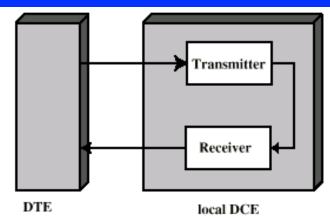
Electrical Specification

- Digital signals
- Values interpreted as data or control, depending on circuit
- Less than -3V is binary 1, more than +3V is binary 0 (NRZ-L)
- For control,
 - —less than -3V is off,
 - -more than +3V is on
- Signal rate < 20kbps
- Distance <15m

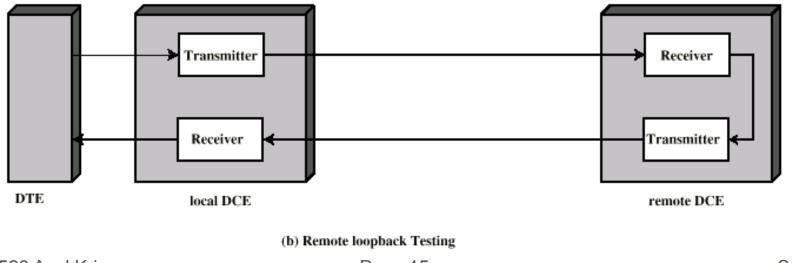
Functional Specification

- Circuits grouped in categories
 - —Data
 - -Control
 - —Timing
 - —Ground
- One circuit in each direction
 - -Full duplex
- Two secondary data circuits
 - -Allow halt or flow control in half duplex operation
- DTE = data terminal equipment
- DCE = data circuit-terminal equipment

Functional Specification


Table 6.1 V.24/EIA-232-F Interchange Circuits

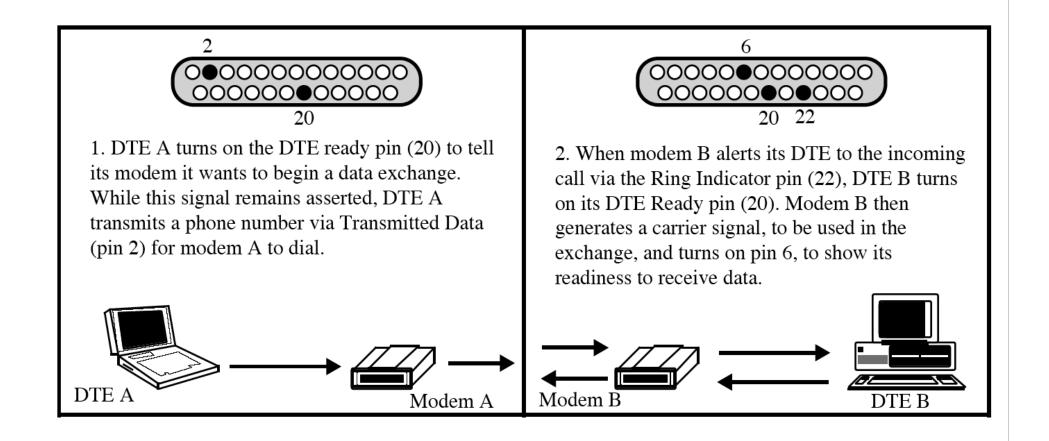
V.24	EIA-	Name	Direction to:	Function			
	232						
DATA SIGNALS							
103	BA	Transmitted Data	DCE	Transmitted by DTE			
104	BB	Received Data	DTE	Received by DTE			
118	SBA	Secondary Transmitted Data	DCE	Transmitted by DTE			
119	SBB	Secondary Received Data	DTE	Received by DTE			
TIMING SIGNALS							
113	DA	Transmitter signal element timing	DCE	Clocking signal; transitions to ON and OFF occur at center of each signal element			
114	DB	Transmitter signal element timing	DTE	Clocking signal; both 113 and 114 relate to signals on circuit 103			
115	DD	Receiver signal element timing	DTE	Clocking signal for circuit 104			
GROUND							
102	AB	Signal ground/common return		Common ground reference for all circuits			


