
System calls
We will investigate several issues related to system calls.

Read chapter 12 of the book

Linux system call categories

file management

process management

error handling

note that these categories are loosely defined and much is
behind included, e.g. communication. Why?

1

System calls
File management system call hierarchy

you may not see some topics as part of “file management”,
e.g., sockets

2

System calls
Process management system call hierarchy

3

System calls
Error handling hierarchy

4

Error Handling
Anything can fail!

System calls are no exception

Try to read a file that does not exist!

Error number: errno

every process contains a global variable errno

errno is set to 0 when process is created

when error occurs errno is set to a specific code associated
with the error cause

trying to open file that does not exist sets errno to 2

5

Error Handling
error constants are defined in errno.h

here are the first few of errno.h on OS X 10.6.4

#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* Input/output error */
#define ENXIO 6 /* Device not configured */
#define E2BIG 7 /* Argument list too long */
#define ENOEXEC 8 /* Exec format error */
#define EBADF 9 /* Bad file descriptor */
#define ECHILD 10 /* No child processes */
#define EDEADLK 11 /* Resource deadlock avoided */

6

Error Handling
common mistake for displaying errno

from Linux errno man page:

7

Error Handling
Description of the perror () system call.

Library Function: void perror (char* str)

perror () displays the string str, followed by a colon, followed
by a description of the last system call error.

If there is no error to report, it displays the string "Error 0." Actually,
perror () isn't a system call, it is a standard C library function.

8

example from text
$ cat showErrno.c
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
main ()
{
 int fd;
 /* Open a nonexistent file to cause an error */
 fd = open ("nonexist.txt", O_RDONLY);
 if (fd == -1) /* fd == -1 =, an error occurred */
 {
 printf ("errno = %d\n", errno);
 perror ("main");
 }
 fd = open ("/", O_WRONLY); /* Force a different error */
 if (fd == -1)
 {
 printf ("errno = %d\n", errno);
 perror ("main");
 }
 /* Execute a successful system call */
 fd = open ("nonexist.txt", O_RDONLY | O_CREAT, 0644);
 printf ("errno = %d\n", errno); /* Display after successful call */
 perror ("main");
 errno = 0; /* Manually reset error variable */
 perror ("main");
}

9

output from example above

$./showErrno ...run the program.
errno = 2
main: No such file or directory
errno = 21
main: Is a directory
errno = 29 ...even after a successful call
main: Illegal seek
main: Success ...after we reset manually.
$ _

10

File Management
What is a file?

In unix file types go beyond just your regular files on disk

The file types (and symbols) are:

Regular files ()

Directories (d)

Links (l)

Special files (c)

Sockets (s)

Named pipes (p)

11

File Management
Examples

file is opened, a file descriptor is returned, after certain
operations the file is closed

int fd; /* File descriptor */
...
fd = open (fileName, ...); /* Open file, return file descriptor */
if (fd == -1) { /* deal with error condition */ }
...
fcntl (fd, ...); /* Set some I/O flags if necessary */
...
read (fd, ...); /* Read from file */
...
write (fd, ...); /* Write to file */
...
lseek (fd, ...); /* Seek within file*/
...
close (fd); /* Close the file, freeing file descriptor */

close the file, even though you know....
12

File Management
File descriptors

sequential numbers, starting with 0

first three descriptors are

0 = stdin

1 = stdout

2 = stderr

when reference to file is closed, the fd is freed to be
reassigned

13

File Management
A file may have multiple file discriptors

14

File Management
File descriptor properties include:

file pointer indicating the offset in the file where it is reading/
writing

flag that indicates whether the descriptor should be
automatically closed if the process calls exec()

flag that indicates whether output should be appended to the
end of file

15

File Management
File descriptor properties for special files include:

flag that indicates whether a process should block on input
from a file if it does not currently contain any input

A number that indicates a process ID or process group that
should be sent a SIGIO signal if input becomes available

a SIGIO signal indicates that I/O is now possible

16

File Management
Linux basic I/O operations

open Opens/creates a file.

read Reads bytes from a file into a buffer.

write Writes bytes from a buffer to a file.

lseek Moves to a particular offset in a file.

close Closes a file.

unlink Removes a file.

