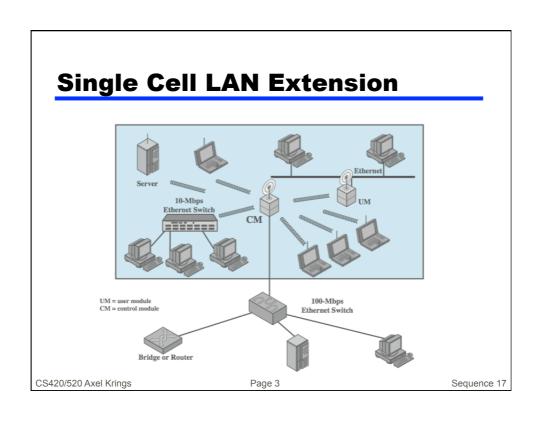
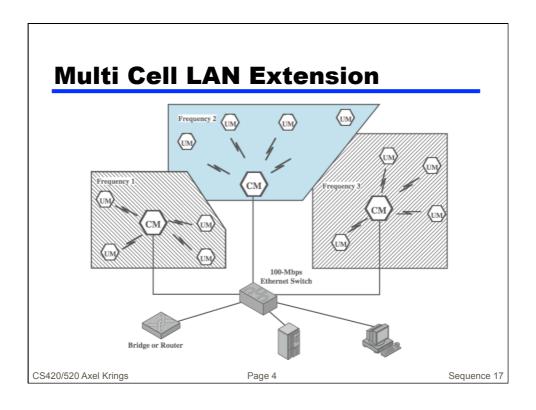
Wireless LANs

CS420/520 Axel Krings

Page 1


Sequence 17


Overview of Wireless LANs

- use wireless transmission medium
- issues of high prices, low data rates, occupational safety concerns, & licensing requirements now addressed
- key application areas:
 - —LAN extension
 - -cross-building interconnect
 - —nomadic access
 - —ad hoc networking

CS420/520 Axel Krings

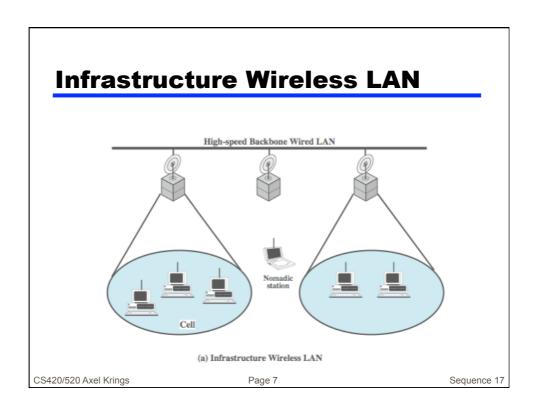
Page 2

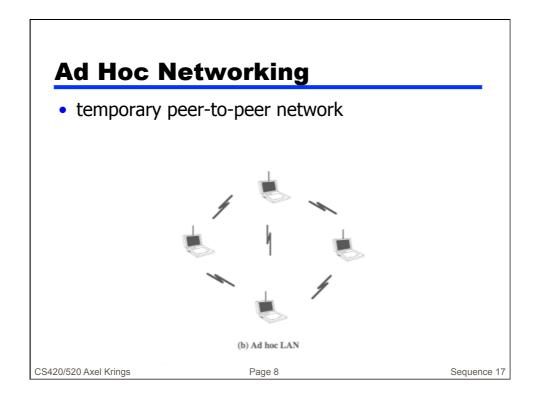
Cross-Building Interconnect

- connect LANs in nearby buildings
- point-to-point wireless link
 - —Not a LAN per se
- connect bridges or routers

CS420/520 Axel Krings

Page 5


Sequence 17


Nomadic Access

- link LAN hub & mobile data terminal
 - —laptop or notepad computer
 - enable employee to transfer data from portable computer to server
- also useful in extended environment such as campus or cluster of buildings
 - —users move around with portable computers
 - -may wish access to servers on wired LAN