Functional Specification

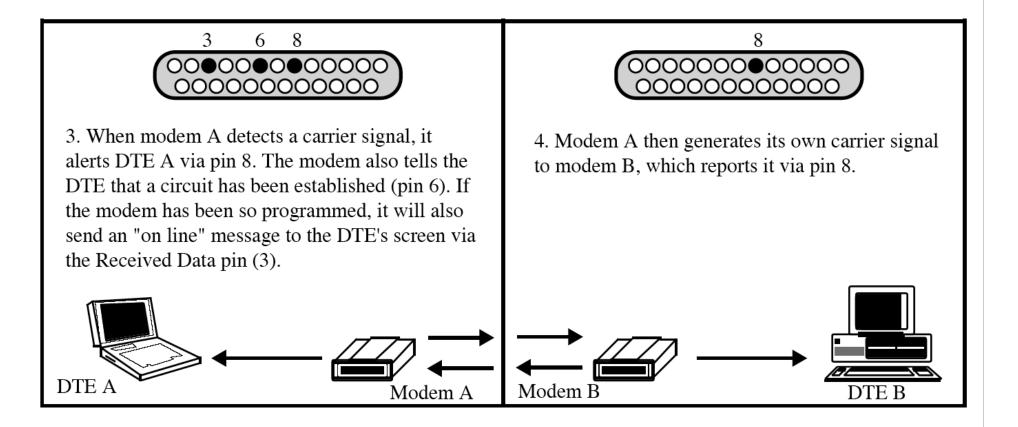
CONTROL SIGNALS							
105	CA	Request to send	DCE	DTE wishes to transmit			
106	СВ	Clear to send	DTE	DCE is ready to receive; response to Request to send			
107	CC	DCE ready	DTE	DCE is ready to operate			
108.2	CD	DTE ready	DCE	DTE is ready to operate			
125	CE	Ring indicator	DTE	DCE is receiving a ringing signal on the channel line			
109	CF	Received line signal detector	DTE	DCE is receiving a signal within appropriate limits on the channel line			
110	CG	Signal quality detector	DTE	Indicates whether there is a high probability of error in the data received			
111	CH	Data signal rate selector	DCE	Selects one of two data rates			
112	CI	Data signal rate selector	DTE	Selects one of two data rates			
133	CJ	Ready for receiving	DCE	On/off flow control			
120	SCA	Secondary request to send	DCE	DTE wishes to transmit on reverse channel			
121	SCB	Secondary clear to send	DTE	DCE is ready to receive on reverse channel			
122	SCF	Secondary received line signal detector	DTE	Same as 109, for reverse channel			
140	RL	Remote loopback	DCE	Instructs remote DCE to loop back signals			
141	LL	Local loopback	DCE	Instructs DCE to loop back signals			
142	TM	Test mode	DTE	Local DCE is in a test condition			

Local and Remote Loopback

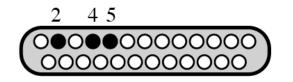
(a) Local loopback Testing

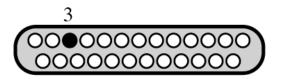

Procedural Specification

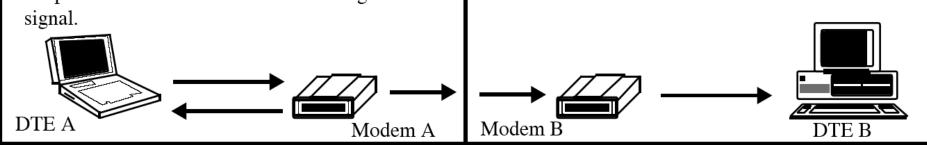
- Example: Asynchronous private line modem
- When turned on and ready, modem (DCE) asserts DCE ready
- When DTE ready to send data, it asserts Request to Send

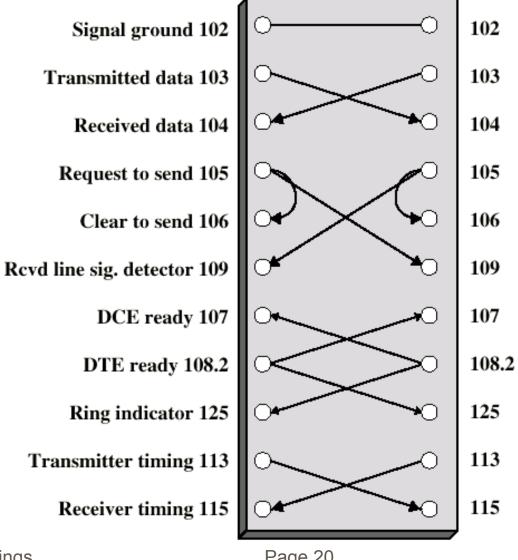

- Also inhibits receive mode in half duplex

- Modem responds when ready by asserting Clear to Send
- DTE sends data
- When data arrives, local modem asserts Receive Line Signal Detector and delivers data

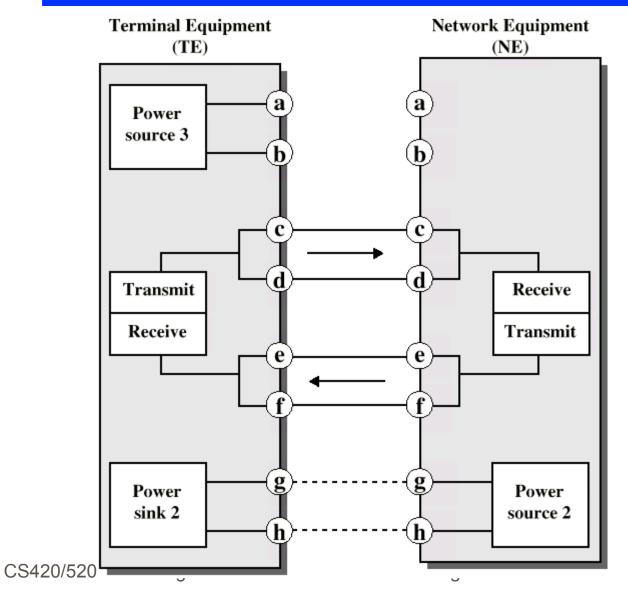

Dial Up Operation (1)


