Chapter 3: Data Transmission

Terminology (1)

- Transmitter
- Receiver
- Medium
 - -Guided medium
 - e.g. twisted pair, optical fiber
 - -Unguided medium
 - e.g. air, water, vacuum

Terminology (2)

- Direct link
 - -No intermediate devices
- Point-to-point
 - —Direct link
 - —Only 2 devices share link
- Multi-point
 - —More than two devices share the link

Terminology (3)

- Simplex
 - -One direction
 - e.g. Television
- Half duplex
 - -Either direction, but only one way at a time
 - e.g. police radio
- Full duplex
 - -Both directions at the same time
 - e.g. telephone

Frequency, Spectrum and Bandwidth

- Time domain concepts
 - —Analog signal
 - Varies in a smooth way over time
 - —Digital signal
 - Maintains a constant level then changes to another constant level
 - -Periodic signal
 - Pattern repeated over time
 - —Aperiodic signal
 - Pattern not repeated over time

Analogue & Digital Signals

CS420/520 Axel Krings

Sequence 3

Periodic Signals

period = T = 1/f

Sine Wave

• Peak Amplitude (A)

-maximum strength of signal, in volts

- Frequency (*f*)
 - —Rate of change of signal, in Hertz (Hz) or cycles per second
 - —Period = time for one repetition (7), T = 1/f
- Phase (φ)

-Relative position in time

- Periodic signal s(t + T) = s(t)
- General wave $s(t) = A \sin(2\pi f t + \Phi)$

Periodic Signal: e.g. Sine Waves s(t) = A sin(2π ft + Φ)

Sequence 3

Wavelength

- Distance occupied by one cycle
- Distance between two points of corresponding phase in two consecutive cycles
- Wavelength λ
- Assuming signal velocity v

$$\lambda = vT$$
 [unit is m]
 $\lambda f = v$
 $c = 3*10^8$ m/s (speed of light in free space)

Frequency Domain Concepts

- Signal is usually made up of many frequencies
- Components are sine waves
- It can be shown (Fourier analysis) that any signal is made up of component sine waves
- One can plot frequency domain functions

Building block for waves

- What is a square wave?
 - —What frequency components are digital signals composed of?
 - —How many components do I need to recreate a square wave?
 - —What is a realistic spectrum?
 - —Where is the main energy of the signal?
 - -Below is a representation of a square wave with amplitude A:

$$s(t) = \frac{A4}{\pi} \sum_{k \text{ odd }, k=1}^{\infty} \frac{1}{k} \sin(2\pi k f t)$$

Physical Aspects

• Limited Bandwidth

-Fourier Analysis

$$v(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + \sum_{n=1}^{\infty} b_n \sin n\omega_0 t$$

$$a_0 = \frac{1}{T} \int_0^T v(t) dt$$

$$a_n = \frac{2}{T} \int_0^T v(t) \cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T} \int_0^T v(t) \sin(n\omega_0 t) dt$$

$$v(t) = \text{voltage as a function of time}$$

$$\omega_0 = \text{fundamental frequency component in radians/ second}$$

$$f_0 = \text{fundamental frequency in Hz}$$

$$T = 1/f_0 = \text{period in seconds}$$

Physical Aspects

Limited Bandwidth (cont.)
 —Unipolar

$$w(t) = \frac{V}{2} + \frac{2V}{\pi} \{\cos \omega_0 t - \frac{1}{3}\cos 3\omega_0 t + \frac{1}{5}\cos 5\omega_0 t - ...\}$$

-Bipolar

$$v(t) = \frac{4V}{\pi} \{\cos \omega_0 t - \frac{1}{3}\cos 3\omega_0 t + \frac{1}{5}\cos 5\omega_0 t - ...\}$$

How much bandwidth do we need? What are the trade-offs if we compromise bandwidth?

CS420/520 Axel Krings

(c) $(4/\pi) [\sin (2\pi ft) + (1/3) \sin (2\pi (3f)t)]$

Spectrum & Bandwidth

- Spectrum
 - -range of frequencies contained in signal
- Absolute bandwidth
 - —width of spectrum
- Effective bandwidth
 - -Often just bandwidth
 - Narrow band of frequencies containing most of the energy
- DC Component
 - -Component of zero frequency

Signal with DC Component

Data Rate and Bandwidth

- Any transmission system has a limited band of frequencies
- This limits the data rate that can be carried
- Issues
 - —The more bandwidth the less distortion
 - —Where is the bulk of the energy?