CS420/520 Axel Krings

Page 6

Wireless LAN Requirements

- throughput efficient use wireless medium
- no of nodes hundreds of nodes across multiple cells
- connection to backbone LAN using control modules
- service area 100 to 300 m
- low power consumption for long battery life on mobiles
- transmission robustness and security
- collocated network operation
- license-free operation
- handoff/roaming
- dynamic configuration addition, deletion, and relocation of end systems without disruption to users

CS420/520 Axel Krings Page 9 Sequel

Technology

- infrared (IR) LANs
 - —individual cell of IR LAN limited to single room
 - —IR light does not penetrate opaque walls
- spread spectrum LANs
 - mostly operate in ISM (industrial, scientific, and medical) bands
 - no Federal Communications Commission (FCC) licensing is required in USA
- narrowband microwave
 - —microwave frequencies but not use spread spectrum
 - —some require FCC licensing

CS420/520 Axel Krings Page 10 Sequence 17

Infrared LANs

- constructed using infrared portion of spectrum
- strengths
 - -spectrum virtually unlimited hence high rates possible
 - —unregulated spectrum
 - —infrared shares some properties of visible light
 - reflection covers room, walls isolate networks
 - —inexpensive and simple
- weaknesses
 - —background radiation, e.g. sunlight, indoor lighting
 - power limited by concerns for eye safety and power consumption

CS420/520 Axel Krings

Page 1

Seguence 17

Infrared LANs Transmission Techniques

- directed-beam IR
 - —point-to-point links
 - —range depends on power and focusing
 - —for indoor use can set up token ring LAN
 - —IR transceivers positioned so data circulates in ring
- omnidirectional
 - —single base station with line of sight to other stations
 - —acts as a multiport repeater
 - —other stations use directional beam to it
- diffused configuration
 - —stations focused / aimed at diffusely reflecting ceiling

CS420/520 Axel Krings

Page 12

Spread Spectrum LAN Configuration

- usually use multiple-cell arrangement
- adjacent cells use different center frequencies
- configurations:
 - -hub
 - · connected to wired LAN
 - · connect to stations on wired LAN and in other cells
 - · may do automatic handoff
 - —peer-to-peer
 - no hub
 - MAC algorithm such as CSMA used to control access
 - for ad hoc LANs

CS420/520 Axel Krings

Page 13

Sequence 17

Spread Spectrum LANs Transmission Issues

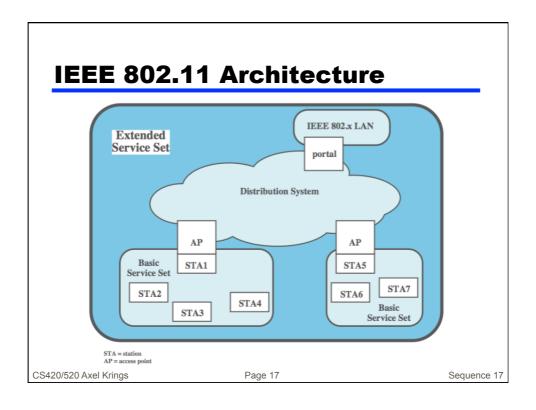
- licensing regulations differ between countries
- USA FCC allows in ISM band:
 - —spread spectrum (1W), very low power (0.5W)
 - 902 928 MHz (915-MHz band)
 - 2.4 2.4835 GHz (2.4-GHz band)
 - 5.725 5.825 GHz (5.8-GHz band)
 - -2.4 GHz also in Europe and Japan
- interference
 - —many devices around 900 MHz: cordless telephones, wireless microphones, and amateur radio
 - —fewer devices at 2.4 GHz; microwave oven
 - —little competition at 5.8 GHz

