Internetwork Operation

CS420/520 Axel Krings

Sequence 19

Multicasting

- Addresses that refer to group of hosts on one or more networks
- Uses
 - -Multimedia "broadcast"
 - -Teleconferencing
 - —Database
 - -Distributed computing
 - -Real time workgroups

Page 2

Sequence 19

1

Broadcast and Multiple Unicast

- Broadcast a copy of packet to each network —Requires 13 copies of packet
- Multiple Unicast
 - —Send packet only to networks that have hosts in group
 - -11 packets

	(a) Broadcast			(b) Multiple Unicast			(c) Multicast			
	$S \rightarrow N2$	$S \rightarrow N3$	$S \rightarrow N5$	$S \rightarrow N6$	Total	$S \rightarrow N3$	$S \rightarrow N5$	$S \rightarrow N6$	Total	
N1	1	1	1	1	4	1	1	1	3	1
N2										
N3		1			1	1			1	1
N4			1	1	2		1	1	2	2
N5			1		1		1		1	1
N6				1	1			1	1	1
L1	1				1					
L2										
L3		1			1	1			1	1
L4			1	1	2		1	1	2	1
L5										
Total	2	3	4	4	13	3	4	4	11	8

Table 19.1 Traffic Generated by Various Multicasting Strategies

True Multicast

- Determine least cost path to each network that has host in group
 - -Gives spanning tree configuration containing networks with group members
- Transmit single packet along spanning tree
- Routers replicate packets at branch points of spanning tree
- 8 packets required

Page 6

CS420/520 Axel Krings Page 7

Requirements for Multicasting (1)

- Router may have to forward more than one copy of packet
- Convention needed to identify multicast addresses
 - IPv4 Class D start 1110
 - IPv6 8 bit prefix, all 1, 4 bit flags field, 4 bit scope field, 112 bit group identifier
- Nodes must translate between IP multicast addresses and list of networks containing group members
- Router must translate between IP multicast address and network
 multicast address

Page 8

Requirements for Multicasting (2)

- Mechanism required for hosts to join and leave multicast group
- Routers must exchange info
 - -Which networks include members of given group
 - —Sufficient info to work out shortest path to each network
 - -Routing algorithm to work out shortest path
 - Routers must determine routing paths based on source and destination addresses

CS420/520 Axel Krings	Page 9	Sequence 19

Spanning Tree from Router C to Multicast Group

Internet Group Management Protocol (IGMP)

- RFC 3376
- Host and router exchange of multicast group info
- Use broadcast LAN to transfer info among multiple hosts and routers

CS420/520 Axel Krings	Page 11	Sequence 19

Principle Operations

- Hosts send messages to routers to subscribe to and unsubscribe from multicast group —Group defined by multicast address
- Routers check which multicast groups are of interest to which hosts
- IGMP currently version 3
- IGMPv1
 - -Hosts could join group
 - -Routers used timer to unsubscribe members

CS420/520 Axel Krings

Page 12

Operation of IGMPv1 & v2

- Receivers have to subscribe to groups
- Sources do not have to subscribe to groups
- Any host can send traffic to any multicast group
- Problems:
 - -Spamming of multicast groups
 - -Even if application level filters drop unwanted packets, they consume valuable resources
 - -Establishment of distribution trees is problematic
 - -Location of sources is not known
 - -Finding globally unique multicast addresses difficult

```
CS420/520 Axel Krings
```

Page 13

Sequence 19

IGMP v3

- Allows hosts to specify list from which they want to receive traffic
 - -Traffic from other hosts blocked at routers
- Allows hosts to block packets from sources that send unwanted traffic

Page 14

IGMP Message Formats Membership Query

Bit:	٥	4	8	16	31
	Туре	= 0x11	Max resp time	Checksum	٦,
	Group		oup address (cla	ss D IPv4 address)	
	Resv SQRV		QQIC	Number of sources (N)	
	Source A			ddress [1]	
	Source A			ddress [2]	
			ddress [N]		

(a) Membership query message

CS420/520 Axel Krings	Page 15	Sequence 19
-----------------------	---------	-------------

Membership Query

- Sent by multicast router
- General query —Which groups have members on attached network
- Group-specific query —Does group have members on an attached network
- Group-and-source specific query
 - Do attached device want packets sent to specified multicast address
 - -From any of specified list of sources

CS420/520 Axel Krings

Page 16

Membership Query Fields (1)

- Type
- Max Response Time
 - Max time before sending report in units of 1/10 second
- Checksum
 - Same algorithm as IPv4
- Group Address
 - Zero for general query message
 - Multicast group address for group-specific or group-and-source
- S Flag
 - 1 indicates that receiving routers should suppress normal timer updates done on hearing query

CS420/520	Axel	Krinas	

Page 17

Sequence 19

Membership Query Fields (2)