17

Example: Reverse
Write a Utility: reverse -c [fileName]

reverse reverses the lines of its input and displays them to
standard output.

If no file name is specified, reverse reverses its standard
input.

When the -c option is used, reverse also reverses the
characters in each line.

18

Example: Reverse
Examples of its application

$ gcc reverse.c -o reverse ...compile the program.
$ cat test ...list the test file.
Christmas is coming,
The days that grow shorter,
Remind me of seasons I knew in the past.
$./reverse test ...reverse the file.
Remind me of seasons I knew in the past.
The days that grow shorter,
Christmas is coming,
$./reverse -c test ...reverse the lines too.
.tsap eht ni wenk I snosaes fo em dnimeR
,retrohs worg taht syad ehT
,gnimoc si samtsirhC
$ cat test | ./reverse ...pipe output to "reverse".
Remind me of seasons I knew in the past.
The days that grow shorter,
Christmas is coming,
$ _

19

Example: Reverse
How reverse works

it makes two passes over its input.

During the first pass, it notes the starting offset of each line in
the file and stores this information in an array.

During the second pass, it jumps to the start of each line in
reverse order, copying it from the original input file to its
standard output.

If no file name is specified on the command line, reverse
reads from its standard input during the first pass and copies
it into a temporary file for the second pass.

When the program is finished, the temporary file is removed.

20

21

22

 1 #include <fcntl.h> /* For file mode definitions */
 2 #include <stdio.h>
 3 #include <stdlib.h>
 4
 5
 6 /* Enumerator */
 7 enum { FALSE, TRUE }; /* Standard false and true values */
 8 enum { STDIN, STDOUT, STDERR }; /* Standard I/O channel indices */
 9
 10
 11 /* #define Statements */
 12 #define BUFFER_SIZE 4096 /* Copy buffer size */
 13 #define NAME_SIZE 12
 14 #define MAX_LINES 100000 /* Max lines in file */
 15
 16
 17 /* Globals */
 18 char *fileName = 0; /* Points to file name */
 19 char tmpName [NAME_SIZE];
 20 int charOption = FALSE; /* Set to true if -c option is used */
 21 int standardInput = FALSE; /* Set to true if reading stdin */
 22 int lineCount = 0; /* Total number of lines in input */
 23 int lineStart [MAX_LINES]; /* Store offsets of each line */
 24 int fileOffset = 0; /* Current position in input */
 25 int fd; /* File descriptor of input */

23

 27 /***************************************/
 28
 29 main (argc, argv)
 30
 31 int argc;
 32 char* argv [];
 33
 34 {
 35 parseCommandLine (argc,argv); /* Parse command line */
 36 pass1 (); /* Perform first pass through input */
 37 pass2 (); /* Perform second pass through input */
 38 return (/* EXITSUCCESS */ 0); /* Done */
 39 }
 40
 41 /***/

24

 43 parseCommandLine (argc, argv)
 44
 45 int argc;
 46 char* argv [];
 47
 48 /* Parse command-line arguments */
 49
 50 {
 51 int i;
 52
 53 for (i= 1; i < argc; i++)
 54 {
 55 if(argv[i][0] == '-')
 56 processOptions (argv[i]);
 57 else if (fileName == 0)
 58 fileName= argv[i];
 59 else
 60 usageError (); /* An error occurred */
 61 }
 62
 63 standardInput = (fileName == 0);
 64 }

25

 68 processOptions (str)
 69
 70 char* str;
 71
 72 /* Parse options */
 73
 74 {
 75 int j;
 76
 77 for (j= 1; str[j] != 0; j++)
 78 {
 79 switch(str[j]) /* Switch on command-line flag */
 80 {
 81 case 'c':
 82 charOption = TRUE;
 83 break;
 84
 85 default:
 86 usageError();
 87 break;
 88 }
 89 }
 90 }

