
1

CS420/520 Axel Krings Sequence 12 Page 1

Routing in Switched Networks

CS420/520 Axel Krings Sequence 12 Page 2

Routing in Circuit Switched
Network
•  Many connections will need paths through more

than one switch
•  Need to find a route

— Efficiency
— Resilience

•  Public telephone switches are a tree structure
— Static routing uses the same approach all the time

•  Dynamic routing allows for changes in routing
depending on traffic
— Uses a peer structure for nodes

2

CS420/520 Axel Krings Sequence 12 Page 3

Alternate Routing
•  Different scenarios

— Possible routes between end offices predefined
— Originating switch selects appropriate route
— Routes listed in preference order
— Different sets of routes may be used at different

times

CS420/520 Axel Krings Sequence 12 Page 4

Alternate
Routing
Diagram

3

CS420/520 Axel Krings Sequence 12 Page 5

Routing in Packet Switched
Network
•  Complex, crucial aspect of packet switched

networks
•  Characteristics required

— Correctness
— Simplicity
— Robustness
— Stability
— Fairness
— Optimality
— Efficiency

CS420/520 Axel Krings Sequence 12 Page 6

Performance Criteria
•  Used for selection of route

— Minimum hop
— Least cost
— Delay
— Throughput

— See Stallings appendix 10A for routing algorithms

4

CS420/520 Axel Krings Sequence 12 Page 7

Example Packet Switched
Network

 Example
– communicating nodes: node-1 to node-6
– what is of interest?

» Shortest path (1-3-6)
» least cost path (1-4-5-6)

CS420/520 Axel Krings Sequence 12 Page 8

Decision Time and Place
•  Time

— Packet or virtual circuit basis

•  Place
— Distributed

•  Made by each node

— Centralized
•  requires central node

— Source
•  originating node

5

CS420/520 Axel Krings Sequence 12 Page 9

Network Information Source
and Update Timing
•  Routing decisions usually based on knowledge of network

—  (not always)
•  Distributed routing

—  Nodes use local knowledge
— May collect info from adjacent nodes
— May collect info from all nodes on a potential route

•  Central routing
—  Collect info from all nodes

•  Update timing
— When is network info held by nodes updated?

•  Fixed - never updated
•  Adaptive - regular updates

•  Continuous
•  Periodic
•  Major load change
•  Topology change

CS420/520 Axel Krings Sequence 12 Page 10

Routing Strategies
•  We will discuss several strategies:

— Fixed Routing
— Flooding Routing
— Random Routing
— Adaptive Routing

6

CS420/520 Axel Krings Sequence 12 Page 11

Fixed Routing
•  Single permanent route for each source-

destination pair
•  Determine routes using a least cost algorithm

(appendix 10A)
•  Route fixed, at least until a change in network

topology

CS420/520 Axel Krings Sequence 12 Page 12

Fixed Routing
Tables

7

CS420/520 Axel Krings Sequence 12 Page 13

Flooding
•  No network info required
•  Packet sent by node to every neighbor
•  Incoming packets retransmitted on every link except

incoming link
•  Eventually a number of copies will arrive at destination
•  Each packet is uniquely numbered so duplicates can be

discarded
•  Nodes can remember packets already forwarded to keep

network load in bounds
•  Can include a hop count in packets

CS420/520 Axel Krings Sequence 12 Page 14

Flooding
Example

Hop Count = 3

8

CS420/520 Axel Krings Sequence 12 Page 15

Properties of Flooding
•  All possible routes are tried

— Very robust

•  At least one packet will have taken minimum
hop count route
— Can be used to set up virtual circuit

•  All nodes are visited
— Useful to distribute information (e.g. routing)

CS420/520 Axel Krings Sequence 12 Page 16

Random Routing
•  Node selects one outgoing path for retransmission of

incoming packet
•  Selection can be random or round robin

— Can select outgoing path based on probability calculation, i.e.

•  Pi probability of selecting link i
•  Ri data rate of link i
•  Sum is taken over all outgoing candidate links

•  No network info needed
•  Route is typically not least cost nor minimum hop €

Pi =
Ri
Rj

j
∑

9

CS420/520 Axel Krings Sequence 12 Page 17

Adaptive Routing
•  Used by almost all packet switching networks
•  Routing decisions change as conditions on the network

change
— Failure
— Congestion

•  Requires info about network
•  Decisions are more complex
•  Tradeoff between

— quality of network info and
— overhead

CS420/520 Axel Krings Sequence 12 Page 18

Adaptive Routing - Advantages
•  Improved performance
•  Aid congestion control
•  Complex system

— May not realize theoretical benefits

10

CS420/520 Axel Krings Sequence 12 Page 19

Adaptive Routing - Drawbacks
•  routing is more complex

— increasing processing burden on network node

•  strategies often depend on information that is
collected in one place and needed in another
— traffic burden on network increases

•  adaptive strategy may react too quickly
— congestion-produced oscillation
— if it reacts too slow, strategy will be irrelevant

CS420/520 Axel Krings Sequence 12 Page 20

Classification
•  Based on information sources

— Local (isolated)
• Route to outgoing link with shortest queue
• Can include bias for each destination
• Rarely used

— Adjacent nodes
— All nodes

11

CS420/520 Axel Krings Sequence 12 Page 21

Isolated Adaptive Routing

Algorithm:
minimize Q + Bi
where
 Q is queue length
 Bi is bias for destination i

CS420/520 Axel Krings Sequence 12 Page 22

ARPANET Routing Strategies(1)
•  First Generation (1969)

— Distributed adaptive
— Estimated delay as performance criterion
— Bellman-Ford algorithm
— Node exchanges delay vector with neighbors
— Update routing table based on incoming info
— Doesn't consider line speed, just queue length
— Queue length not a good measurement of delay
— Responds slowly to congestion

