Local Area Network Overview

LAN Applications (1)

- Personal computer LANs
-Low cost
-Limited data rate
- Back end networks
-Interconnecting large systems (mainframes and large storage devices)
- High data rate
- High speed interface
- Distributed access
- Limited distance
- Limited number of devices

LAN Applications (2)

- Storage Area Networks
- Separate network handling storage needs
- Detaches storage tasks from specific servers
- Shared storage facility across high-speed network
- Hard disks, tape libraries, CD arrays
- Improved client-server storage access
- Direct storage to storage communication for backup
- High speed office networks
- Desktop image processing
- High capacity local storage
- Backbone LANs
- Interconnect low speed local LANs
- Reliability
- Capacity
- Cost

Storage Area Networks

(a) Server-based storage

(b) Storage area network

LAN Architecture

- Topologies
- Transmission medium
- Layout
- Medium access control

Topologies

- Tree
- Bus
- Ring
- Star

LAN Topologies

(b) Tree

Bus and Tree

- Multipoint medium
- Transmission propagates throughout medium
- Heard by all stations
- Need to identify target station
- Each station has unique address
- Full duplex connection between station and tap
- Allows for transmission and reception
- Need to regulate transmission
- To avoid collisions
- To avoid hogging
- Data in small blocks - frames
- Terminator absorbs frames at end of medium

Frame
 Transmission on Bus LAN

C transmits frame addressed to A

Frame is not addressed to B ; B ignores it

Ring Topology

- Repeaters joined by point to point links in closed loop
- Receive data on one link and retransmit on another
- Links unidirectional
- Stations attach to repeaters
- Data in frames
- Circulate past all stations
- Destination recognizes address and copies frame
- Frame circulates back to source where it is removed
- Media access control determines when station can insert frame

Star Topology

- Each station connected directly to central node -Usually via two point to point links
- Central node can broadcast
-Physical star, logical bus
-Only one station can transmit at a time
- Central node can act as frame switch

Choice of Topology

- Reliability
- Expandability
- Performance
- Needs considering in context of:
-Medium
—Wiring layout
-Access control

Bus LAN

Transmission Media (1)

- Twisted pair
-Early LANs used voice grade cable
—Didn't scale for fast LANs
-Not used in bus LANs now
- Baseband coaxial cable
-Uses digital signalling
-Original Ethernet

Bus LAN

Transmission Media (2)

- Broadband coaxial cable
- As in cable TV systems
- Analog signals at radio frequencies
- Expensive, hard to install and maintain
- No longer used in LANs
- Optical fiber
- Expensive taps
- Better alternatives available
- Not used in bus LANs
- All hard to work with compared with star topology twisted pair
- Coaxial baseband still (rarely) used but not often in new installations

Ring and Star Usage

- Ring
-Very high speed links over long distances
-Single link or repeater failure disables network
- Star
—Uses natural layout of wiring in building
-Best for short distances
-High data rates for small number of devices

Choice of Medium

- Constrained by LAN topology
- Capacity
- Reliability
- Types of data supported
- Environmental scope

Media Available (1)

- Voice grade unshielded twisted pair (UTP)
-Cat 3
-Cheap
-Well understood
-Use existing telephone wiring in office building
-Low data rates
- Shielded twisted pair and baseband coaxial
-More expensive than UTP but higher data rates
- Broadband cable
-Still more expensive and higher data rate

Media Available (2)

- High performance UTP
- Cat 5 and above
- High data rate for small number of devices
- Switched star topology for large installations
- Optical fiber
- Electromagnetic isolation
- High capacity
- Small size
- High cost of components
- High skill needed to install and maintain
- Prices are coming down as demand and product range increases

Protocol Architecture

- Lower layers of OSI model
- IEEE 802 reference model
- Physical
- Logical link control (LLC)
- Media access control (MAC)

802 Layers Physical

- Encoding/decoding
- Preamble generation/removal
- Bit transmission/reception
- Transmission medium and topology

802 Layers Logical Link Control

- Interface to higher levels
- Flow and error control

Logical Link Control

- Transmission of link level PDUs between two stations
- Must support multi-access, shared medium
- Relieved of some link access details by MAC layer
- Addressing involves specifying source and destination LLC users
—Referred to as service access points (SAP)
-Typically higher level protocol

LLC Services

- Based on HDLC
- Unacknowledged connectionless service
- Connection mode service
- Acknowledged connectionless service

LLC Protocol

- Modeled after HDLC
- Asynchronous balanced mode to support connection mode LLC service (type 2 operation)
- Unnumbered information PDUs to support Acknowledged connectionless service (type 1)
- Multiplexing using LSAPs