Analog and Digital Data Transmission

• Data

-Entities that convey meaning

• Signals

-Electric or electromagnetic representations of data

Transmission

 Communication of data by propagation and processing of signals

Analog and Digital Data

- Analog
 - -Continuous values within some interval
 - -e.g. sound, video
- Digital
 - -Discrete values
 - -e.g. text, integers

Frequency

(

Analog and Digital Signals

- Means by which data are propagated
- Analog
 - -Continuously variable
 - -Various media
 - wire, fiber optic, space
 - —Speech bandwidth 100Hz to 7kHz
 - —Telephone bandwidth 300Hz to 3400Hz
 - -Video bandwidth 4MHz
- Digital
 - —Use two DC components

Advantages & Disadvantages of Digital

- Cheaper
- Less susceptible to noise
- Greater attenuation
 - -Pulses become rounded and smaller
 - -Leads to loss of information

Attenuation of Digital Signals

Components of Speech

- Frequency range (of hearing) 20Hz-20kHz
 —Speech 100Hz-7kHz
- Easily converted into electromagnetic signal for transmission
- Sound frequencies with varying volume converted into electromagnetic frequencies with varying voltage
- Limit frequency range for voice channel —300-3400Hz

Video Components

- USA 483 lines scanned per frame at 30 frames per second
 525 lines but 42 lost during vertical retrace
- So 525 lines x 30 scans = 15750 lines per second
 - 63.5µs per line, (11µs for retrace, so 52.5 µs per video line)
- Max frequency if line alternates black and white
- Horizontal resolution is about 450 lines giving 225 cycles of wave in 52.5 μs
- Max frequency of 4.2MHz

Sequence 3

Binary Digital Data

- From computer terminals etc.
- Two dc components
- Bandwidth depends on data rate

Conversion of PC Input to Digital Signal

- as generated by computers etc.
- has two dc components
- bandwidth depends on data rate

User input at a PC is converted into a stream of binary digits (1s and 0s). In this graph of a typical digital signal, binary one is represented by –5 volts and binary zero is represented by +5 volts. The signal for each bit has a duration of 0.02 msec, giving a data rate of 50,000 bits per second (50 kbps). CS420/520 Axel Krings Page 29

Data and Signals

- Usually use digital signals for digital data and analog signals for analog data
- Can use analog signal to carry digital data —Modem
- Can use digital signal to carry analog data —Compact Disc audio

Analog Signals Carrying Analog and Digital Data

Digital Signals Carrying Analog and Digital Data

Transmission Impairments

- Signal received may differ from signal transmitted causing:
 - -analog degradation of signal quality
 - -digital bit errors
- Most significant impairments are
 - -attenuation and attenuation distortion
 - -delay distortion

-noise

Attenuation

- Signal strength falls off with distance
- Depends on medium
- Received signal strength:
 - -must be enough to be detected
 - must be sufficiently higher than noise to be received without error
- Attenuation is an increasing function of frequency

Delay Distortion

- Only in guided media
- Propagation velocity varies with frequency

Noise (1)

- Additional signals inserted between transmitter and receiver
- Thermal
 - —Due to thermal agitation of electrons
 - -Uniformly distributed
 - —White noise
- Intermodulation
 - —Signals that are the sum and difference of original frequencies sharing a medium

Noise (2)

Crosstalk

—A signal from one line is picked up by another

• Impulse

- —Irregular pulses or spikes
- -e.g. External electromagnetic interference
- -Short duration

-High amplitude

Digital Transmission

- Concerned with content
- Integrity endangered by noise, attenuation etc.
- Repeaters
 - -Repeater receives signal
 - -Extracts bit pattern
 - -Retransmits
 - -Attenuation is overcome
 - -Noise is not amplified

Analog Transmission

- Analog signal transmitted without regard to content
- May be analog or digital data
- Attenuated over distance
- Use amplifiers to boost signal
- Also amplifies noise

Advantages of Digital Transmission

- Digital technology
 - Low cost LSI/VLSI technology
- Data integrity
 - Longer distances over lower quality lines
- Capacity utilization
 - High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- Security & Privacy
 - Encryption
- Integration
 - Can treat analog and digital data similarly

Channel Capacity

• Data rate

—In bits per second, bps (not Bps)

- -Rate at which data can be communicated
- Bandwidth

—In cycles per second of Hertz, Hz

- -Constrained by transmitter and medium
- Convention: not all k's are equal
 - data rates are given as power of 10
 - e.g., kHz is 1000Hz
 - data is given in terms of power of 2
 - e.g., KByte is 1024 Bytes

Nyquist Bandwidth

- If rate of signal transmission is 2B then a signal with frequencies no greater than B is sufficient to carry the signal rate.
 - —Why? Assume we have a square wave of repeating 101010. If a positive pulse is a 1 and a negative pulse is 0, then each pulse lasts $1/2 T_1 (T_1 = 1/f_1)$ and the data rate is $2f_1$ bits per second.