Dial Up Operation (2)


Dial Up Operation (3)


5. When it wishes to send data, DTE A activates Request to Send (pin 4). Modem A responds with Clear to Send (pin 5). DTE A sends data (pulses representing 1s and 0s) to modem A via the Transmitted Data pin (2). Modem A modulates the pulses to send the data over its analog carrier signal.

6. Modem B reconverts the signal to digital form and sends it to DTE B via the Received Data pin (3).


Null Modem

CS420/520 Axel Krings

Page 20

ISDN Physical Interface Diagram

Integrated Service Digital Network

Sequence 7

ISDN Physical Interface

Connection between

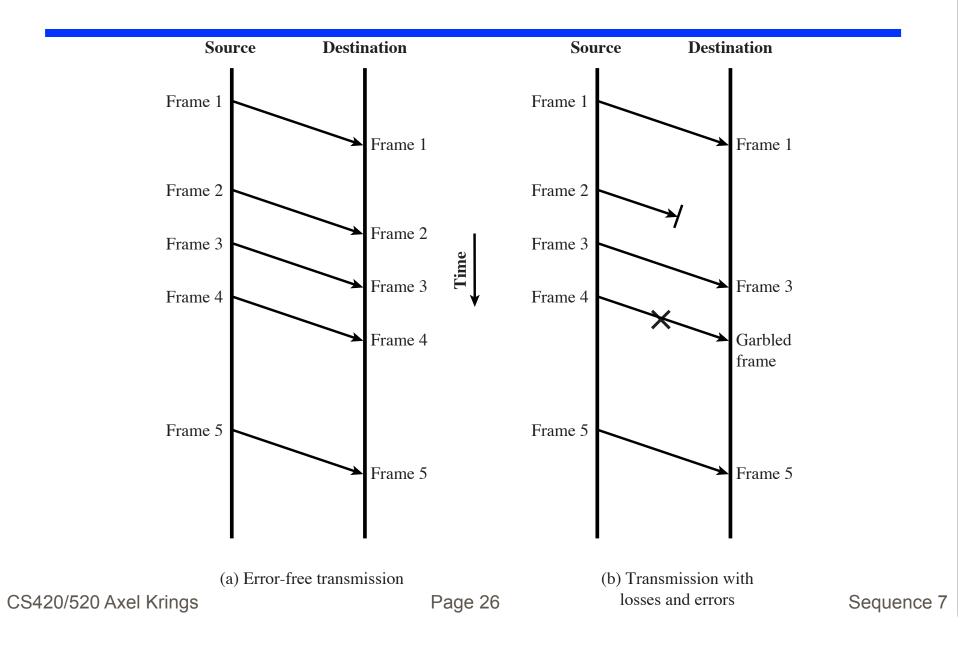
-terminal equipment (c.f. DTE) and

- —network terminating equipment (c.f. DCE)
- ISO 8877
- Cables terminate in matching connectors with 8 contacts
- Transmit/receive carry both data and control

ISDN Electrical Specification

- Balanced transmission
 - Carried on two lines, e.g. twisted pair
 - Signals as currents down one conductor and up the other
 - Differential signaling
 - Value depends on direction of voltage
 - Tolerates more noise and generates less
 - (Unbalanced, e.g. RS-232 uses single signal line and ground)
 - Data encoding depends on data rate
 - Basic rate 192kbps
 - uses pseudoternary
 - Primary rate: two options
 - 1.544 Mbps uses AMI and B8ZS
 - 2.048 Mbps uses AMI and HDB3
 - reason for different schemes is historical, no advantage of disadvantage

CS420/520 Axel Krings


End of Background Information

...)END

Flow Control

- Ensuring the sending entity does not overwhelm the receiving entity
 - -Preventing buffer overflow
- Transmission time
 - -Time taken to emit all bits into medium
- Propagation time
 - —Time for a bit to traverse the link

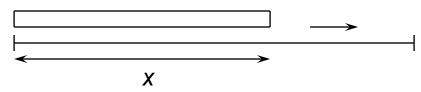
Model of Frame Transmission

- Flow Control
 - —Define:
 - L = length of a message (frame, packets, etc.) in bits
 - R = bit rate of the *A* to *B* link in bps
 - *x* = time to transmit a packet = *L*/*R* seconds
 - *P* = propagation delay from *A* to *B* in seconds
 - —Two basic protocols
 - Stop and wait
 - Sliding window