CS420/520 Axel Krings

Page 14

IEEE 802 Standards

Standard	Scope		
	Medium access control (MAC): One common MAC for WLAN applications		
IEEE 802.11	Physical layer: Infrared at 1 and 2 Mbps		
	Physical layer: 2.4-GHz FHSS at 1 and 2 Mbps		
	Physical layer: 2.4-GHz DSSS at 1 and 2 Mbps		
IEEE 802.11a	Physical layer: 5-GHz OFDM at rates from 6 to 54 Mbps		
IEEE 802.11b	Physical layer: 2.4-GHz DSSS at 5.5 and 11 Mbps		
IEEE 802.11c	Bridge operation at 802.11 MAC layer		
IEEE 802.11d	Physical layer: Extend operation of 802.11 WLANs to new regulatory domains (countries)		
IEEE 802.11e	MAC: Enhance to improve quality of service and enhance security mechanisms		
IEEE 802.11f	Recommended practices for multivendor access point interoperability		
IEEE 802.11g	Physical layer: Extend 802.11b to data rates >20 Mbps		
IEEE 802.11h	Physical/MAC: Enhance IEEE 802.11a to add indoor and outdoor channel selection and to improve spectrum and transmit power management		
IEEE 802.11i	MAC: Enhance security and authentication mechanisms		
IEEE 802.11j	Physical: Enhance IEEE 802.11a to conform to Japanese requirements		
IEEE 802.11k	Radio resource measurement enhancements to provide interface to higher layers for radio and network measurements		
IEEE 802.11m	Maintenance of IEEE 802.11-1999 standard with technical and editorial corrections		
IEEE 802.11n	Physical/MAC: Enhancements to enable higher throughput		
IEEE 802.11p	Physical/MAC: Wireless access in vehicular environments		
IEEE 802.11r	Physical/MAC: Fast roaming (fast BSS transition)		
IEEE 802.11s	Physical/MAC: ESS mesh networking		
IEEE 802.11,2	Recommended practice for the Evaluation of 802.11 wireless performance		
IEEE 802.11u	Physical/MAC: Interworking with external networks		


Sequence 17

IEEE 802 Terminology

CS420/520 Axel Krings

Access point (AP)	Any entity that has station functionality and provides access to the distribution system via the wireless medium for associated stations
Basic service set (BSS)	A set of stations controlled by a single coordination function
Coordination function	The logical function that determines when a station operating within a BSS is permitted to transmit and may be able to receive PDUs
Distribution system (DS)	A system used to interconnect a set of BSSs and integrated LANs to create an ESS
Extended service set (ESS)	A set of one or more interconnected BSSs and integrated LANs that appear as a single BSS to the LLC layer at any station associated with one of these BSSs
MAC protocol data unit (MPDU)	The unit of data exchanged between two peer MAC entites using the services of the physical layer
MAC service data unit (MSDU)	Information that is delivered as a unit between MAC users
Station	Any device that contains an IEEE 802.11 conformant MAC and physical layer

CS420/520 Axel Krings Page 16 Sequence 17

IEEE 802.11 - BSS

- basic service set (BSS) building block
- may be isolated
- may connect to backbone distribution system (DS) through access point (AP)
- BSS generally corresponds to cell
- DS can be switch, wired network, or wireless network
- have independent BSS (IBSS) with no AP

CS420/520 Axel Krings

Page 18

Extended Service Set (ESS)

- possible configurations:
 - —simplest is each station belongs to single BSS
 - —can have two BSSs overlap
 - —a station can participate in more than one BSS
 - —association between station and BSS dynamic
- ESS is two or more BSS interconnected by DS
- appears as single logical LAN to LLC

CS420/520 Axel Krings Page 19

IEEE 802 Services

	Service	Provider	Used to support
	Association	Distribution system	MSDU delivery
	Authentication	Station	LAN access and security
	Deauthentication	Station	LAN access and security
	Dissassociation	Distribution system	MSDU delivery
	Distribution	Distribution system	MSDU delivery
	Integration	Distribution system	MSDU delivery
	MSDU delivery	Station	MSDU delivery
	Privacy	Station	LAN access and security
CS420	Reassocation	Distribution system	MSDU delivery

