Internet Protocols

CS420/520 Axel Krings

Page 1

Sequence 18

Internet Protocols

- Internet Protocols
 - Small set of functions that form basis of all protocols
 - Not all protocols have all functions
 - Reduce duplication of effort
 - May have same type of function in protocols at different levels
 - Encapsulation
 - Fragmentation and reassembly
 - Connection control
 - Ordered delivery
 - Flow control
 - Error control
 - Addressing
 - Multiplexing
 - Transmission services

CS420/520 Axel Krings

Page 2

Encapsulation

- Data usually transferred in blocks
 - Protocol data units (PDUs)
 - Each PDU contains data and control information
 - Some PDUs only control
- Three categories of control
 - Address
 - Of sender and/or receiver
 - Error-detecting code
 - E.g. frame check sequence
 - Protocol control
 - Additional information to implement protocol functions
- Addition of control information to data is encapsulation
- Data accepted or generated by entity and encapsulated into PDU
 Containing data plus control information
 - e.g. TFTP, HDLC, frame relay, ATM, AAL5, LLC, IEEE 802.3, IEEE 802.11

CS420/520 Axel Krings

Page 3

Sequence 18

Fragmentation and Reassembly (Segmentation – OSI)

- Exchange data between two entities
- Characterized as sequence of PDUs of some bounded size

 Application level message
- Lower-level protocols may need to break data up into smaller blocks. This is called *fragmentation*
- Many reasons for fragmentation
 - Communications network may only accept blocks of up to a certain size
 ATM 53 octets
 - Ethernet 1526 octets
 - More efficient error control
 - Smaller retransmission
 - Fairer
 - Prevent station monopolizing medium
 - Smaller buffers
 - Provision of checkpoint and restart/recovery operations

CS420/520 Axel Krings

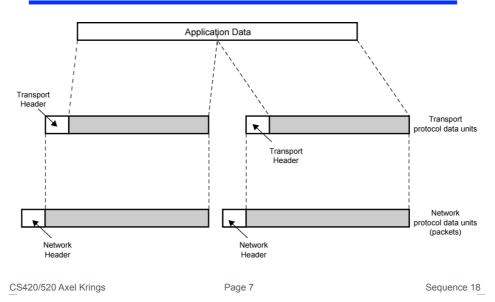
Page 4

Disadvantages of Fragmentation

- Make PDUs as large as possible because
 - PDU contains some control information
 - Smaller block, larger overhead
- PDU arrival generates interrupt

 Smaller blocks, more interrupts
- More time required to process many smaller PDUs

CS420/520 Axel Krings	Page 5	Sequence 18

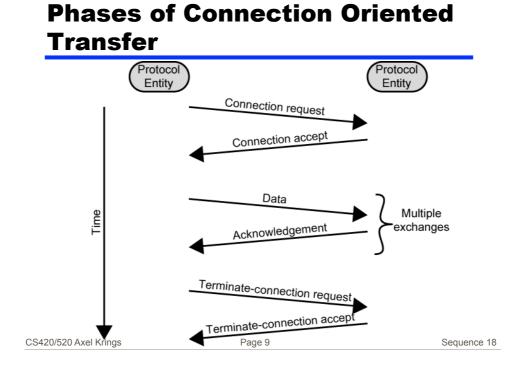

Reassembly

- Segmented data must be reassembled into messages
- More complex if PDUs have arrived out of order

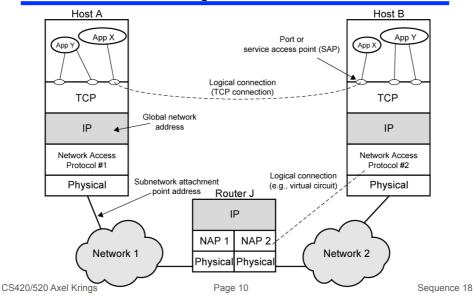
Page 6

PDUS and Fragmentation

(Copied from chapter 2 fig 2.4)



Connection Control


- Connectionless data transfer
 - Each PDU treated independently
 E.g. datagram
- Connection-oriented data transfer
 E.g. virtual circuit
- Connection-oriented preferred (even required) for lengthy exchange of data
- Or if protocol details must be worked out dynamically
- · Logical association, or connection, established between entities
- Three phases occur
 - Connection establishment
 - Data transfer
 - Connection termination
 - May be interrupt and recovery phases to handle errors