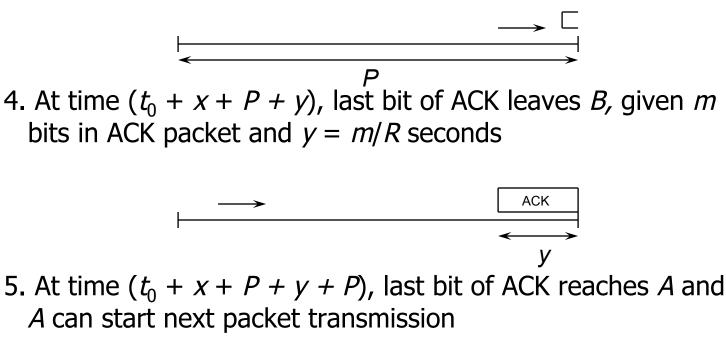
Stop and Wait

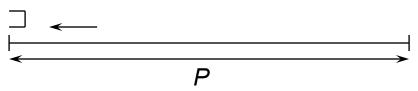
- Source transmits frame
- Destination receives frame and replies with acknowledgement
- Source waits for ACK before sending next frame
- Destination can stop flow by not send ACK
- Works well for a few large frames

Fragmentation


- Large block of data may be split into small frames
 - -Limited buffer size
 - -Errors detected sooner (when whole frame received)
 - -On error, retransmission of smaller frames is needed
 - Prevents one station occupying medium for long periods
- Stop and wait becomes inadequate

- Stop and Wait Flow Control
 - -also called Idle RQ (Repeat Request)
 - —after A sends a message (packet), it waits for an ACK from B before sending the next packet.
 - -analysis:


1. At time (t_0) , A starts transmission of first bit in packet:



2. At time $(t_0 + x)$, A finished packet transmission

3. At time $(t_0 + x + P)$, last bit of packet reaches B, true for both P > x and P < x

• Link Utilization:

—Maximum Utilization of A - B link

$$U = \frac{x}{x + y + 2P}$$

= data transmission time/overhead time
$$= \frac{x}{x + 2P}, \text{ neglecting } y$$

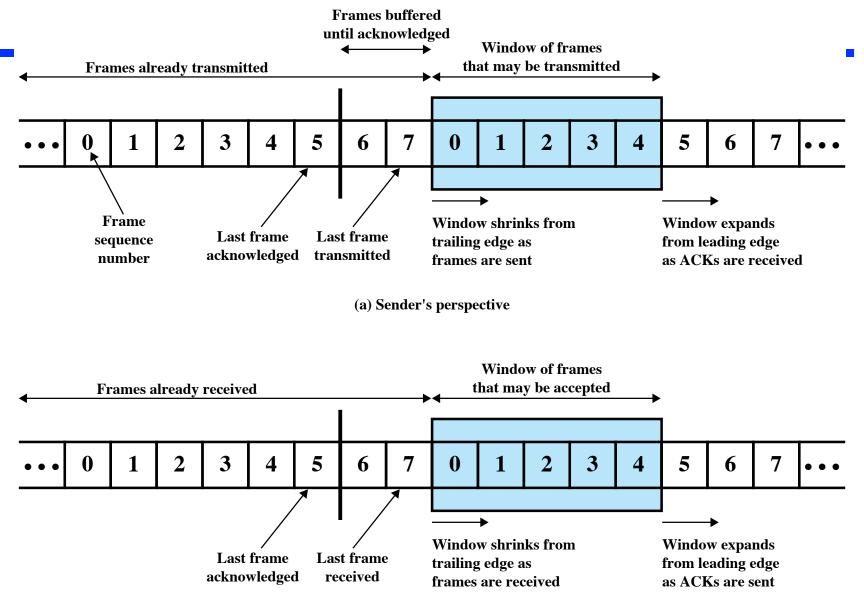
$$= \frac{1}{1 + 2\left(\frac{P}{x}\right)}$$

$$= \frac{1}{1 + 2a}, a = \left(\frac{P}{x}\right) \text{ is normalized propagation delay}$$