- QRV (querier's robustness variable)
 - RV value used by sender of query
 - Routers adopt value from most recently received query
 - Unless RV was zero, when default or statically configured value used
 - RV dictates number of retransmissions to assure report not missed
- QQIC (querier's querier interval code)
 - QI value used by querier
 - Timer for sending multiple queries
 - Routers not current querier adopt most recently received QI
 - Unless QI was zero, when default QI value used
- Number of Sources
- Source addresses
 - One 32 bit unicast address for each source

CS420/520 Axel Krings

Page 18

IGMP Message Formats Membership Report

Bit:	0 4	8	16	31
	Type = 0x22	Reserved	Checksum	
	Rese	erved	Number of group records (M)	
		Group r	ecord [1]	
	Group record [2]			
		Group re	ecord [M]	

(b) Membership report message

CS420/520 Axel Krings Page 19 Sequence 19

Membership Reports

- Type
- Checksum
- Number of Group Records
- Group Records
 - -One 32-bit unicast address per source

Page 20

IGMP Message Formats Group Record

CS420/520 Axel Krings

- **Group Record** Record Type - See later
- Aux Data Length - In 32-bit words
- Number of Sources
- Multicast Address
- Source Addresses - One 32-bit unicast address per source
- Auxiliary Data
 - Currently, no auxiliary data values defined

CS420/520 Axel Krings

Page 22

IGMP Operation - Joining

- Host using IGMP wants to make itself known as group member to other hosts and routers on LAN
- IGMPv3 can signal group membership with filtering capabilities with respect to sources
 - EXCLUDE mode all group members except those listed
 INCLUDE mode Only from group members listed
- To join group, host sends IGMP membership report message
 - Address field multicast address of group
 - Sent in IP datagram with Group Address field of IGMP message and Destination Address encapsulating IP header same
 - Current members of group will receive learn of new member
 - Routers listen to all IP multicast addresses to hear all reports

CS420/520 Axel Krings

Page 23

Sequence 19

IGMP Operation – Keeping Lists Valid

- Routers periodically issue IGMP general query message
 - In datagram with all-hosts multicast address
 - Hosts that wish to remain in groups must read datagrams with this allhosts address
 - Hosts respond with report message for each group to which it claims membership
- Router does not need to know every host in a group
 - Needs to know at least one group member still active
 - Each host in group sets timer with random delay
 - Host that hears another claim membership cancels own report
 - If timer expires, host sends report
 - Only one member of each group reports to router

CS420/520 Axel Krings

Page 24

IGMP Operation - Leaving

- Host leaves group, by sending leave group message to all-routers static multicast address
- Send membership report message with EXCLUDE option and null list of source addresses
- Router determine if there are any remaining group members using group-specific query message

CS420/520 Axel Krings	Page 25	Sequence 19

Routing Protocols

- Routing Information

 About topology and delays in the internet
- Routing Algorithm

 Used to make routing decisions based on information

CS420/520 Axel Krings

Page 26

Autonomous Systems (AS)

- Group of routers
- Exchange information
- Common routing protocol
- Set of routers and networks managed by signle organization
- A connected network

 There is at least one route between any pair of nodes

CS420/520 Axel Krings	

Page 27

Sequence 19

Interior Router Protocol (IRP) Exterior Routing Protocol (ERP)

- · Passes routing information between routers within AS
- May be more than one AS in internet
- Routing algorithms and tables may differ between different AS
- Routers need some info about networks outside their AS
- Used exterior router protocol (ERP)
- IRP needs detailed model
- · ERP supports summary information on reachability

CS420/520 Axel Krings

Page 28

Approaches to Routing – Distance-vector

- Each node (router or host) exchange information with neighboring nodes
 - Neighbors are both directly connected to same network
- First generation routing algorithm for ARPANET
- Node maintains vector of link costs for each directly attached network and distance and next-hop vectors for each destination
- Used by Routing Information Protocol (RIP)
- Requires transmission of lots of information by each router
 - Distance vector to all neighbors
 - Contains estimated path cost to all networks in configuration
 - Changes take long time to propagate

CS420/520 Axel Krings

Page 30

Approaches to Routing – Link-state

- Designed to overcome drawbacks of distance-vector
- When router initialized, it determines link cost on each interface
- Advertises set of link costs to all other routers in topology

 Not just neighboring routers
- From then on, monitor link costs

 If significant change, router advertises new set of link costs
- Each router can construct topology of entire configuration — Can calculate shortest path to each destination network
- Router constructs routing table, listing first hop to each destination
- Router does not use distributed routing algorithm
 - Use any routing algorithm to determine shortest paths
 In practice, Dijkstra's algorithm
- Open shortest path first (OSPF) protocol uses link-state routing.
- Also second generation routing algorithm for ARPANET