10

Services - Message Distribution

- distribution service
 - primary service used by stations to exchange MAC frames when frame must traverse DS
 - —if stations in same BSS, distribution service logically goes through single AP of that BSS
- integration service
 - enables transfer of data between 802.11 LAN station and one on an integrated 802.x LAN

CS420/520 Axel Krings

Page 21

Sequence 17

Association Related Services

- DS requires info about stations within ESS
- provided by association-related services
- station must associate before communicating
- 3 mobility transition types:
 - —no transition stationary or in single BSS
 - —BSS transition between BSS in same ESS
 - —ESS transition: between BSS in different ESS

CS420/520 Axel Krings

Page 22

Association Related Services

- DS needs identity of destination station
 - —stations must maintain association with AP within current BSS
- 3 services relate to this requirement:
 - Association establishes initial association between station and AP
 - Reassociation to transfer an association to another AP
 - -Disassociation by station or AP

CS420/520 Axel Krings

Page 23

Sequence 17

Medium Access Control

- MAC layer covers three functional areas
 - -reliable data delivery
 - -access control
 - -security

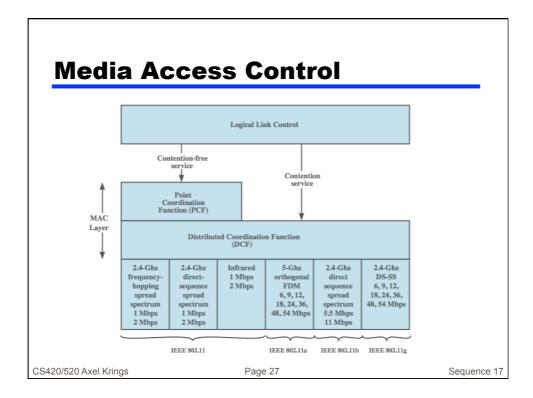
CS420/520 Axel Krings Page 24 Sequence 17

Reliable Data Delivery

- 802.11 physical / MAC layers unreliable
 - noise, interference, and other propagation effects result in loss of frames
 - even with error-correction codes, frames may not successfully be received
- can be dealt with at a higher layer, e.g. TCP
- more efficient to deal with errors at MAC level
- 802.11 includes frame exchange protocol
 - —station receiving frame returns acknowledgment (ACK) frame
 - exchange treated as atomic unit
 - —if no ACK within short period of time, retransmit

CS420/520 Axel Krings

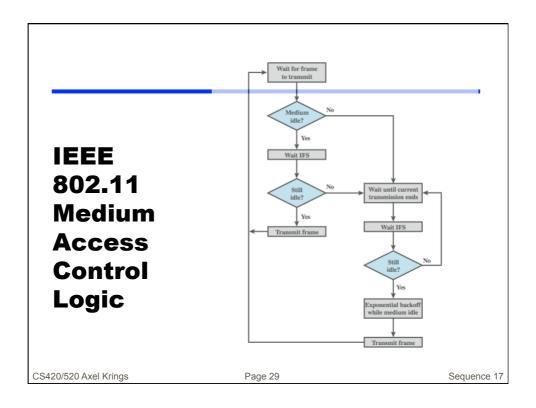
Page 25


Sequence 1

Four Frame Exchange

- can use four-frame exchange for better reliability
 - —source issues a Request to Send (RTS) frame to dest
 - —destination responds with Clear to Send (CTS)
 - —after receiving CTS, source transmits data
 - —destination responds with ACK
- RTS alerts all stations within range of source that exchange is under way
- CTS alerts all stations within range of destination
- other stations don't transmit to avoid collision
- RTS/CTS exchange is required function of MAC but may be disabled

CS420/520 Axel Krings


Page 26

Distributed Coordination Function

- DCF sublayer uses CSMA
 - —if station has frame to send it listens to medium
 - —if medium idle, station may transmit
 - —else waits until current transmission complete
- no collision detection since on wireless network
- DCF includes delays that act as a priority scheme