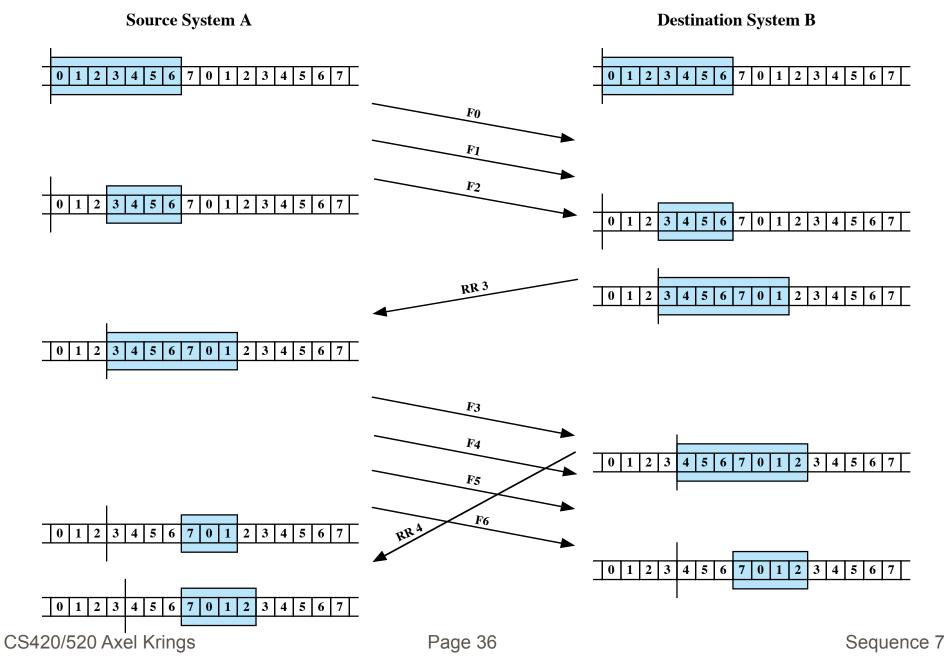
• How many bits are "stuck" in the media?

$$B = R \frac{d}{v}$$

where:


B = length of the link in bits

- R = rate of the link, in bps
- d =length in m
- v = velocity of propagation, in m/s


Sliding Windows Flow Control

- Allow multiple frames to be in transit
- Receiver has buffer of size *W*
- Transmitter can send up to W frames without ACK
- Each frame is numbered
- ACK includes number of next frame expected
- Sequence number bounded by size of field (k)
 —Frames are numbered modulo 2^k

Sliding Window Diagram

Example Sliding Window

Sliding Window Enhancements

- Receiver can acknowledge frames without permitting further transmission (Receive Not Ready)
- Must send a normal acknowledge to resume
- If duplex, use piggybacking
 - —If no data to send, use acknowledgement frame
 - —If data but no acknowledgement to send, send last acknowledgement number again, or have ACK valid flag (TCP)

Error Control

- Detection and correction of errors
- Lost frames
- Damaged frames
- Automatic repeat request
 - -Error detection
 - -Positive acknowledgment
 - -Retransmission after timeout
 - -Negative acknowledgement and retransmission

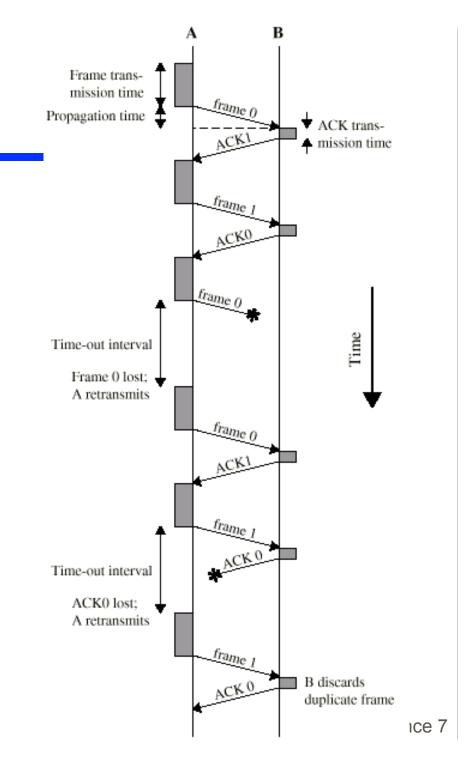
Automatic Repeat Request (ARQ)

Three common approaches:

1. Stop and wait

2.Go back N

3. Selective reject (selective retransmission)


Stop and Wait

- Source transmits single frame
- Wait for ACK
- If received frame damaged, discard it
 - —Transmitter has timeout
 - —If no ACK within timeout, retransmit
- If ACK damaged, transmitter will not recognize it
 - —Transmitter will retransmit
 - -Receive gets two copies of frame
 - —Use ACK0 and ACK1

Stop and Wait -Diagram

Frame numbers alternate between 0 and 1

Stop and Wait is: + simple - inefficient

Go Back N (1)

- Based on sliding window
- If no error, ACK as usual with next frame expected
- Use window to control number of outstanding frames
- If error, reply with rejection
 - —Discard that frame and all future frames until error frame received correctly
 - —Transmitter must go back and retransmit that frame and all subsequent frames

