Chapter 6: Digital Data Communication Techniques

Asynchronous and Synchronous Transmission

- Timing problems require a mechanism to synchronize the transmitter and receiver
- Two solutions
-Asynchronous
—Synchronous

Asynchronous

- Data transmitted one character at a time
-5 to 8 bits
- Timing only needs maintaining within each character
- Resynchronize with each character

Asynchronous (diagram)

(a) Character format

(b) 8-bit asynchronous character stream

(c) Effect of timing error

Asynchronous - Behavior

- In a steady stream, interval between characters is uniform
- In idle state, receiver looks for start bit
-transition 1 to 0
- Next samples data bits
-e.g. 7 intervals (char length)
- Then looks for next start bit...
-Simple
-Cheap
-Overhead of 2 or 3 bits per char ($\sim 20 \%$)
—Good for data with large gaps (keyboard)

Synchronous - Bit Level

- Block of data transmitted without start or stop bits
- Clocks must be synchronized
- Can use separate clock line
-Good over short distances
-Subject to impairments
- Embed clock signal in data
-Manchester encoding
-Carrier frequency (analog)

Synchronous - Block Level

- Need to indicate start and end of block
- Use preamble and postamble
-e.g. series of SYN (hex 16) characters
-e.g. block of 11111111 patterns ending in 11111110
- More efficient (lower overhead) than async

Synchronous (diagram)

Types of Error

- An error occurs when a bit is altered between transmission and reception
- Single bit errors
- One bit altered
- Adjacent bits not affected
- Burst errors
- Length B
- Contiguous sequence of B bits in which first, last and any number of intermediate bits are in error
- Impulse noise
- Fading in wireless
- Effect is greater at higher data rates

Error Detection Process

Communication Techniques

- Error Control
-Concepts
- The concept behind error control is the prevention of delivery of incorrect messages (bits) to a higher level in the communication hierarchy.
- The probability that one bit is in error is called the Bit Error Rate $B E R$, e.g. $B E R=10^{-13}$

Communication Techniques

-There are two ways to manage Error Control

- Forward Error Control - enough additional or redundant information is passed to the receiver, so it can not only detect, but also correct errors. This requires more information to be sent and has tradeoffs.
- Backward Error Control - enough information is sent to allow the receiver to detect errors, but not correct them. Upon error detection, retransmitted may be requested.

Error Detection/Correction

- Error Correction
-What is needed for error correction?
- Ability to detect that bits are in error
- Ability to detect which bits are in error
-Techniques include:
- Parity block sum checking which can correct a single bit error
- Hamming encoding which can detect multiple bit errors and correct less (example has hamming distance of 3 can detect up to 2 errors and correct 1)
- 00000001111110011011

Communication Techniques

—code, code-word, binary code
-error detection, error correction
-Hamming distance

- number of bits in which two words differ
-Widely used schemes
- parity
- check sum
- cyclic redundancy check

Communication Techniques

- Parity
-extra bit at the end of a character (5-7 bits) specifying how many of the bits are 1' s .
-The parity bit is said to be even if it is set to make the total number of 1 ' s even, and odd if it is set to make the total number of 1's odd.
-Can detect all odd numbers of bit errors in the message.
-Typically used in asynchronous transmission, since timing and spacing between characters is uncertain.
-Requires one extra bit per characters (1/7 overhead)
-Can not detect even numbers of bit errors -- error cancellation

Parity

(a)

Hal96 fig. 3.14

Parity

Hal96 fig. 3.14

Communication Techniques

- Combinatorial arguments
-Probabilities associated with the detection of errors.
- $P_{1}=$ prob. that a frame arrives with no bit errors
- $P_{2}=$ prob. that, with an error-detection algo. in use, a frame arrives with one or more undetected bit errors
- $P_{3}=$ prob. that, with an error-detection algo. in use, a frame arrives with one or more detected bit errors and no undetected bit errors.
-In a simple system (no error detection), we only have Class 1 and 2 frames. If N_{f} is number of bits in a frame and P_{B} is BER for a bit then:

$$
P_{1}=\left(1-P_{B}\right)^{N_{f}} \quad P_{2}=1-P_{1}
$$

Communication Techniques

- To calculate probabilities with error detection define:
- N_{B} - number of Bits per character (including parity)
- N_{C} - number of Characters per block
- N_{F} - number of bits per Frame $=N_{B} N_{C}$
- Notation: $\binom{N}{k}$ is read as " N choose k " which is the number of ways of choosing k items out of N.

$$
\binom{N}{k}=\frac{N!}{k!(N-k)!}
$$

- Note that the basic probability for P_{1} does not change, and that P_{3} is just what is left after P_{1} and P_{2}