Media Access Control

- Assembly of data into frame with address and error detection fields
- Disassembly of frame
- Address recognition
- Error detection
- Govern access to transmission medium
- Not found in traditional layer 2 data link control
- For the same LLC, several MAC options may be available

Media Access Control

- Where
-Central
- Greater control
- Simple access logic at station
- Avoids problems of co-ordination
- Single point of failure
- Potential bottleneck
—Distributed
- How
—Synchronous
- Specific capacity dedicated to connection
—Asynchronous
- In response to demand

Asynchronous Systems

- Round robin
- Good if many stations have data to transmit over extended period
- Reservation
- Good for stream traffic
- Contention
- Good for bursty traffic
- All stations contend for time
— Distributed
- Simple to implement
- Efficient under moderate load
- Tend to collapse under heavy load

MAC Frame Format

- MAC layer receives data from LLC layer
- MAC control
- Destination MAC address
- Source MAC address
- LLS
- CRC
- MAC layer detects errors and discards frames
- LLC optionally retransmits unsuccessful frames

Bridges

- Ability to expand beyond single LAN
- Provide interconnection to other LANs/WANs
- Use Bridge or router
- Bridge is simpler
-Connects similar LANs
-Identical protocols for physical and link layers
-Minimal processing
- Router more general purpose
-Interconnect various LANs and WANs
-see later

Why Bridge?

- Reliability
- Performance
- Security
- Geography

Functions of a Bridge

- Read all frames transmitted on one LAN and accept those address to any station on the other LAN
- Using MAC protocol for second LAN, retransmit each frame
- Do the same the other way round

Bridge Design Aspects

- No modification to content or format of frame
- No encapsulation
- Exact bitwise copy of frame
- Minimal buffering to meet peak demand
- Contains routing and address intelligence
- Must be able to tell which frames to pass
- May be more than one bridge to cross
- May connect more than two LANs
- Bridging is transparent to stations
- Appears to all stations on multiple LANs as if they are on one single LAN

Bridge Protocol Architecture

- IEEE 802.1D
- MAC level
- Station address is at this level
- Bridge does not need LLC layer
- It is relaying MAC frames
- Can pass frame over external communication system
- e.g. WAN link
- Capture frame
- Encapsulate it
- Forward it across link
- Remove encapsulation and forward over LAN link

Connection of Two LANs

(a) Architecture

(b) Operation

Fixed Routing

- Complex large LANs need alternative routes
-Load balancing
-Fault tolerance
- Bridge must decide whether to forward frame
- Bridge must decide which LAN to forward frame on
- Routing selected for each source-destination pair of LANs
-Done in configuration
-Usually least hop route
-Only changed when topology changes

Spanning Tree

- Bridge automatically develops routing table
- Automatically update in response to changes
- Frame forwarding
- Address learning
- Loop resolution

Frame forwarding

- Maintain forwarding database for each port
—List station addresses reached through each port
- For a frame arriving on port X:
-Search forwarding database to see if MAC address is listed for any port (except port X)
-If address not found, forward to all ports (except X)
-If address listed for port Y, check port Y for blocking or forwarding state
- Blocking prevents port from receiving or transmitting
-If not blocked, transmit frame through port Y

Address Learning

- Can preload forwarding database
- Can be learned
- When frame arrives at port X, it has come form the LAN attached to port X
- Use the source address to update forwarding database for port X to include that address
- Timer on each entry in database
- Each time frame arrives, source address checked against forwarding database

Spanning Tree Algorithm

- Address learning works for tree layout -i.e. no closed loops
- For any connected graph there is a spanning tree that maintains connectivity but contains no closed loops
- Each bridge assigned unique identifier
- Exchange between bridges to establish spanning tree

Layer 2 and Layer 3 Switches

- Now many types of devices for interconnecting LANs
- Beyond bridges and routers
- Layer 2 switches
- Layer 3 switches

Hubs

- Active central element of star layout
- Each station connected to hub by two lines
- Transmit and receive
- Hub acts as a repeater
- When single station transmits, hub repeats signal on outgoing line to each station
- Line consists of two unshielded twisted pairs
- Limited to about 100 m
- High data rate and poor transmission qualities of UTP
- Optical fiber may be used
- Max about 500 m
- Physically star, logically bus
- Transmission from any station received by all other stations
- If two stations transmit at the same time, collision

Hub Layouts

- Multiple levels of hubs cascaded
- Each hub may have a mixture of stations and other hubs attached to from below
- Fits well with building wiring practices
- Wiring closet on each floor
- Hub can be placed in each one
- Each hub services stations on its floor