CS420/520 Axel Krings

Page 8

TCP/IP Concepts

Internetworking Terms

- Communications Network
 - Facility that provides data transfer service
- An internet
 - Collection of communications networks interconnected by bridges and/ or routers
- The Internet note upper case I
 - The global collection of thousands of individual machines and networks
- Intranet
 - Corporate internet operating within the organization
 - Uses Internet (TCP/IP and http)technology to deliver documents and resources

CS420/520 Axel Krings	Page 11	Sequence 18

Internetworking Terms (2)

- End System (ES)
 - -Device attached to one of the networks of an internet
 - -Supports end-user applications or services
- Intermediate System (IS)
 - -Device used to connect two networks
 - Permits communication between end systems attached to different networks

CS420/520 Axel Krings

Page 12

Network Architecture Features

- Addressing
- Packet size
- Access mechanism
- Timeouts
- Error recovery
- Status reporting
- Routing
- User access control
- Connection based or connectionless

CS420/520 Axel Krings	Page 13	Sequence 18

Architectural Approaches

- Connection oriented
- Connectionless

Page 14

Connection Oriented

- Assume that each network is connection oriented
- IS connect two or more networks
 - —IS appear as ES to each network
 - -Logical connection set up between ESs
 - Concatenation of logical connections across networks
 - -Individual network virtual circuits joined by IS
- May require enhancement of local network services
 - -802, FDDI are datagram services

Page 15

Sequence 18

Connection Oriented IS Functions

- Relaying
- Routing
- e.g. X.75 used to interconnect X.25 packet switched networks
- Connection oriented not often used —(IP dominant)

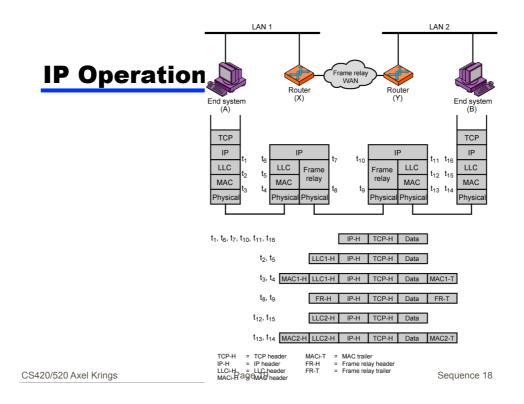
CS420/520 Axel Krings

Page 16

Connectionless Operation

- Corresponds to datagram mechanism in packet switched network
- Each NPDU treated separately
- Network layer protocol common to all DTEs and routers

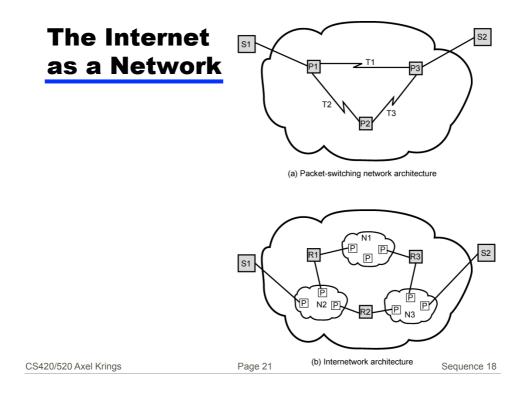
 Known generically as the internet protocol
- Internet Protocol
 - One such internet protocol developed for ARPANET
 - RFC 791 (Get it and study it)
- Lower layer protocol needed to access particular network


CS420/520 Axel Krings	Page 17	Sequence 18

Connectionless Internetworking

- Advantages
 - -Flexibility
 - -Robust
 - -No unnecessary overhead
- Unreliable
 - -Not guaranteed delivery
 - -Not guaranteed order of delivery
 - Packets can take different routes
 - -Reliability is responsibility of next layer up (e.g. TCP)

CS420/520 Axel Krings


Page 18

Design Issues

- Routing
- Datagram lifetime
- Fragmentation and re-assembly
- Error control
- Flow control

Page 20

Routing

- End systems and routers maintain routing tables
 - Indicate next router to which datagram should be sent
 - Static
 - May contain alternative routes
 - Dynamic
 - Flexible response to congestion and errors
- Source routing
 - Source specifies route as sequential list of routers to be followed
 - Security
 - Priority
- Route recording