26

 92 /**/
 93
 94 usageError ()
 95
 96 {
 97 fprintf (stderr, "Usage: reverse -c [filename]\n");
 98 exit (/* EXITFAILURE */ 1);
 99 }
100
101 /***/
102

27

103 pass1 ()
104
105 /* Perform first scan through file */
106
107 {
108 int tmpfd, charsRead, charsWritten;
109 char buffer [BUFFER_SIZE];
110
111 if (standardInput) /* Read from standard input */
112 {
113 fd = STDIN;
114 sprintf (tmpName, ".rev.%d",getpid ()); /* Random name */
115 /* Create temporary file to store copy of input */
116 tmpfd = open (tmpName, O_CREAT | O_RDWR, 0600);
117 if (tmpfd == -1) fatalError ();
118 }
119 else /* Open named file for reading */
120 {
121 fd = open (fileName, O_RDONLY);
122 if (fd == -1) fatalError ();
123 }
124
125 lineStart[0] = 0; /* Offset of first line */
126
127 while (TRUE) /* Read all input */
128 {
129 /* Fill buffer */
130 charsRead = read (fd, buffer, BUFFER_SIZE);
131 if (charsRead == 0) break; /* EOF */
132 if (charsRead == -1) fatalError (); /* Error */
133 trackLines (buffer, charsRead); /* Process line */
134 /* Copy line to temporary file if reading from stdin */
135 if (standardInput)
136 {
137 charsWritten = write (tmpfd, buffer, charsRead);
138 if(charsWritten != charsRead) fatalError ();
139 }
140 }
141
142 /* Store offset of trailing line, if present */
143 lineStart[lineCount + 1] = fileOffset;
144
145 /* If reading from standard input, prepare fd for pass2 */
146 if (standardInput) fd = tmpfd;
147 }

28

103 pass1 ()
104
105 /* Perform first scan through file */
106
107 {
108 int tmpfd, charsRead, charsWritten;
109 char buffer [BUFFER_SIZE];
110
111 if (standardInput) /* Read from standard input */
112 {
113 fd = STDIN;
114 sprintf (tmpName, ".rev.%d",getpid ()); /* Random name*/
115 /* Create temporary file to store copy of input */
116 tmpfd = open (tmpName, O_CREAT | O_RDWR, 0600);
117 if (tmpfd == -1) fatalError ();
118 }
119 else /* Open named file for reading */
120 {
121 fd = open (fileName, O_RDONLY);
122 if (fd == -1) fatalError ();
123 }
124
125 lineStart[0] = 0; /* Offset of first line */
126

29

103 pass1 ()
104
105 ...

126
127 while (TRUE) /* Read all input */
128 {
129 /* Fill buffer */
130 charsRead = read (fd, buffer, BUFFER_SIZE);
131 if (charsRead == 0) break; /* EOF */
132 if (charsRead == -1) fatalError (); /* Error */
133 trackLines (buffer, charsRead); /* Process line */
134 /* Copy line to temporary file if reading from stdin */
135 if (standardInput)
136 {
137 charsWritten = write (tmpfd, buffer, charsRead);
138 if(charsWritten != charsRead) fatalError ();
139 }
140 }
141
142 /* Store offset of trailing line, if present */
143 lineStart[lineCount + 1] = fileOffset;
144
145 /* If reading from standard input, prepare fd for pass2 */
146 if (standardInput) fd = tmpfd;
147 }

30

151 trackLines (buffer, charsRead)
152
153 char* buffer;
154 int charsRead;
155
156 /* Store offsets of each line start in buffer */
157
158 {
159 int i;
160
161 for (i = 0; i < charsRead; i++)
162 {
163 ++fileOffset; /* Update current file position */
164 if (buffer[i] == '\n') lineStart[++lineCount] = fileOffset;
165 }
166 }