Go Back N - Damaged Frame

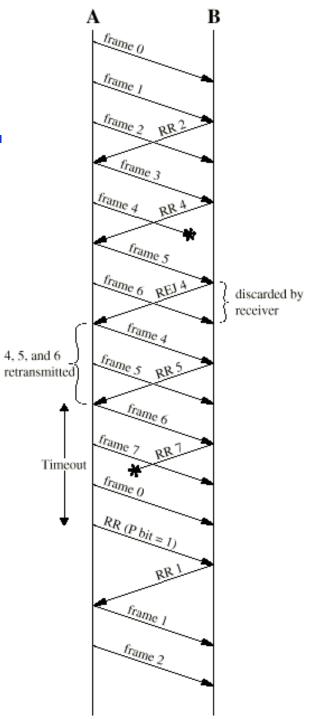
- Receiver detects error in frame *i*
- Receiver sends rejection-*i*
- Transmitter gets rejection-*i*
- Transmitter retransmits frame *i* and all subsequent frames

Go Back N - Lost Frame (1)

- Frame *i* is lost
- Transmitter sends *i*+1
- Receiver gets frame *i*+1 out of sequence
- Receiver send reject *i*
- Transmitter goes back to frame *i* and retransmits

Go Back N - Lost Frame (2)

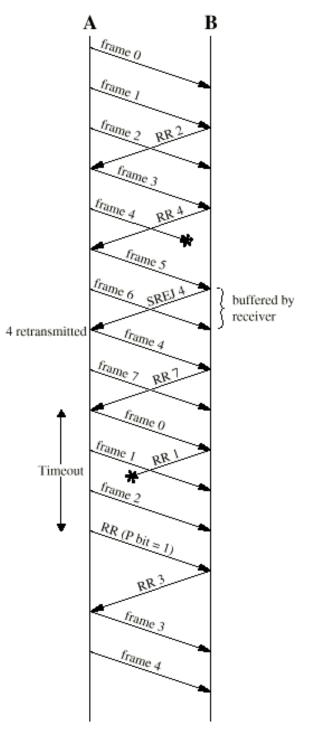
- Frame *i* lost **and** no additional frame sent
 - Receiver gets nothing and returns neither acknowledgement nor rejection
 - —Transmitter times out and sends acknowledgement frame with *P* bit set to 1
 - —Receiver interprets this as command which it acknowledges with the number of the next frame it expects (frame *i*)
 - —Transmitter then retransmits frame *i*


Go Back N - Damaged Acknowledgement

- Receiver gets frame *i* and send acknowledgement (*i*+1) which is lost
 - —Acknowledgements are cumulative, so next acknowledgement (*i*+*n*) may arrive before transmitter times out on frame *i*
 - —If transmitter times out, it sends acknowledgement with *P* bit set as before
 - —This can be repeated a number of times before a reset procedure is initiated

Go Back N - Damaged Rejection

• As for lost frame (2)


Go Back N -Diagram

Selective Reject

- Also called selective retransmission
- Only rejected frames are retransmitted
- Subsequent frames are accepted by the receiver and buffered
- Minimizes retransmission
- Receiver must maintain large enough buffer
- More complex login in transmitter

Selective Reject -Diagram

Performance: Stop & Wait ARQ

—note that utilization $U = T_f/T_t$ where:

- T_f = time for transmitter to emit a single frame
- T_t = total time line is engaged in transmission of 1 frame

—for error free Stop & Wait:

$$U = \frac{T_f}{T_f + 2T_p}$$
, if $a = \frac{T_p}{T_f}$ then $U = \frac{1}{1 + 2a}$

—for errors, $U = T_f / (N_r T_t)$, where N_r is the expected number of transmissions of a particular frame

$$U = \frac{1}{N_r(1+2a)}$$

- Assume *P* = probability a <u>single frame is in error</u>.
- Further assume ACKs and NAKs are never in error.
- The probability that we have *i* transmissions of a frame is: $P^{i-1}(1-P)$
- Therefore:

$$N_{\mathcal{F}} = \sum_{i=1}^{\infty} i P^{i-1} (1-P) = \frac{1}{1-P}$$

• For Stop & Wait then:

$$U = \frac{1 - P}{1 + 2a}$$

— For Sliding Window:

$$U = \begin{cases} 1 & N \ge 2a+1\\ \frac{N}{2a+1} & N < 2a+1 \end{cases}$$

— For Selective Repeat we have:

$$U = \begin{cases} 1 - P & N \ge 2a + 1\\ \frac{N(1 - P)}{2a + 1} & N < 2a + 1 \end{cases}$$

— For Go-Back-N we have to consider all retransmitted:

$$U = \begin{cases} \frac{1-P}{1+2aP} & N \ge 2a+1 \\ \frac{N(1-P)}{(1+2a)(1-P+NP)} & N < 2a+1 \end{cases}$$

CS420/520 Axel Krings

— For Go-Back-N we have to <u>consider all retransmissions</u>. Then *N_r* is the expected number of transmitted frames to successfully transmit one frame. Each error generates requirement to retransmit *K* frames.