Buses and Hubs

- Bus configuration
—All stations share capacity of bus (e.g. 10Mbps)
-Only one station transmitting at a time
- Hub uses star wiring to attach stations to hub
-Transmission from any station received by hub and retransmitted on all outgoing lines
-Only one station can transmit at a time
-Total capacity of LAN is 10 Mbps
- Improve performance with layer 2 switch

Shared Medium Bus and Hub

Shared Medium Hub and
 Layer 2 Switch

Layer 2 Switches

- Central hub acts as switch
- Incoming frame from particular station switched to appropriate output line
- Unused lines can switch other traffic
- More than one station transmitting at a time
- Multiplying capacity of LAN

Layer 2 Switch Benefits

- No change to attached devices to convert bus LAN or hub LAN to switched LAN
- For Ethernet LAN, each device uses Ethernet MAC protocol
- Device has dedicated capacity equal to original LAN
- Assuming switch has sufficient capacity to keep up with all devices
- For example if switch can sustain throughput of 20 Mbps , each device appears to have dedicated capacity for either input or output of 10 Mbps
- Layer 2 switch scales easily
- Additional devices attached to switch by increasing capacity of layer 2

Types of Layer 2 Switch

- Store-and-forward switch
- Accepts frame on input line
- Buffers it briefly,
- Then routes it to appropriate output line
- Delay between sender and receiver
- Boosts integrity of network
- Cut-through switch
- Takes advantage of destination address appearing at beginning of frame
- Switch begins repeating frame onto output line as soon as it recognizes destination address
- Highest possible throughput
- Risk of propagating bad frames
- Switch unable to check CRC prior to retransmission

Layer 2 Switch v Bridge

- Layer 2 switch can be viewed as full-duplex hub
- Can incorporate logic to function as multiport bridge
- Bridge frame handling done in software
- Switch performs address recognition and frame forwarding in hardware
- Bridge only analyzes and forwards one frame at a time
- Switch has multiple parallel data paths
- Can handle multiple frames at a time
- Bridge uses store-and-forward operation
- Switch can have cut-through operation
- Bridge suffered commercially
- New installations typically include layer 2 switches with bridge functionality rather than bridges

Problems with Layer 2 Switches (1)

- As number of devices in building grows, layer 2 switches reveal some inadequacies
- Broadcast overload
- Lack of multiple links
- Set of devices and LANs connected by layer 2 switches have flat address space
- All users share common MAC broadcast address
- If any device issues broadcast frame, that frame is delivered to all devices attached to network connected by layer 2 switches and/or bridges
- In large network, broadcast frames can create big overhead
- Malfunctioning device can create broadcast storm
- Numerous broadcast frames clog network

Problems with Layer 2 Switches (2)

- Current standards for bridge protocols dictate no closed loops
- Only one path between any two devices
- Impossible in standards-based implementation to provide multiple paths through multiple switches between devices
- Limits both performance and reliability.
- Solution: break up network into subnetworks connected by routers
- MAC broadcast frame limited to devices and switches contained in single subnetwork
- IP-based routers employ sophisticated routing algorithms
- Allow use of multiple paths between subnetworks going through different routers

Problems with Routers

- Routers do all IP-level processing in software
—High-speed LANs and high-performance layer 2 switches pump millions of packets per second
-Software-based router only able to handle well under a million packets per second
- Solution: layer 3 switches
-Implement packet-forwarding logic of router in hardware
- Two categories
—Packet by packet
-Flow based

Packet by Packet or Flow Based

- Operates in same way as traditional router
- Order of magnitude increase in performance compared to software-based router
- Flow-based switch tries to enhance performance by identifying flows of IP packets
-Same source and destination
-Done by observing ongoing traffic or using a special flow label in packet header (IPv6)
-Once flow is identified, predefined route can be established

Typical Large LAN Organization

- Thousands to tens of thousands of devices
- Desktop systems links 10 Mbps to 100 Mbps
- Into layer 2 switch
- Wireless LAN connectivity available for mobile users
- Layer 3 switches at local network's core
- Form local backbone
- Interconnected at 1 Gbps
- Connect to layer 2 switches at 100 Mbps to 1 Gbps
- Servers connect directly to layer 2 or layer 3 switches at 1 Gbps
- Lower-cost software-based router provides WAN connection
- Circles in diagram identify separate LAN subnetworks
- MAC broadcast frame limited to own subnetwork

Summary

- LAN topologies and media
- LAN protocol architecture
- bridges, hubs, layer 2 \& 3 switches