31

170 int pass2 ()
171
172 /* Re-Scan input file, display lines in reverse*/
173
174 {
175 int i;
176
177 for (i = lineCount - 1; i >= 0; i--)
178 processLine (i);
179
180 close (fd); /* Close input file */
181 if (standardInput) unlink (tmpName);
 /* Remove temp file */
182 }
183

32

186 processLine (i)
187
188 int i;
189
190 /* Read a line and display it */
191
192 {
193 int charsRead;
194 char buffer [BUFFER_SIZE];
195
196 lseek (fd, lineStart[i], SEEK_SET); /* Find line and read */
197 charsRead = read (fd, buffer, lineStart[i+1] - lineStart[i]);
198 /* Reverse line if -c option was selected */
199 if (charOption) reverseLine (buffer, charsRead);
200 write (1, buffer, charsRead); /* Write it to stdout */
201 }

33

205 reverseLine (buffer, size)
206
207 char* buffer;
208 int size;
209
210 /* Reverse all the characters in the buffer */
211
212 {
213 int start = 0, end = size - 1;
214 char tmp;
215
216 if (buffer[end] == '\n') --end; /* Leave trailing newline */
217
218 /* Swap characters in a pairwise fashion */
219 while (start < end)
220 {
221 tmp = buffer[start];
222 buffer[start] = buffer[end];
223 buffer[end] = tmp;
224 ++start; /* Increment start index */
225 --end; /* Decrement end index */
226 }
227 }

34

231 fatalError ()
232
233 {
234 perror ("reverse: "); /* Describe error */
235 exit (1);
236 }

System Call: open()
int open (char* fileName, int mode [, int permissions])

open () allows you to open or create a file for reading and/or
writing.

fileName is an absolute or relative pathname and mode is a
bitwise or'ing of a read/write flag together with zero or more
miscellaneous flags.

permissions is a number that encodes the value of the file's
permission flags, and should only be supplied when a file is
being created. It is usually written using octal encoding.

The permissions value is affected by the process's umask
value. The values of the predefined read/write and
miscellaneous flags are defined in "/usr/include/fcntl.h". The
read/write flags are as follows:

35

System Call: open()
Read/write flags:

FLAG MEANING

O_RDONLY Open for read-only.

O_WRONLY Open for write-only.

O_RDWR Open for read and write.

36

System Call: open()
Miscellaneous flags:

O_APPEND: Position the file pointer at the end of the
file before each write ().

O_CREAT: If the file doesn't exist, create the file, and
set the owner ID to the process's effective user ID. The
umask value is used when determining the initial
permission flag settings.

O_EXCL: If O_CREAT is set and the file exists, then
open () fails.

37

System Call: open()
Miscellaneous flags cont.:

O_NONBLOCK or O_NDELAY: This setting works
only for named pipes. If set, an open for read-only will
return immediately, regardless of whether the write end
is open, and an open for write-only will fail if the read
end isn't open. If clear, an open for read-only or write-
only will block until the other end is also open.

O_TRUNC: If the file exists, it is truncated to length
zero.

open () returns a non-negative file descriptor if
successful; otherwise, it returns -1.

38

Creating a file
Use the O_CREAT flag as part of the mode flags, and
supply the initial file permission flag settings as an octal
value

114 sprintf (tmpName, ".rev.%d", getpid ()); /*Random name*/
115 /* Create temporary file to store copy of input */
116 tmpfd = open (tmpName, O_CREAT | O_RDWR, 0600);
117 if (tmpfd == -1) fatalError ();

getpid () returns the process's ID number (PID), which is
guaranteed to be unique.

note the temp file is a hidden file

39

Opening a file
Open existing file

Specify the mode flags only

121 fd = open (fileName, O_RDONLY);
122 if (fd == -1) fatalError ();

other more complicated flag settings for open (), such as
O_NONBLOCK, are intended for use with the pipes, sockets,
and STREAMS

40

System call read()
ssize_t read (int fd, void* buf, size_t count)

[Note: This synopsis describes how read () operates when
reading a regular file. Reading from special files comes later]

read () copies count bytes from file (referenced by file
descriptor fd) into the buffer buf. The bytes are read from the
current file position, which is then updated accordingly.

read () copies as many bytes from the file as it can, up to the
number specified by count, and returns the number of bytes
actually copied. If a read () is attempted after the last byte has
already been read, it returns 0, which indicates end-of-file.