CS420/520 Axel Krings

Page 22

Datagram Lifetime

- Datagrams could loop indefinitely
 - Consumes resources
 - Transport protocol may need upper bound on datagram life
- Datagram marked with lifetime
 - Time To Live field in IP
 - Once lifetime expires, datagram discarded (not forwarded)
 - Hop count
 - Decrement time to live on passing through a each router
 - Time count
 - Need to know how long since last router

CS420/520 Axe	l Kringe

Page 23

Sequence 18

Fragmentation and Re-assembly

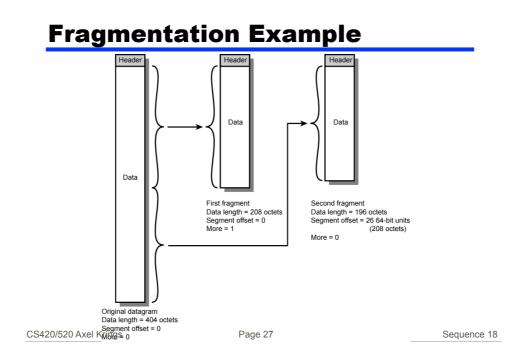
- Different packet sizes
- When to re-assemble
 - -At destination
 - · Results in packets getting smaller as data traverses internet
 - -Intermediate re-assembly
 - Need large buffers at routers
 - Buffers may fill with fragments
 - All fragments must go through same router
 - Inhibits dynamic routing

CS420/520 Axel Krings

Page 24

IP Fragmentation (1)

- IP re-assembles at destination only
- Uses fields in header
 - -Data Unit Identifier (ID)
 - Identifies end system originated datagram
 - Source and destination address
 - Protocol layer generating data (e.g. TCP)
 - Identification supplied by that layer
 - -Data length
 - Length of user data in octets


CS420/520 Axel Krings	Page 25	Sequence 18

IP Fragmentation (2)

-Offset

- Position of fragment of user data in original datagram
- In multiples of 64 bits (8 octets)
- -More flag
 - Indicates that this is not the last fragment

Page 26

Dealing with Failure

- Re-assembly may fail if some fragments get lost
- Need to detect failure
- Re-assembly time out
 - -Assigned to first fragment to arrive
 - —If timeout expires before all fragments arrive, discard partial data
- Use packet lifetime (time to live in IP)
 - --If time to live runs out, kill partial data

CS420/520 Axel Krings

Page 28

Error Control

- Not guaranteed delivery
- Router should attempt to inform source if packet discarded
 - —e.g. for time to live expiring
- Source may modify transmission strategy
- May inform high layer protocol
- Datagram identification needed
- (Look up ICMP)

CS420/520 Axel Krings	Page 29	Sequence 18

Flow Control

- Allows routers and/or stations to limit rate of incoming data
- Limited in connectionless systems
- Send flow control packets —Requesting reduced flow
- e.g. ICMP

Page 30

Internet Protocol (IP) Version 4

- Part of TCP/IP —Used by the Internet
- Specifies interface with higher layer —e.g. TCP
- Specifies protocol format and mechanisms
- RFC 791
 - -Get it and study it!
 - -www.rfc-editor.org
- Will (eventually) be replaced by IPv6 (see later)

CS420/520 Axel Krings	Page 31	Sequence 18

IP Services

- Primitives
 - Functions to be performed
 - Form of primitive implementation dependent
 - e.g. subroutine call
 - Send
 - Request transmission of data unit
 - Deliver
 - Notify user of arrival of data unit
- Parameters
 - Used to pass data and control info

CS420/520 Axel Krings

Page 32

Parameters (1)

- Source address
- Destination address
- Protocol
 - Recipient e.g. TCP
- Type of Service

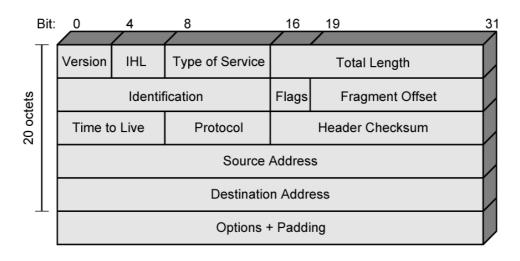
 Specify treatment of data unit during transmission through networks
- Identification
 - Source, destination address and user protocol
 - Uniquely identifies PDU
 - Needed for re-assembly and error reporting
 - Send only