CS420/520 Axel Krings Page 28 Sequence 17

Priority IFS Values

- IFS (Inter Frame Space)
- SIFS (short IFS)
 - —for all immediate response actions (see later)
- PIFS (point coordination function IFS)
 - —used by the centralized controller in PCF scheme when issuing polls
- DIFS (distributed coordination function IFS)
 - —used as minimum delay for asynchronous frames contending for access

CS420/520 Axel Krings Page 30 Sequence 17

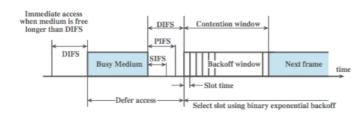
SIFS Use

- SIFS gives highest priority
 - —over stations waiting PIFS or DIFS time
- SIFS used in following circumstances:
 - —Acknowledgment (ACK)
 - station responds with ACK after waiting SIFS gap
 - for efficient collision detect & multi-frame transmission
 - —Clear to Send (CTS)
 - station ensures data frame gets through by issuing RTS
 - and waits for CTS response from destination
 - —Poll response
 - see Point coordination Function (PCF) discussion next

CS420/520 Axel Krings

Page 31

Sequence 17


PIFS and DIFS Use

- PIFS used by centralized controller
 - —for issuing polls
 - —has precedence over normal contention traffic
 - -but not SIFS
- DIFS used for all ordinary asynchronous traffic

CS420/520 Axel Krings

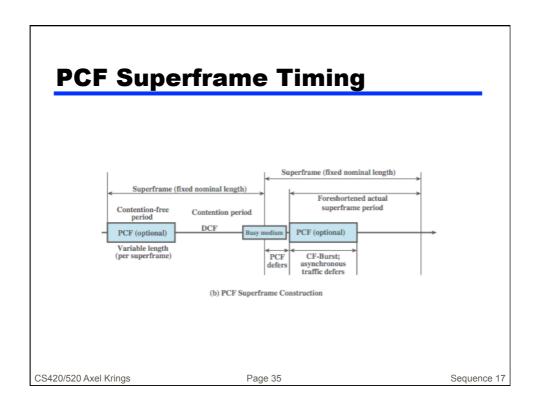
Page 32

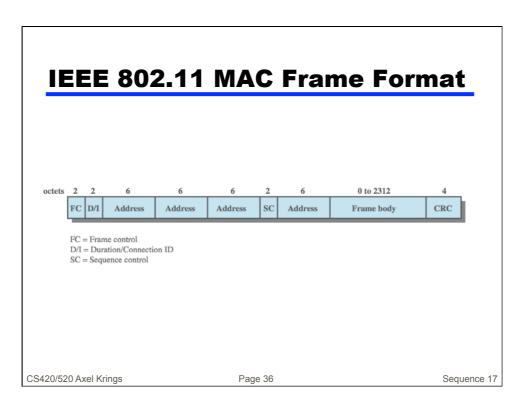
IEEE 802.11 MAC Timing Basic Access Method

(a) Basic Access Method

CS420/520 Axel Krings

Page 33


Sequence 17


Point Coordination Function (PCF)

- alternative access method implemented on top of DCF
- polling by centralized polling master (point coordinator)
- · uses PIFS when issuing polls
- point coordinator polls in round-robin to stations configured for polling
- when poll issued, polled station may respond using SIFS
- if point coordinator receives response, it issues another poll using PIFS
- if no response during expected turnaround time, coordinator issues poll
- coordinator could lock out async traffic by issuing polls
- have a superframe interval defined

CS420/520 Axel Krings

Page 34

Control Frames

- Power Save-Poll (PS-Poll)
 - request AP transmit buffered frame when in power-saving mode
- Request to Send (RTS)
 - first frame in four-way frame exchange
- Clear to Send (CTS)
 - second frame in four-way exchange
- Acknowledgment (ACK)
- Contention-Free (CF)-end
 - announces end of contention-free period part of PCF
- CF-End + CF-Ack:
 - acknowledges CF-end to end contention-free period and release stations from associated restrictions