If successful, read () returns the number of bytes that it read;
otherwise, it returns -1.

41

System call read()
ssize_t read (int fd, void* buf, size_t count)

example

130 charsRead = read (fd, buffer, BUFFER_SIZE);
131 if (charsRead == 0) break; /* EOF */
132 if (charsRead == -1) fatalError (); /* Error */

42

System call write()
ssize_t write (int fd, void* buf, size_t count)

[Note: This synopsis describes how write () operates when writing to
a regular file. Writing to special files comes later]

write () copies count bytes from a buffer buf to the file referenced by
the file descriptor fd. The bytes are written at the current file position,
which is then updated accordingly. If the O_APPEND flag was set for
fd, the file position is set to the end of the file before each write.

write () copies as many bytes from buffer as it can, up to the number
specified by count, and returns the # of bytes actually copied. Always
check the return value. If the return value isn't count, the disk
probably filled up and no space was left.

If successful, write () returns the number of bytes that were written;
otherwise, it returns -1.

43

System call write()
ssize_t write (int fd, void* buf, size_t count)

Example

The write () system call performs low-level output, and has none
of the formatting capabilities of printf (). The benefit of write () is
that it bypasses the additional layer of buffering supplied by the C
library functions, and is therefore very fast.

134 /* Copy line to temp file if reading standard input*/
135 if (standardInput)
136 {
137 charsWritten = write (tmpfd, buffer, charsRead);
138 if (charsWritten != charsRead) fatalError ();
139 }

44

System call lseek()
off_t lseek (int fd, off_t offset, int mode)

lseek () allows to move in a file by changing a descriptor's
current file position. fd is the file descriptor, offset is a long
integer, and mode describes how offset should be interpreted.

The three possible values of mode are defined in "/usr/
include/stdio.h," and have the following meaning:

SEEK_SET: offset is relative to the start of the file.
SEEK_CUR: offset is relative to the current file position.
SEEK_END: offset is relative to the end of the file.

lseek () fails if you try to move before the start of the file.

If successful, lseek () returns the current file position;
otherwise, it returns -1.

45

System call lseek()
off_t lseek (int fd, off_t offset, int mode)

example: Lines 196..197 seek to the start of a line and then
read in all of its characters. Note that the number of
characters to read is calculated by subtracting the start offset
of the next line from the start offset of the current line.

196 lseek (fd, lineStart[i], SEEK_SET);
 /* Find line & read it */
197 charsRead = read (fd,buffer,lineStart[i+1]-lineStart[i]);

If you want to find out your current location without moving,
use an offset value of zero relative to the current position:

currentOffset = lseek (fd, 0, SEEK_CUR);

46

System call close()
int close (int fd)

close () frees the file descriptor fd. If fd is the last file
descriptor associated with a particular open file, the kernel
resources associated with the file are deallocated.

When a process terminates, all of its file descriptors are
automatically closed, but it's better programming practice to
close a file when you're done with it. If you close a file
descriptor that's already closed, an error occurs.

If successful, close () returns zero; otherwise, it returns -1.

47

System call unlink()
int unlink (const char* fileName)

unlink () removes the hard link from the name fileName to its
file.

If fileName is the last link to the file, the file's resources are
deallocated. In this case, if any process's file descriptors are
currently associated with the file, the directory entry is
removed immediately but the file is only deallocated after all
of the file descriptors are closed. This means that an
executable file can unlink itself during execution and still
continue to completion.

If successful, unlink () returns zero; otherwise, it returns -1.