$$N_{r} = \sum_{i=1}^{\infty} f(i) P^{i-1} (1-P)$$

with f(i) = 1 + (i - 1)K = (1 - K) + Ki

Total # frames transmitted if original frame must be transmitted i times

then

we

$$N_{r} = (1 - K) \sum_{i=1}^{\infty} P^{i-1} (1 - P) + K \sum_{i=1}^{\infty} i P^{i-1} (1 - P)$$

with $\sum_{i=0}^{\infty} r^{i} = \sum_{i=1}^{\infty} r^{i-1} = \frac{1}{1 - r}$ and $\sum_{i=1}^{\infty} i r^{i-1} = \frac{1}{(1 - r)^{2}}$

get

$$N_r = 1 - K + \frac{K}{1 - P} = \frac{1 - P + KP}{1 - P}$$
Page 54

CS420/520 Axel Krings

Sequence 7

High Level Data Link Control

- HDLC
- ISO 33009, ISO 4335

HDLC Station Types

- Primary station
 - -Controls operation of link
 - —Frames issued are called commands
 - -Maintains separate logical link to each secondary station
- Secondary station
 - —Under control of primary station
 - -Frames issued called responses
- Combined station
 - -May issue commands and responses

HDLC Link Configurations

- Unbalanced
 - —One primary and one or more secondary stations
 - —Supports full duplex and half duplex
- Balanced
 - —Two combined stations
 - —Supports full duplex and half duplex

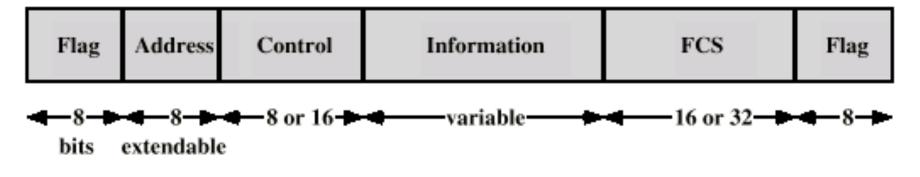
HDLC Transfer Modes (1)

• Normal Response Mode (NRM)

- -Primary initiates transfer to secondary
- —Secondary may only transmit data in response to command from primary
- -Used on multi-drop lines
- -Host computer is primary
- —Terminals is secondary

HDLC Transfer Modes (2)

- Asynchronous Balanced Mode (ABM)
 - -Balanced configuration
 - -Either station may initiate transmission without receiving permission
 - -Most widely used
 - -No polling overhead


HDLC Transfer Modes (3)

- Asynchronous Response Mode (ARM)
 - -Unbalanced configuration
 - —Secondary may initiate transmission without permission form primary
 - -Primary responsible for line
 - -rarely used

Frame Structure

- Synchronous transmission
- All transmissions in frames
- Single frame format for all data and control exchanges

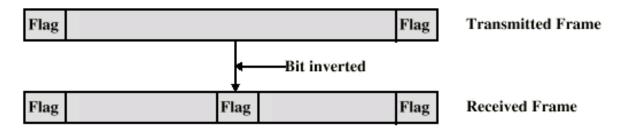
Frame Structure

(a) Frame format

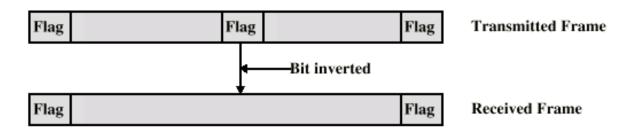
Flag Fields

- Delimit frame at both ends
- 01111110
- May close one frame and open another
- Receiver hunts for flag sequence to synchronize
- Bit stuffing used to avoid confusion with data containing 01111110
 - 0 inserted after every sequence of five 1s
 - If receiver detects five 1s it checks next bit
 - If 0, it is deleted
 - If 1 and seventh bit is 0, accept as flag
 - If sixth and seventh bits 1, sender is indicating abort

Original Pattern:


111111111111011111101111110

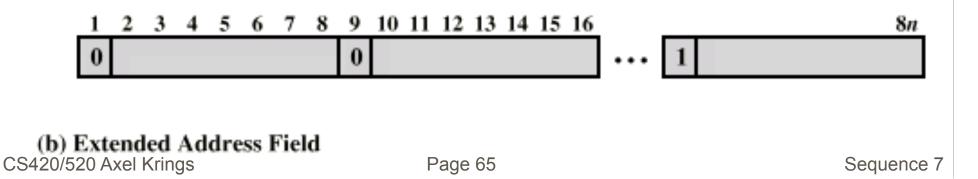
Bit Stuffing After bit-stuffing


• Example with possible errors

1111101111101101111101011111010

(a) Example

(b) An inverted bit splits a frame in two

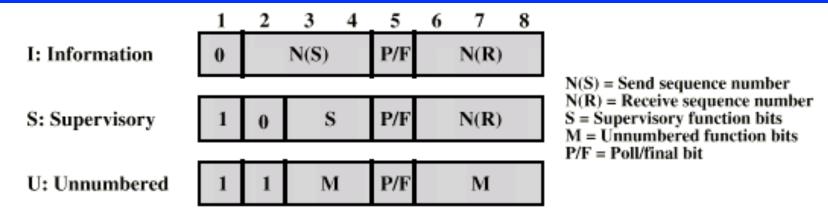


CS420/520 Axel Krings

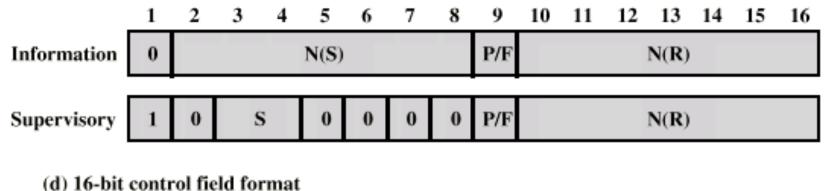
(c) An inverted bit merges two frames

Address Field

- Identifies secondary station that sent or will receive frame
- Usually 8 bits long
- May be extended to multiples of 7 bits
 - LSB of each octet indicates that it is the last octet (1) or not (0)
- All ones (11111111) is broadcast



Control Field


• Different for different frame type

- Information data to be transmitted to user (next layer up)
 - Flow and error control piggybacked on information frames
- —Supervisory ARQ when piggyback not used
- First one or two bits of control filed identify frame type
- Remaining bits explained later

Control Field Diagram

(c) 8-bit control field format

(a) Ib-Dit control field CS420/020 Axel Killigs

Poll/Final Bit

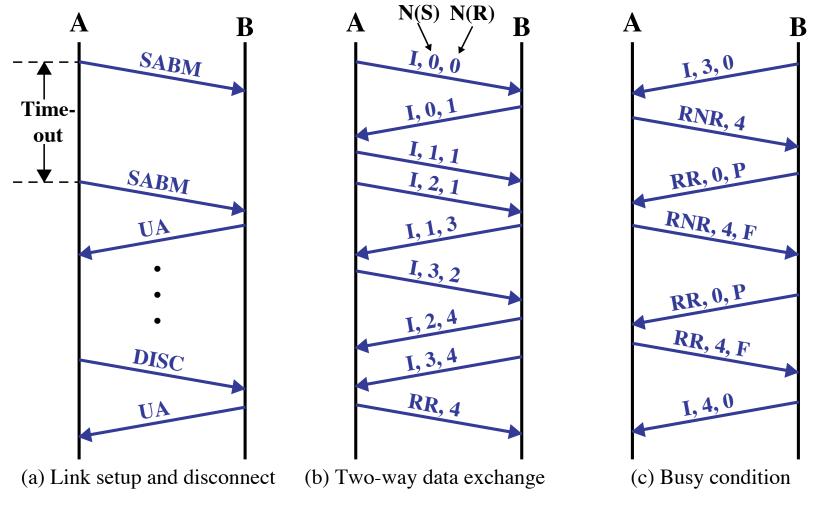
- Use depends on context
- Command frame

–P bit

- -1 to solicit (poll) response from peer
- Response frame
 - —F bit
 - -1 indicates response to soliciting command

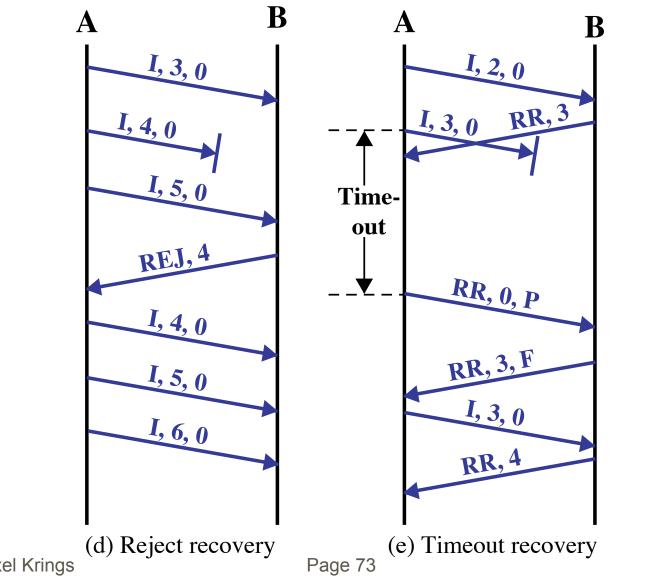
Information Field

- Only in information and some unnumbered frames
- Must contain integral number of octets
- Variable length


Frame Check Sequence Field

- FCS
- Error detection
- 16 bit CRC
- Optional 32 bit CRC

HDLC Operation


- Exchange of information, supervisory and unnumbered frames
- Three phases
 - -Initialization
 - —Data transfer
 - -Disconnect

Examples of Operation (1)

CS420/520 Axel Krings

Examples of Operation (2)

Sequence 7

CS420/520 Axel Krings

Summary

- introduced need for data link protocols
 —which included background on *interfacing*
- flow control
- error control
- HDLC