CS420/520 Axel Krings	Page 33	Sequence 18

Parameters (2)

- Don't fragment indicator
 - —Can IP fragment data
 - -If not, may not be possible to deliver
 - -Send only
- Time to live
 - -Send only
- Data length
- Option data
- User data

CS420/520 Axel Krings


Page 34

Options

- Security
- Source routing
- Route recording
- Stream identification
- Timestamping

CS420/520 Axel Krings	Page 35	Sequence 18
-----------------------	---------	-------------

IPv4 Header

CS420/520 Axel Krings

Page 36

Header Fields (1)

- Version
 - -Currently 4
 - -IP v6 see later
- Internet header length
 - —In 32 bit words
 - -Including options
- Type of service
- Total length —Of datagram, in octets

CS420/520 Axel Krings	Page 37	Sequence 18

Header Fields (2)

- Identification
 - Sequence number
 - Used with addresses and user protocol to identify datagram uniquely
- Flags
 - More bit
 - Don't fragment
- Fragmentation offset
- Time to live
- Protocol
 - Next higher layer to receive data field at destination

Page 38

Header Fields (3)

- Header checksum
 - -Reverified and recomputed at each router
 - —16 bit ones complement sum of all 16 bit words in header
 - —Set to zero during calculation
- Source address
- Destination address
- Options
- Padding
 - —To fill to multiple of 32 bits long

CS420/520 Avol Kringo	Dego 20	Sequence 18
CS420/520 Axel Krings	Page 39	Sequence to

Data Field

- Carries user data from next layer up
- Integer multiple of 8 bits long (octet)
- Max length of datagram (header plus data) 65,535 octets

Page 40

Inter-domain Routing

- Classful network design
- Classless Inter-Domain Routing CIDR
 - —Introduced in 1993 by the Internet Engineering Task Force
 - —Goal was to slow the growth of routing tables on routers across the Internet, and to help slow the rapid exhaustion of IPv4 addresses
 - —CIDR appends a "/" character to the address and the decimal number of leading bits of the routing prefix
 - -Example:
 - 192.168.1.0/24 for IPv4,
 - 2001:db8::/32 for IPv6

CS420/520 Axel Krings	Page 41	Sequence 18

IPv4 Address Formats

0	Network (7 bits)		Host (24 bits)		Class A
1	0 Netw	ork (14 bits)	Host (16 bits)	Class B
1	1 0	Network (21 bits	3)	Host (8 bits)	Class C
1	1 1 0	М	ulticast		Class D
1	1 1 1 0 420/520 Axer Krings	Fu	ture Use Page 42		Class E Sequence 18

IP Addresses - Class A

- 32 bit global internet address
- Two parts
 - -Network part
 - —Host part
- Class A
 - -Start with binary 0
 - -All 0 reserved
 - -01111111 (127) reserved for loopback
 - -Range 1.x.x.x to 126.x.x.x
 - -All allocated

CS420/520 Axel Krings	Page 43	Sequence 18
-----------------------	---------	-------------

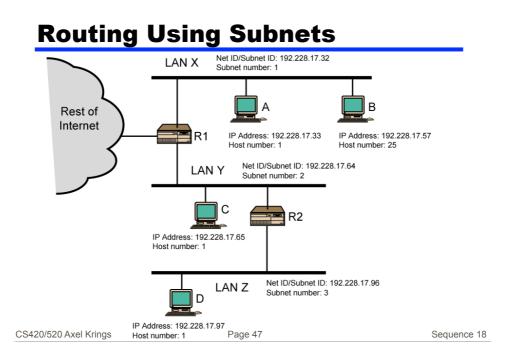
IP Addresses - Class B

- Start with binary 10
- Range 128.x.x.x to 191.x.x.x
- Second Octet also included in network address
- 2¹⁴ = 16,384 class B addresses
- All allocated

Page 44

IP Addresses - Class C

- Start with 110
- Range 192.x.x.x to 223.x.x.x
- Second and third octet also part of network address
- 2²¹ = 2,097,152 addresses
- Nearly all allocated —See IPv6