48

System call stat()
int stat (const char* name, struct stat* buf)

fills the buffer buf with information about the file name. The
stat structure is defined in "/usr/include/sys/stat.h".

int lstat (const char* name, struct stat* buf)

returns information about a symbolic link itself rather than
the file it references.

int fstat (int fd, struct stat* buf)

performs the same function as stat (), except that it takes the
file descriptor of the file to be stat'ed as its first parameter.

49

System call stat()
Members of structure stat:

st_dev the device number
st_ino the inode number
st_mode the permission flags
st_nlink the hard link count
st_uid the user ID
st_gid the group ID
st_size the file size
st_atime the last access time
st_mtime the last modification time
st_ctime the last status change time

50

System call stat()
some predefined macros defined in "/usr/include/sys/
stat.h" that take st_mode as their argument and return
true (1) for the following file types:

MACRO RETURNS TRUE FOR FILE TYPE
S_ISDIR directory
S_ISCHR character-oriented special device
S_ISBLK block-oriented special device
S_ISREG regular file
S_ISFIFO pipe

51

Directory Information
Library Function:

DIR * opendir (char * fileName)

struct dirent * readdir (DIR *dir)

int closedir (DIR *dir)

opendir () opens a directory file for reading and returns a pointer to
a stream descriptor which is used as the argument to readdir () and
closedir ().

readdir () returns a pointer to a dirent structure containing
information about the next directory entry each time it is called.
closedir () is used to close the directory.

52

Directory Information
The dirent structure is defined in the system header file "/usr/
include/dirent.h"

NAME MEANING

d_ino the inode number

d_off the offset of the next directory entry

d_reclen the length of the directory entry structure

d_name the filename

opendir () returns the directory stream pointer when successful, NULL
when not successful. readdir () returns 1 when a directory entry has been
successfully read, 0 when the last directory entry has already been read,
and -1 in the case of an error. closedir () returns 0 on success, -1 on failure.

53

Misc. File Management System Calls

54

Changing a File's Owner and/or Group: chown ()

55

System call chown()
example

$ cat mychown.c ...list the file.
main ()
{
 int flag;
 flag = chown ("test.txt", -1, 62); /* Leave user ID
unchanged */
 if (flag == -1) perror("mychown.c");
}
$ ls -l test.txt ...examine file before.
-rw-r--r-- 1 glass music 3 May 25 11:42 test.txt
$./mychown ...run program.
$ ls -l test.txt ...examine file after.
-rw-r--r-- 1 glass cs 3 May 25 11:42 test.txt
$ _

56

Changing a File's Permissions: chmod ()

57

System call chmod()
example

$ cat mychmod.c ...list the file.
main ()
{
 int flag;
 flag = chmod ("test.txt", 0600); /* Use octal encoding */
 if (flag == -1) perror ("mychmod.c");
}
$ ls -lG test.txt ...examine file before.
-rw-r--r-- 1 glass 3 May 25 11:42 test.txt
$./mychmod ...run the program.
$ ls -lG test.txt ...examine file after.
-rw------- 1 glass 3 May 25 11:42 test.txt
$ _

58

Duplicating a File Descriptor: dup ()

59

System call dup()
example

$ cat mydup.c ...list the file.
#include <stdio.h>
#include <fcntl.h>
main ()
{
 int fd1, fd2, fd3;
 fd1 = open ("test.txt", 0_RDWR | 0_TRUNC);
 printf ("fd1 = %d\n", fd1);
 write (fd1, "what's", 6);
 fd2 = dup (fd1); /* Make a copy of fd1 */
 printf ("fd2 = %d\n", fd2);
 write (fd2, " up", 3);
 close (0); /* Close standard input */
 fd3 = dup (fd1); /* Make another copy of fd1 */
 printf ("fd3 = %d\n", fd3);
 write (0, " doc", 4);
 dup2 (3, 2); /* Duplicate channel 3 to channel 2 */
 write (2, "?\n", 2);
}
$./mydup ...run the program.
fd1 = 3
fd2 = 4
fd3 = 0
$ cat test.txt ...list the output file.
what's up doc?

60

