Threads, SMP, and Microkernels

Chapter 4
Process

• Two characteristics:
 – Resource ownership
 • process includes a virtual address space to hold the process image
 – Scheduling/execution
 • follows an execution path that may be interleaved with other processes
 – These two characteristics are treated independently by the OS
Process

• process
 – sometimes referred to as *task* or *job*
 – refers to resource of ownership
 – (addresses the 1st characteristic)

• thread or lightweight process
 – this is the unit of dispatching
 – (addresses the 2nd characteristic)
Multithreading

• Operating system supports multiple threads of execution within a single process
 – MS-DOS supports a single thread
 – UNIX supports multiple user processes but only supports one thread per process
 – Windows, Solaris, Linux, Mach, OS X, and OS/2 support multiple threads
 • e.g. OS X 10.6 (snow leopard) offers POSIX threads (or pthreads, POSIX 1003.1c standard), and Cocoa threads
Figure 4.1 Threads and Processes [ANDE97]
Process

- In multithreaded environment a **process** is the unit of resource allocation and a unit of protection

- Processes
 - Have a virtual address space which holds the process image
 - Protected access to processors, other processes, files, and I/O resources
Thread

• Within a process there are one or more threads, each with the following:
 – an execution state (running, ready, etc.)
 – a saved thread context when not running
 • may view a thread as an independent program counter operating within a process
 – an execution stack
 – some per-thread static storage for local variables
 – access to the memory & resources of its process
 • all threads of a process share this
Figure 4.2 Single Threaded and Multithreaded Process Models
Benefits of Threads

• Takes less time to create a new thread than a process
• Less time to terminate a thread than a process
• Less time to switch between two threads within the same process
• Since threads within the same process share memory and files, they can communicate with each other without invoking the kernel
Threads in a Single-User Multiprocessing System

- Foreground to background work
 - e.g. spreadsheet, multiple threats display menus, read user input, update spreadsheet etc.

- Asynchronous processing
 - e.g. thread in word processor to periodically flush RAM to disk
Threads in a Single-User Multiprocessing System

- **Speed of execution**
 - e.g. a process may compute one batch of data while reading in the next.
 - in multiprocessor: true parallel execution of threads in a process

- **Modular program structure**
 - thread model can be used to “group” activities of process
Quick jump into the real world of research

- Discussion: Processes, Threads and Checkpointing in GRID application

- available at http://www.cs.uidaho.edu/~krings/publications.html