CS420/520 Axel Krings	Page 45	Sequence 18

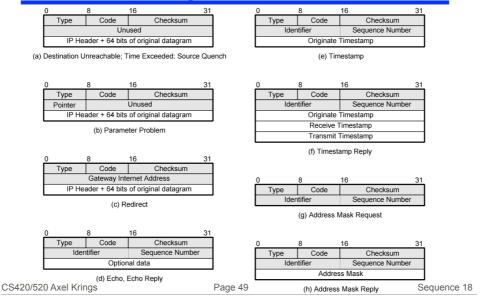
Subnets and Subnet Masks

- Allow arbitrary complexity of internetworked LANs within organization
- Insulate overall internet from growth of network numbers and routing complexity
- Site looks to rest of internet like single network
- Each LAN assigned subnet number
- Host portion of address partitioned into subnet number and host number
- Local routers route within subnetted network
- Subnet mask indicates which bits are subnet number and which are host number

CS420/520 Axel Krings

Page 46

ICMP


- Internet Control Message Protocol
- RFC 792 (get it and study it)
- Transfer of (control) messages from routers and hosts to hosts
- Feedback about problems

 –e.g. time to live expired
- Encapsulated in IP datagram —Not reliable

CS420/520 Axel Krings

Page 48

ICMP Message Formats

IP v6 - Version Number

- IP v 1-3 defined and replaced
- IP v4 current version
- IP v5 streams protocol
- IP v6 replacement for IP v4 —Next Generation

Page 50

Why Change IP?

- Address space exhaustion
 - Two level addressing (network and host) wastes space
 - Network addresses used even if not connected to Internet
 - -Growth of networks and the Internet
 - -Extended use of TCP/IP
 - —Single address per host
- Requirements for new types of service

CS420/520 Axel Krings	Page 51	Sequence 18

IPv6 RFCs

- 1752 Recommendations for the IP Next Generation Protocol
- 2460 Overall specification
- 2373 addressing structure
- others (find them)
- www.rfc-editor.org

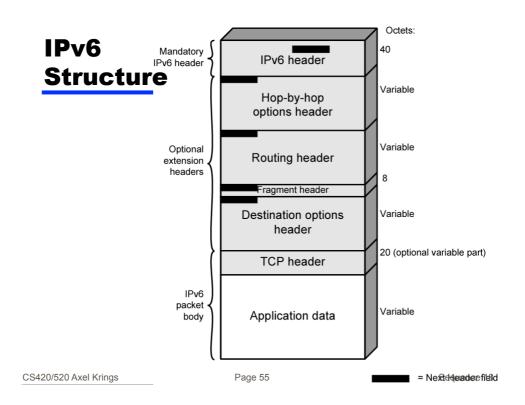
Page 52

IPv6 Enhancements (1)

- Expanded address space —128 bit
- Improved option mechanism
 - —Separate optional headers between IPv6 header and transport layer header
 - Most are not examined by intermediate routes
 - Improved speed and simplified router processing
 - Easier to extend options
- Address autoconfiguration
 - —Dynamic assignment of addresses

CS420/520 Axel Krings

Page 53

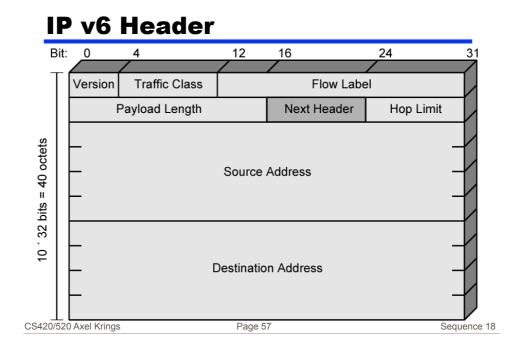

Sequence 18

IPv6 Enhancements (2)

- Increased addressing flexibility
 - -Anycast delivered to one of a set of nodes
 - -Improved scalability of multicast addresses
- Support for resource allocation
 - -Replaces type of service
 - -Labeling of packets to particular traffic flow
 - -Allows special handling
 - -e.g. real time video

CS420/520 Axel Krings

Page 54



Extension Headers

- Hop-by-Hop Options —Require processing at each router
- Routing —Similar to v4 source routing
- Fragment
- Authentication
- Encapsulating security payload
- Destination options
 - -For destination node

