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Chapter 6: Digital Data 
Communication Techniques 
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Asynchronous and Synchronous 
Transmission 
•  Timing problems require a mechanism to 

synchronize the transmitter and receiver 
•  Two solutions 

— Asynchronous 
— Synchronous 
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Asynchronous 
•  Data transmitted one character at a time 

— 5 to 8 bits 

•  Timing only needs maintaining within each 
character 

•  Resynchronize with each character 
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Asynchronous (diagram) 
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Asynchronous - Behavior 
•  In a steady stream, interval between characters 

is uniform 
•  In idle state, receiver looks for start bit 

— transition 1 to 0 
•  Next samples data bits   

— e.g. 7 intervals (char length) 
•  Then looks for next start bit… 

— Simple 
— Cheap 
— Overhead of 2 or 3 bits per char (~20%) 
— Good for data with large gaps (keyboard) 
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Synchronous - Bit Level 
•  Block of data transmitted without start or stop 

bits 
•  Clocks must be synchronized 
•  Can use separate clock line 

— Good over short distances 
— Subject to impairments 

•  Embed clock signal in data 
— Manchester encoding 
— Carrier frequency (analog) 
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Synchronous - Block Level 
•  Need to indicate start and end of block 
•  Use preamble and postamble 

— e.g. series of SYN (hex 16) characters 
— e.g. block of 11111111 patterns ending in 11111110 

•  More efficient (lower overhead) than async 
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Synchronous (diagram) 
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Types of Error 
•  An error occurs when a bit is altered between transmission and 

reception 
•  Single bit errors 

— One bit altered 
—  Adjacent bits not affected 
 

•  Burst errors 
—  Length B 
—  Contiguous sequence of B bits in which first, last and any number of 

intermediate bits are in error 
—  Impulse noise 
—  Fading in wireless 
—  Effect is greater at higher data rates 
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Error Detection Process 
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Communication Techniques 

•  Error Control 
— Concepts 

•  The concept behind error control is the prevention of 
delivery of incorrect messages (bits) to a higher level in the 
communication hierarchy.  

•  The probability that one bit is in error is called the Bit Error 
Rate BER, e.g.  BER = 10-13  
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Communication Techniques 

— There are two ways to manage Error Control 
•  Forward Error Control - enough additional or redundant 

information is passed to the receiver, so it can not only 
detect, but also correct errors. This requires more 
information to be sent and has tradeoffs. 

•  Backward Error Control  - enough information is sent to 
allow the receiver to detect errors, but not correct them. 
Upon error detection, retransmitted may be requested. 
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Error Detection/Correction 

•  Error Correction 
— What is needed for error correction? 

•  Ability to detect that bits are in error 
•  Ability to detect which bits are in error 

— Techniques include: 
•  Parity block sum checking which can correct a single bit 

error 
•  Hamming encoding which can detect multiple bit errors and 

correct less (example has hamming distance of 3 can detect 
up to 2 errors and correct 1) 

–  00000  00111  11100  11011   
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Communication Techniques 

— code, code-word, binary code 
— error detection, error correction 
— Hamming distance 

•  number of bits in which two words differ 

— Widely used schemes 
•  parity 
•  check sum 
•  cyclic redundancy check 
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Communication Techniques 

•  Parity 
— extra bit at the end of a character (5-7 bits) 

specifying how many of the bits are 1’s.  
— The parity bit is said to be even if it is set to make 

the total number of 1’s even, and odd if it is set to 
make the total number of 1’s odd. 

— Can detect all odd numbers of bit errors in the 
message.  

— Typically used in asynchronous transmission, since 
timing and spacing between characters is uncertain. 

— Requires one extra bit per characters (1/7 overhead) 
— Can not detect even numbers of bit errors -- error 

cancellation 
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Parity 

Hal96 fig. 3.14 
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Parity 

Hal96 fig. 3.14 
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Communication Techniques 
•  Combinatorial arguments 

— Probabilities associated with the detection of 
errors.  

•  P1 = prob. that a frame arrives with no bit errors 
•  P2 = prob. that, with an error-detection algo. in use, a 

frame arrives with one or more undetected bit errors  
•  P3 = prob. that, with an error-detection algo. in use, a 

frame arrives with one or more detected bit errors and 
no undetected bit errors. 

— In a simple system (no error detection), we only 
have Class 1 and 2 frames. If Nf is number of bits 
in a frame and PB is BER for a bit then: 

P P P PB
N f

1 2 11 1= − = −( )               
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Communication Techniques 

 
— To calculate probabilities with error detection define: 

•  NB  - number of Bits per character (including parity) 
•  NC - number of Characters per block 
•  NF - number of bits per Frame = NB NC 
 

•  Notation:       is read as “N choose k” which is the number of 

ways of choosing k items out of N.  
 