Nyquist Bandwidth

- If we limit the components to a maximum frequency (restrict the bandwidth) we need to make sure the signal is accurately represented.
- Based on the accuracy we require, the bandwidth can carry a particular data rate. The theoretical maximum communication limit is given by the **Nyquist** formula:

 $C = 2B \log_2 M$

- C = capacity or data transfer rate in bps
- B = bandwidth (in hertz)
 - = number of possible signaling levels

CS420/520 Axel Krings

Signal Strength

- —An important parameter in communication is the strength of the signal transmitted. Even more important is the strength being received.
- —As signal propagates it will be *attenuated* (decreased)
- -Amplifiers are inserted to increase signal strength
- Gains, losses and relative levels of signals are expressed in decibels
 - This is a logarithmic scale, but strength usually falls logarithmically
 - Calculation of gains and losses involves simple addition and subtraction

-Decibel measure of difference in two power levels is

$$N_{dB} = 10 \log_{10} \frac{P_1}{P_2}$$

Physical Aspects

- Signal Attenuation and Distortion
 - —As a signal propagates across a transmission medium its amplitude decreases. This is known as **signal attenuation.**
 - —A typical signal consists of a composition of many frequency components (Fourier Analysis). Due to the limited transmission bandwidth of a medium, the higher frequency components may not be able to be transmitted.
 - Recall the **Nyquist** formula

$$C = 2B\log_2 M$$

$$\log_2(x) = \frac{\ln^2(x)}{\ln^2(2)}$$

 $\ln (\mathbf{x})$

Delay Distortion

-Different frequency components of a signal

- are attenuated differently, and
- travel at different speeds through guided media

—This may lead to **delay distortion**

Shannon capacity

—A transmission line may experience interference from a number of sources, called **noise**. Noise is measured in terms of signal to noise <u>power</u> ratio, expressed in decibels:

$$\left(\frac{S}{N}\right)_{dB} = 10\log_{10}\left(\frac{S}{N}\right) dB$$

—The effects of noise on channel capacity can be seen using the **Shannon-Hartley Law:**

$$C = B \log_2 \left(1 + \frac{S}{N}\right) bps$$
 $C = data transfer rate in bps$
 $B = bandwidth (in hertz)$

Cross Talk -- NEXT canceling

- —near-end crosstalk (NEXT), cross talk of strong transmit (output) signal to weak receive (input) signal.
- -adaptive NEXT canceling using op-amp

Noise

• Impulse Noise

—impulse caused by switching, lightning etc.

• Thermal Noise

-present irrespective of any external effects

-caused by thermal agitation of electrons

Noise

White Noise

—random noise – entire spectrum

- Pink Noise
 - -"realistic spectrum"
 - —the power spectral density is inversely proportional to the frequency

Combined Effects

+ V Attenuation Transmitted signal Limited Bandwidth -VNoise

It all <u>adds up</u>!

Thermal Noise

—Energy (in joules = watts x seconds) per bit in a signal:

$$E_b = ST_b$$

 $T_b = time period for 1 bit in seconds$

-Data Transmission rate $R = 1/T_b$ -Thermal noise N_0 in a line is: (*T* is temperature in K)

 $N_0 = \frac{\overline{N_0}}{\overline{N_0}} = \frac{\overline{kTW}}{kTW}$

$$N_{0} = kTW \text{ where } k = 1.3803 \times 10^{-23} \text{ joule K}^{-1}$$

$$k \text{ is Boltzmann constant}$$

$$W \text{ is the bandwidth}$$

$$E_{b} = S/R = S/R$$

CS420/520 Axel Krings

Sequence 3

Signal Delay

—There exists a transmission propagation delay in any medium

- Speed of light 3 x 10⁸ ms⁻¹
- Speed of EM in cable/wire 2 x 10⁸ ms⁻¹
- —Important parameter is **round-trip-delay** (time from first bit sent to last bit acknowledged)

Signal Delay

—Propagation delay T_p and transmission delay T_x

$$T_P = \frac{d}{V}, T_x = \frac{n}{R}$$

-Important ratio
$$\frac{T_P}{T_x}$$

d = distance in metersV = EM speed n = number of bits transmitted R = link bit rate in bits per second