CS420/520 Axel Krings

Page 56

IP v6 Header Fields (1)

Version

—6

- Traffic Class
 - -Classes or priorities of packet
 - -Still under development
 - —See RFC 2460
- Flow Label
 - -Used by hosts requesting special handling
- Payload length
 - -Includes all extension headers plus user data

CS420/520 Axel Krings

Page 58

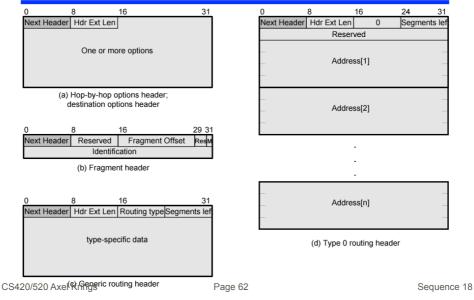
IP v6 Header Fields (2)

- Next Header
 - --Identifies type of header
 - Extension or next layer up
- Source Address
- Destination address

CS420/520 Axel Krings	Page 59	Sequence 18

IPv6 Addresses

- 128 bits long
- Assigned to interface
- Single interface may have multiple unicast addresses
- Three types of address


Page 60

Types of address

- Unicast
 - -Single interface
- Anycast
 - —Set of interfaces (typically different nodes)
 - -Delivered to any one interface
 - -the "nearest"
- Multicast
 - -Set of interfaces
 - -Delivered to all interfaces identified

|--|

IPv6 Extension Headers

Hop-by-Hop Options

- Next header
- Header extension length
- Options
 - Pad1
 - Insert one byte of padding into Options area of header
 - PadN
 - Insert $N (\geq 2)$ bytes of padding into Options area of header
 - Ensure header is multiple of 8 bytes
 - Jumbo payload
 - Over 2¹⁶ = 65,535 octets
 - Router alert
 - Tells router that contents of packet is of interest to router
 - Provides support for RSPV (chapter 16)

CS420/520	Axel	Krinas

Page 63

Sequence 18

Fragmentation Header

- Fragmentation only allowed at source
- No fragmentation at intermediate routers
- Node must perform path discovery to find smallest MTU of intermediate networks
- Source fragments to match MTU
- Otherwise limit to 1280 octets

Page 64

Fragmentation Header Fields

- Next Header
- Reserved
- Fragmentation offset
- Reserved
- More flag
- Identification

CS420/520 Axel Krings	Page 65	Sequence 18

Routing Header

- List of one or more intermediate nodes to be visited
- Next Header
- Header extension length
- Routing type
- Segments left
 - —i.e. number of nodes still to be visited

Page 66

Destination Options Header

- carries optional info for destination node
- format same as hop-by-hop header

CS420/520 Axel Krings	Page 67	Sequence 18

Virtual Private Networks

 set of computers interconnected using an insecure network

-e.g. linking corporate LANs over Internet

- using encryption & special protocols to provide security
 - -to stop eavesdropping & unauthorized users
- proprietary solutions are problematical
- hence development of IPSec standard

CS420/520 Axel Krings

Page 68

IPSec

- RFC 1636 (1994) identified security need
- encryption & authentication to be IPv6
- but designed also for use with current IPv4
- applications needing security include:
 - -branch office connectivity
 - -remote access over Internet
 - -extranet & intranet connectivity for partners
 - -electronic commerce security

CS420/520 Axel Krings	Page 69	Sequence 18
CS420/520 AXEI KIIIIgs	Page 69	Sequence to

<section-header><section-header><section-header>

IPSec Benefits

- provides strong security for external traffic
- resistant to bypass
- below transport layer hence transparent to applications
- can be transparent to end users
- can provide security for individual users if needed

CS420/520 Axel Krings	Page 71	Sequence 18
CO-ZUIJZU AXELININGS	age / i	Sequence to

IPSec Functions

- Authentication Header

 for authentication only
- Encapsulating Security Payload (ESP) —for combined authentication/encryption
- a key exchange function —manual or automated
- VPNs usually need combined function
- see chapter 21

CS420/520 Axel Krings

Page 72

Summary

- basic protocol functions
- internetworking principles
- connectionless internetworking
- IP
- IPv6
- IPSec

CS420/520 Axel Krings

Page 73