CS420/520 Axel Krings

Page 37

Seguence 17

Data Frames – Data Carrying

- eight data frame subtypes, in two groups
- first four carry upper-level data
- Data
 - —simplest data frame, contention or contention-free use
- Data + CF-Ack
 - carries data and acknowledges previously received data during contention-free period
- Data + CF-Poll
 - —used by point coordinator to deliver data & reg send
- Data + CF-Ack + CF-Poll
 - -combines Data + CF-Ack and Data + CF-Poll

CS420/520 Axel Krings

Page 38

Data Frames – Not Data Carrying

- other four data frames do not carry user data
- Null Function
 - —carries no data, polls, or acknowledgments
 - —carries power mgmt bit in frame control field to AP
 - —indicates station is changing to low-power state
- other three frames (CF-Ack, CF-Poll, CF-Ack + CF-Poll) same as corresponding frame in preceding list but without data

CS420/520 Axel Krings

Page 39

Sequence 17

Management Frames

- used to manage communications between stations and Aps
- such as management of associations
 - requests, response, reassociation, dissociation, and authentication

CS420/520 Axel Krings

Page 40

802.11 Physical Layer

	802.11	802.11a	802.11b	802.11g	
Available bandwidth	83.5 MHz	300 MHz	83.5 MHz	83.5 MHz	
Unlicensed frequency of operation	2.4 - 2.4835 GHz DSSS, FHSS	5.15 - 5.35 GHz OFDM 5.725 - 5.825 GHz OFDM	2.4 - 2.4835 GHz DSSS	2.4 - 2.4835 GHz DSSS, OFDM	
Number of non- overlapping channels	3 (indoor/outdoor)	4 indoor 4 (indoor/outdoor) 4 outdoor	3 (indoor/outdoor)	3 (indoor/outdoor)	
Data rate per channel	1, 2 Mbps	6, 9, 12, 18, 24, 36, 48, 54 Mbps	1, 2, 5.5, 11 Mbps	1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps	
Compatibility	802.11	Wi-Fi5	Wi-Fi	Wi-Fi at 11 Mbps and below	

CS420/520 Axel Krings Page 41 Sequence 17

Original 802.11 Physical Layer - DSSS

- Direct-sequence spread spectrum (DSSS)
- 2.4 GHz ISM band at 1 Mbps and 2 Mbps
- up to seven channels, each 1 Mbps or 2 Mbps, can be used
- depends on bandwidth allocated by various national regulations
 - —13 in most European countries
 - —one in Japan
- each channel bandwidth 5 MHz
- encoding scheme DBPSK for 1-Mbps and DQPSK for 2-Mbps using an 11-chip Barker seq

CS420/520 Axel Krings Page 42 Sequence 17

Original 802.11 Physical Layer - FHSS

- Frequency-hopping spread spectrum
 - -2.4 GHz ISM band at 1 Mbps and 2 Mbps
 - —23 channels in Japan
 - —70 channels in USA
 - signal hopping between multiple channels based on a pseudonoise sequence
 - -1-MHz channels are used
- hopping scheme adjustable
- two-level Gaussian FSK modulation for 1 Mbps
- four-level GFSK modulation used for 2 Mbps

CS420/520 Axel Krings

Page 43

Sequence 17

Original 802.11 Physical Layer – Infrared

- omnidirectional
- range up to 20 m
- 1 Mbps uses 16-PPM (pulse position modulation)
 - —4 data bit group mapped to one of 16-PPM symbols
 - -each symbol a string of 16 bits
 - —each 16-bit string has fifteen 0s and one binary 1
- 2-Mbps has each group of 2 data bits is mapped into one of four 4-bit sequences
 - —each sequence consists of three 0s and one binary 1
- intensity modulation is used for transmission

