CS270
Systems Software

Dr. Axel Krings
JEB 320
208 885-4078
krings@uidaho.edu
http://www.cs.uidaho.edu/~krings
Typical Computer System

Hardware:
- CPU
- Bus
- RAM/ROM
- Disk(s)
- CD-ROM, DVD
- Monitor
- Graphics Card(s)
- Keyboard
- Mouse
- Printer
- Tape
- Modem
- Network int. NIC
Memory

"Front-Side" Bus
(132–2000MB/Sec)

CPU

AGP Bus

Graphics Adapter

I/O Bridge

PCI Bus

 ISA Bus

Serial Interface

Disk Controller

Disk
Operating System

- Exploits the hardware resources of one or more processors
- Provides a set of services to system users
- Manages secondary memory and I/O devices
Operating System

• Many different OSs
 – UNIX, Linux, OpenVMS, MacOS, Windows, DOS, ...

• Different OS environments, e.g.
 – general purpose
 – real time
 – distributed
Operating System

- Linux kernel
 - part of the OS that is running
 - provided core capabilities and interfaces

- Running separately from kernel code
 - commands, editors, programs, windowing system, etc.
Operating System Overview

System Processes
- Accounting/Logging
- RPC
- Login Manager
- Compilers
- Editors
- Command Line Interpreter/Shell

Kernel
- Memory Mgmt
- Process Mgmt
- Interprocess Communication
- Buffer/Cache Mgmt
- Error Handling
- Protection/Security

File System Driver
Character Device Driver
- TTY Driver
- Network Driver
- Ethernet Driver

Block Device Driver
- IDE Driver
- SCSI Driver

User Programs
Application Program Interface

IDE Disks
SCSI Disks
Ethernet Card

10
Software

- Hardware provides framework for executing programs and storing files
 - files, directories
 - program
 - start a program -- process
 - owner of file and process
 - protection against unauthorized access
 - attributes
Directory Hierarchy
UNIX i-node

Directory Entry

```
filename
```

Pointer
Mode (file type)
owner/group
timestamps (3)
File size (blocks)
link count
direct blocks
...single indirect
double indirect
triple indirect

```
data
```

...
Resource Sharing

- CPU
 - time-slicing
- Memory
 - paging
- Secondary Memory (disk)
 - blocks of equal size
Communication

- Not practical to work in isolation: communicate!
 - displaying: process to graphics card
 - input: keyboard or mouse
 - network: email, ftp
 - interprocess communication
 - ...

16
Communication

• Different mechanisms, e.g.,
 – pipe: from one process to another
 – socket: two-way high-speed data channel
X-server and X-clients
Standards

• Why do we need standards?
 – portability, portability & portability
 – POSIX 1003.1 is Unix and Unix-like OSs, maintained by IEEE and The Open Group
 – Linux implements POSIX standards
 – http://www.ieee.org
 – http://www.opengroup.org
 – http://www.unix.org