Communication Techniques

$$
\begin{aligned}
& P_{1}=\left(1-P_{B}\right)^{N_{B} N_{C}} \\
& P_{2}=\sum_{k=1}^{N_{C}}\binom{N_{C}}{k}\left[\sum_{j=2,4, \ldots}^{N_{B}}\binom{N_{B}}{j} P_{B}^{j}\left(1-P_{B}\right)^{\left.N_{B}-j\right)}\right]^{k}\left[\left(1-P_{B}\right)^{N_{B}}\right]^{V_{C}-k} \\
& P_{3}=1-P_{1}-P_{2}
\end{aligned}
$$

Communication Techniques

- Parity Block Sum Check
-As can be seen by this formula (as complex as it may appear), the probability of successfully detecting all errors that arrive is not very large.
- All even numbers of errors are undetected
- Errors often arrive in bursts so probability of multiple errors is not small
-Can partially remedy situation by using a vertical parity check that calculates parity over the same bit of multiple characters. Used in conjunction with longitudinal parity check previously described.
-Overhead is related to number of bits and can be large

Error Detection/Correction

- Cyclic Redundancy Checks (CRC)
—Parity bits still subject to burst noise, uses large overhead (potentially) for improvement of 2-4 orders of magnitude in probability of detection.
-CRC is based on a mathematical calculation performed on message. We will use the following terms:
- M - message to be sent (k bits)
- F - Frame check sequence (FCS) to be appended to message (n bits)
- T - Transmitted message includes both M and $F=>(k+n$ bits)
- $G-\mathrm{a} \mathrm{n}+1$ bit pattern (called generator) used to calculate F and check T

Error Detection/Correction

- Idea behind CRC
—given k-bit frame (message)
-transmitter generates n-bit sequence called frame check sequence (FCS)
-so that resulting frame of size $k+n$ is exactly divisible by some predetermined number
- Multiply M by 2^{n} to shift, and add F to padded Os

$$
T=2^{n} M+F
$$

Error Detection/Correction

- Dividing $2^{n} M$ by G gives quotient and remainder

$$
\frac{2^{n} M}{G}=Q+\frac{R}{G}
$$

then using R as our FCS we get

remainder
is 1 bit less

than divisor

$$
T=2^{n} M+R
$$

on the receiving end, division by G leads to

$$
\frac{T}{G}=\frac{2^{n} M+R}{G}=Q+\frac{R}{G}+\frac{R}{G}=Q
$$

Note:
mod 2 addition, no remainder

Error Detection/Correction

- Therefore, if the remainder of dividing the incoming signal by the generator G is zero, no transmission error occurred.
- Assume T + E was received

$$
\frac{T+E}{G}=\frac{T}{G}+\frac{E}{G}
$$

since T / G does not produce a remainder, an error
is detected only if E/G produces one

Error Detection/Correction

- example, assume $G(X)$ has at least 3 terms
$-G(x)$ has 3 1-bits
- detects all single bit errors
- detects all double bit errors
- detects odd \#' s of errors if $G(X)$ contains the factor $(X+1)$
- any burst errors < or = to the length of FCS
- most larger burst errors
- it has been shown that if all error patterns likely, then the likelihood of a long burst not being detected is $1 / 2^{n}$

Error Detection/Correction

- What does all of this mean?
-A polynomial view:
- View CRC process with all values expressed as polynomials in a dummy variable X with binary coefficients, where the coefficients correspond to the bits in the number.
$-M=110011, M(X)=X^{5}+X^{4}+X+1$, and for $G=11001$ we have $G(X)=X^{4}+X^{3}+1$
- Math is still $\bmod 2$
- An error $\mathrm{E}(\mathrm{X})$ is received, and undetected iff it is divisible by $G(X)$

Error Detection/Correction

-Common CRCs

- CRC-12 $=X^{12}+X^{11}+X^{3}+X^{2}+X+1$
- CRC-16 $=X^{16}+X^{15}+X^{2}+1$
- CRC-CCITT $=X^{16}+X^{12}+X^{5}+1$
- CRC-32 $=X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}$ $+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$

Hardware Implementation

Figure 6.6 General CRC Architecture to Implement Divisor

$$
\left(1+A_{1} X+A_{2} X^{2}+\ldots+A_{n-1} X^{n-k-1}+X^{n-k}\right)
$$

Hardware Implementation

Same thing, just another way of arranging it:

$$
G(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{2} X^{2}+a_{1} X+1
$$

Note that the " + " in the shift register relates to mod- 2 addition, i.e., XOR. The "x" here implies multiplication, i.e., if the term a_{i} is 1 , the feedback loop is enabled, otherwise it is disconnected.