CS420/520 Axel Krings

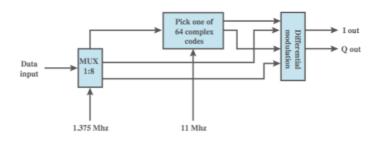
Page 44

802.11a

- uses 5-GHz band (different to other variants)
 - -supports higher data rates, is less cluttered
- orthogonal frequency division multiplexing (OFDM)
 - -multiple carrier signals at different frequencies
 - -some bits on each channel
- up to 48 subcarriers modulated using BPSK, QPSK, 16-QAM, or 64-QAM
 - —subcarrier frequency spacing 0.3125 MHz
 - —convolutional code at rate of 1/2, 2/3, or 3/4 provides forward error correction
 - combination of modulation technique and coding rate determines data rate

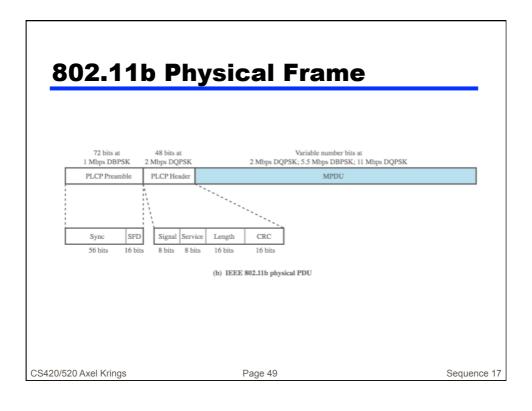
CS420/520 Axel Krings Page 45 Sequence

802.11b


- extension of 802.11 DS-SS scheme
 - —with data rates of 5.5 and 11 Mbps
- chipping rate 11 MHz
 - —same as original DS-SS scheme
 - Complementary Code Keying (CCK) modulation gives higher data rate with same bandwidth & chipping rate
 - —also Packet Binary Convolutional Coding (PBCC) for future higher rate use

CS420/520 Axel Krings

Page 47


Sequence 17

11-Mbps CCK Modulation Scheme

CS420/520 Axel Krings

Page 48

802.11g

- higher-speed extension to 802.11b
- operates in 2.4GHz band
- compatible with 802.11b devices
- combines physical layer encoding techniques used in 802.11 and 802.11b to provide service at a variety of data rates
 - -ERP-OFDM for 6, 9, 12, 18, 24, 36, 48, 54Mbps rates
 - -ERP-PBCC for 22 & 33Mbps rates

CS420/520 Axel Krings Page 50 Sequence 17

Data Rate vs Distance (m)

Data Rate (Mbps)	802.11b	802.11a	802.11g
1	90+	_	90+
2	75	_	75
5.5(b)/6(a/g)	60	60+	65
9	_	50	55
11(b)/12(a/g)	50	45	50
18	_	40	50
24	_	30	45
36	_	25	35
48	_	15	25
54	_	10	20

CS420/520 Axel Krings Page 51 Sequence 17

Access and Privacy Services - Authentication

- authentication used to establish station identity
- wired LANs assume physical connection gives authority to use LAN
- not a valid assumption for wireless LANs
- 802.11 supports several authentication schemes
- does not mandate any particular scheme
- from relatively insecure handshaking to public-key encryption
- 802.11 requires mutually acceptable, successful authentication before association

CS420/520 Axel Krings Page 52 Sequence 17

Access and Privacy Services Deauthentication & Privacy

- Deauthentication
 - invoked whenever an existing authentication is to be terminated
- Privacy
 - —used to prevent messages being read by others
 - -802.11 allows optional use of encryption
- Original WEP security features were weak
- Subsequently 802.11i and WPA alternatives evolved giving better security

CS420/520 Axel Krings

Page 53

Sequence 17

Summary

- Wireless LAN alternatives
- IEEE 802.11 architecture and services
- 802.11 Media Access Control
- 802.11 Physical Layers
 - -802.11, 802.11a, 802.11b, 802.11g
- Security considerations

CS420/520 Axel Krings

Page 54