12

CS420/520 Axel Krings Sequence 12 Page 23

ARPANET Routing Strategies(2)
•  Second Generation (1979)

— Uses delay as performance criterion
— Delay is measured directly
— Uses Dijkstra’s algorithm
— Good under light and medium loads
— Under heavy loads, little correlation between

reported delays and those experienced

CS420/520 Axel Krings Sequence 12 Page 24

ARPANET Routing Strategies(3)

•  Third Generation (1987)
— Link cost calculations changed
— Measure average delay over last 10 seconds
— Normalize based on current value and

previous results

13

CS420/520 Axel Krings Sequence 12 Page 25

Least Cost Algorithms
•  Basis for routing decisions

— Can minimize hop by setting each link cost to unity
— Can have link value inversely proportional to capacity

•  Given network graph
— Nodes connected by bi-directional links
— Each link has a cost in each direction

•  Define cost of path between two nodes as sum of costs
of links traversed

•  For each pair of nodes, find a path with the least cost
•  Link costs in different directions may be different

— E.g. length of packet queue

CS420/520 Axel Krings Sequence 12 Page 26

Dijkstra’s Algorithm Definitions
•  Find shortest paths from given source to all other nodes,

by developing paths in order of increasing path length
•  N = set of nodes in the network
•  s = source node
•  T = set of nodes so far incorporated by the algorithm
•  w(i, j) = link cost from node i to node j

— w(i, i) = 0
— w(i, j) = ∞ if the two nodes are not directly connected
— w(i, j) ≥ 0 if the two nodes are directly connected

•  L(n) = cost of least-cost path from node s to node n
currently known
— At termination, L(n) is cost of least-cost path from s to n

14

CS420/520 Axel Krings Sequence 12 Page 27

Dijkstra’s Algorithm Method
•  Step 1 [Initialization]

—  T = {s} Set of nodes so far incorporated consists of only source node
—  L(n) = w(s, n) for n ≠ s
—  Initial path costs to neighboring nodes are simply link costs

•  Step 2 [Get Next Node]
—  Find neighboring node x not in T with least-cost path from s
—  Incorporate node into T

•  Step 3 [Update Least-Cost Paths]
—  L(n) = min[L(n), L(x) + w(x, n)] for all n ∉ T
—  If latter term is minimum, path from s to n is path from s to x

concatenated with edge from x to n

•  Algorithm terminates when all nodes have been added to T

CS420/520 Axel Krings Sequence 12 Page 28

Dijkstra’s Algorithm Notes
•  At termination, value L(x) associated with each

node x is cost (length) of least-cost path from s
to x.

•  In addition, T defines least-cost path from s to
each other node

•  One iteration of steps 2 and 3 adds one new
node to T
— Defines least cost path from s to that node

15

CS420/520 Axel Krings Sequence 12 Page 29

Example of Dijkstra’s Algorithm

CS420/520 Axel Krings Sequence 12 Page 30

Results of Example
Dijkstra’s Algorithm

16

CS420/520 Axel Krings Sequence 12 Page 31

Bellman-Ford Algorithm
Definitions
•  Essential idea

—  first, find shortest paths from given node subject to the constraint that
the paths contain at most 1 link

—  next, find the shortest paths with a constraint of paths of at most 2
links

—  and so on

•  Definitions
—  s = source node
— w(i, j) = link cost from node i to node j

•  w(i, i) = 0
•  w(i, j) = ∞ if the two nodes are not directly connected
•  w(i, j) ≥ 0 if the two nodes are directly connected

—  h = maximum number of links in path at current stage of the algorithm
•  i.e. h = max length of a path currently considered

—  Lh(n) = cost of least-cost path from s to n under constraint of no more
than h links

CS420/520 Axel Krings Sequence 12 Page 32

Bellman-Ford Algorithm Method
•  Step 1 [Initialization]

— L0(n) = ∞, for all n ≠ s
— Lh(s) = 0, for all h

•  Step 2 [Update]
— For each successive h ≥ 0

•  For each n ≠ s, compute

— Connect n with predecessor node j that achieves minimum
— Eliminate any connection of n with different predecessor node

formed during an earlier iteration
— Path from s to n terminates with link from j to n

Lh+1(n) =minj [Lh (j)+w(j,n)]

17

CS420/520 Axel Krings Sequence 12 Page 33

Example of Bellman-Ford
Algorithm

CS420/520 Axel Krings Sequence 12 Page 34

Results of Bellman-Ford
Example

18

CS420/520 Axel Krings Sequence 12 Page 35

Comparison
•  Results from two algorithms agree
•  Information gathered

— Bellman-Ford
•  Calculation for node n involves knowledge of link cost to all

neighboring nodes plus total cost to each neighbor from s
•  Each node can maintain set of costs and paths for every other node
•  Can exchange information with direct neighbors
•  Can update costs and paths based on information from neighbors

and knowledge of link costs

— Dijkstra
•  Each node needs complete topology
•  Must know link costs of all links in network
•  Must exchange information with all other nodes

CS420/520 Axel Krings Sequence 12 Page 36

Evaluation
•  Dependent on processing time of algorithms
•  Dependent on amount of information required

from other nodes
•  Implementation specific
•  Both converge under static topology and costs
•  Converge to same solution
•  If link costs change, algorithms will attempt to

catch up
•  If link costs depend on traffic, which depends on

routes chosen, then feedback
— May result in instability

19

Summary
•  routing in packet-switched networks
•  routing strategies

— fixed, flooding, random,adaptive

•  ARPAnet examples
•  least-cost algorithms

— Dijkstra, Bellman-Ford

CS420/520 Axel Krings Sequence 12 Page 37