CS420/520 Axel Krings

Page 31

Sequence 19

Exterior Router Protocols – Not Distance-vector

- Link-state and distance-vector not effective for exterior router protocol
- Distance-vector assumes routers share common distance metric
- ASs may have different priorities
 - May have restrictions that prohibit use of certain other AS
 - Distance-vector gives no information about ASs visited on route

CS420/520 Axel Krings

Page 32

Exterior Router Protocols – Not Link-state

- Different ASs may use different metrics and have different restrictions
 - —Impossible to perform a consistent routing algorithm.
- Flooding of link state information to all routers unmanageable

CS/20/520	Δvol	Kringe
		I VI II I VI S

Page 33

Sequence 19

Exterior Router Protocols – Path-vector

- Dispense with routing metrics
- Provide information about which networks can be reached by a given router and ASs crossed to get there

 Does not include distance or cost estimate
- Each block of information lists all ASs visited on this route
 - Enables router to perform policy routing
 - E.g. avoid path to avoid transiting particular AS
 - E.g. link speed, capacity, tendency to become congested, and overall quality of operation, security
 - E.g. minimizing number of transit ASs

CS420/520 Axel Krings

Page 34

Border Gateway Protocol (BGP)

- For use with TCP/IP internets
- Preferred EGP of the Internet
- Messages sent over TCP connections
 - Open
 - Update
 - Keep alive
 - Notification
- Procedures
 - Neighbor acquisition
 - Neighbor reachability
 - Network reachability

BGP Procedure

- Open TCP connection
- Send Open message

 Includes proposed hold time
- Receiver selects minimum of its hold time and that sent
 - Max time between Keep alive and/or update messages

CS420/520 Axel Krings	Page 37	Sequence 19

Message Types

- Keep Alive
 - To tell other routers that this router is still here
- Update
 - Info about single routes through internet
 - List of routes being withdrawn
 - Includes path info
 - Origin (IGP or EGP)
 - AS_Path (list of AS traversed)
 - Next_hop (IP address of boarder router)
 - Multi_Exit_Disc (Info about routers internal to AS)
 - Local_pref (Inform other routers within AS)
 - Atomic_Aggregate, Aggregator (Uses address tree structure to reduce amount of info needed)

CS420/520 Axel Krings

Page 38

Uses of AS_Path and Next_Hop

• AS_Path

- -Enables routing policy
 - Avoid a particular AS
 - Security
 - Performance
 - Quality
 - Number of AS crossed
- Next_Hop
 - -Only a few routers implement BGP
 - Responsible for informing outside routers of routes to other networks in AS

CS420/520 Avel Krings	Page 39	Sequence 19
C3420/320 AXEL KILLYS	Fage 39	Sequence 19

Notification Message

- Message header error

 Authentication and syntax
- Open message error
 - Syntax and option not recognized
 - Unacceptable hold time
- Update message error
 Syntax and validity errors
- Hold time expired
 - Connection is closed
- Finite state machine error
- Cease
 - Used to close a connection when there is no error

CS420/520 Axel Krings

Page 40

BGP Routing Information Exchange

- Within AS, router builds topology picture using IGP
- Router issues Update message to other routers outside AS using BGP
- These routers exchange info with other routers in other AS
- Routers must then decide best routes

CS420/520 Axel Krings	Page 41	Sequence 19

Open Shortest Path First (1)

- OSPF
- IGP of Internet
- Replaced Routing Information Protocol (RIP)
- Uses Link State Routing Algorithm
 - Each router keeps list of state of local links to network
 - Transmits update state info
 - Little traffic as messages are small and not sent often
 - RFC 2328
- Route computed on least cost based on user cost metric

Page 42

Open Shortest Path First (2)

- Topology stored as directed graph
- Vertices or nodes
 - -Router
 - -Network
 - Transit
 - Stub
- Edges
 - -Graph edge
 - Connect two router
 - Connect router to network

CS420/520 Axel Krings Page 43	Sequence 19
-------------------------------	-------------

CS420/520 Axel Krings

Operation

- Dijkstra' s algorithm used to find least cost path to all other networks
- Next hop used in routing packets

Page 46

Integrates Services Architecture

- Changes in traffic demands require variety of quality of service
- Internet phone, multimedia, multicast
- New functionality required in routers
- New means of requesting QoS
- ISA
- RFC 1633

Page 48

Internet Traffic

• Elastic

- Can cope with wide changes in delay and/or throughput
 - FTP sensitive to throughput
 - E-Mail insensitive to delay
 - Network Management sensitive to delay in times of heavy congestion
 - Web sensitive to delay

• Inelastic

- -Does not easily adapt to variations
- -e.g. real time traffic

CS420/520 Axel Krinas	Page 49	Sequence 19
00420/02070011011193	i ugo +o	ocqueriee to

Internet Traffic

• we will skip the rest of this chapter

Page 50