        
  

— Note that the basic probability for P1 does not change, and 
that P3 is just what is left after P1 and P2 
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Communication Techniques 
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Communication Techniques 

•  Parity Block Sum Check 
— As can be seen by this formula (as complex as it may 

appear), the probability of successfully detecting all 
errors that arrive is not very large. 

•  All even numbers of errors are undetected 
•  Errors often arrive in bursts so probability of multiple errors 

is not small 

— Can partially remedy situation by using a vertical 
parity check that calculates parity over the same bit 
of multiple characters.  Used in conjunction with 
longitudinal parity check previously described. 

— Overhead is related to number of bits and can be 
large 



CS420/520 Axel Krings Sequence 6 Page 22 

Error Detection/Correction 

•  Cyclic Redundancy Checks (CRC) 
— Parity bits still subject to burst noise, uses large 

overhead (potentially) for improvement of 2-4 orders 
of magnitude in probability of detection. 

— CRC is based on a mathematical calculation 
performed on message. We will use the following 
terms: 

•  M - message to be sent (k bits) 
•  F - Frame check sequence (FCS) to be appended to message 

(n bits) 
•  T - Transmitted message includes both M and F =>(k+n 

bits) 
•  G - a n+1 bit pattern (called generator) used to calculate F 

and check T 
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Error Detection/Correction 

•  Idea behind CRC 
— given k-bit frame (message) 
— transmitter generates n-bit sequence called frame 

check sequence (FCS) 
— so that resulting frame of size k+n is exactly divisible 

by some predetermined number 

•  Multiply M by 2n to shift, and add F to padded 
0s 

T M Fn= +2
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•  Dividing 2nM by G gives quotient and remainder 
 
 
     then using R as our FCS we get 

          
      
    on the receiving end, division by G leads to 
 
 

Error Detection/Correction 
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= + remainder 
is 1 bit less  
than divisor 

T M Rn= +2

Note:  
mod 2 addition, 
no remainder 
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Error Detection/Correction 

•  Therefore, if the remainder of dividing the 
incoming signal by the generator G is zero, no 
transmission error occurred. 

•  Assume T + E was received 
 
 
    
   since T/G does not produce a remainder, an 

error  
   is detected only if E/G produces one 
                 

T E
G

T
G

E
G

+
= +
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Error Detection/Correction 

•  example, assume G(X) has at least 3 terms 
— G(x) has 3 1-bits 

•  detects all single bit errors 
•  detects all double bit errors 
•  detects odd #’s of errors if G(X) contains the factor (X + 1) 
•  any burst errors < or = to the length of FCS 
•  most larger burst errors 
•  it has been shown that if all error patterns likely, then the 

likelihood of a long burst not being detected is 1/2n  
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Error Detection/Correction 

•  What does all of this mean? 
— A polynomial view: 

•  View CRC process with all values expressed as polynomials 
in a dummy variable X with binary coefficients, where the 
coefficients correspond to the bits in the number. 

–  M = 110011, M(X) = X5  + X4 + X + 1, and for G = 11001 we 
have G(X) = X4 + X3 + 1 

–  Math is still mod 2 

•  An error E(X) is received, and undetected iff it is divisible by 
G(X) 
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Error Detection/Correction 

— Common CRCs 
•  CRC-12 = X12  + X11 + X3 + X2  + X  + 1 
•  CRC-16 = X16  + X15 + X2 + 1 
•  CRC-CCITT = X16  + X12 + X5 + 1 
•  CRC-32 = X32  + X26 + X23 + X22  + X16  + X12 + X11 + X10  

+ X8  + X7  + X5 + X4 + X2 + X + 1 
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Hardware Implementation 

Figure 6.6  General CRC Architecture to Implement Divisor
(1 + A1X + A2X2 + … + An–1Xn–k–1 + Xn–k) 
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Hardware Implementation 

cn-1 cn-2 c1 c0 + + + + + ... 

x x x x 

Input 
Bits 

an-1 an-2 a2 a1 

G(X) = anX
n + an−1X

n−1 +...+ a2X
2 + a1X +1

Same thing, just another way of arranging it: 

Note that the “+” in the shift register relates to mod-2 addition, 
i.e., XOR. The “x” here implies multiplication, i.e., if the term ai 
is 1, the feedback loop is enabled, otherwise it is disconnected. 


