Brute Force Strengths and Weaknesses

- **Strengths**
 - wide applicability
 - simplicity
 - yields reasonable algorithms for some important problems (e.g., matrix multiplication, sorting, searching, string matching)

- **Weaknesses**
 - rarely yields efficient algorithms
 - some brute-force algorithms are unacceptably slow
 - not as constructive as some other design techniques
FIGURE 4.1 Divide-and-conquer technique (typical case)
Divide-and-Conquer: a case for the Master Theorem

Theorem (Master Theorem):
Let $T(n)$ be an eventually nondecreasing function that satisfies the recurrence

$$T(n) = aT(n/b) + f(n) \quad \text{for } n = b^k, \ k = 1, 2, \ldots$$
$$T(1) = c$$

where $a \geq 1$, $b \geq 2$, $c > 0$. If $f(n) \in \Theta(n^d)$ where $d \geq 0$, then

$$T(n) \in \begin{cases}
\Theta(n^d) & \text{if } \ a < b^d \\
\Theta(n^d \log n) & \text{if } \ a = b^d \\
\Theta(n^{\log_b a}) & \text{if } \ a > b^d
\end{cases}$$
Example: summation
Mergesort

1) Split array A[0..\(n-1\)] in two about equal halves and make copies of each half in arrays B and C
2) Sort arrays B and C recursively
3) Merge sorted arrays B and C into array A
 a) copy smallest element from B or C to A
 b) once B or C is processed, copy the remaining unprocessed elements from the other array into A.
ALGORITHM Mergesort(A[0..n-1])

// Sorts array A[0..n-1] by recursive mergesort
// Input: An array A[0..n-1] of orderable elements
// Output: Array A[0..n-1] sorted in nondecreasing order

if \(n > 1 \)
 copy A[0..\lfloor n/2 \rfloor -1] to B[0..\lfloor n/2 \rfloor -1]
 copy A[\lceil n/2 \rceil ..n-1] to C[0.. \lceil n/2 \rceil -1]

Mergesort(B[0.. \lfloor n/2 \rfloor -1])
Mergesort(C[0.. \lceil n/2 \rceil -1])
Merge(B, C, A)
ALGORITHM Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])

//Merges two sorted arrays into one sorted array
//Input: Arrays B[0..p-1] and C[0..q-1] both sorted
//Output: Sorted array A[0..p+q-1] of the elements of B and C

i ← 0; j ← 0; k ← 0
while i < p and j < q do
 if B[i] ≤ C[j]
 A[k] ← B[i]; i ← i + 1
 else
 A[k] ← C[j]; j ← j + 1
 k ← k + 1

if i = p
 copy C[j..q-1] to A[k..p+q-1]
else
 copy B[i..p-1] to A[k..p+q-1]
Mergesort
Analysis of Mergesort

• All cases have same efficiency: $\Theta(n \log n)$

• Side Note: Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting:

$$[\log_2 n!] \approx n \log_2 n - 1.44n$$

• Space requirement: $\Theta(n)$
 • version without this requirements exist, but are more costly
• Can be implemented without recursion (bottom-up)