Deadlock

• Permanent blocking of a set of processes that either compete for system resources or communicate with each other

• No efficient solution

• Involve conflicting needs for resources by two or more processes
Figure 6.1 Illustration of Deadlock
Better illustrations 😊
Reusable Resources

- Used by only one process at a time and not depleted by that use
- Processes obtain resources that they later release for reuse by other processes
 - E.g. Processors, I/O channels, main and secondary memory, devices, and data structures such as files, databases, and semaphores
- Deadlock occurs if each process holds one resource and requests the other
Example of Deadlock

Now consider the following sequence:

\[p_0 \ p_1 \ q_0 \ q_1 \ p_2 \ q_2 \]
Another Example of Deadlock

• Space is available for allocation of 200Kbytes, and the following sequence of events occur

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Request 80 Kbytes;</td>
<td>Request 70 Kbytes;</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Request 60 Kbytes;</td>
<td>Request 80 Kbytes;</td>
</tr>
</tbody>
</table>

• Deadlock occurs if both processes progress to their second request
Consumable Resources

- Created (produced) and destroyed (consumed)
- Interrupts, signals, messages, and information in I/O buffers
- Deadlock may occur if a Receive message is blocking
- May take a rare combination of events to cause deadlock
Example of Deadlock

- Deadlock occurs if receive is blocking

```plaintext
P1
  . . .
  Receive(P2);
  . . .
  Send(P2, M1);

P2
  . . .
  Receive(P1);
  . . .
  Send(P1, M2);
```
Resource Allocation Graphs

- Directed graph that depicts a state of the system of resources and processes
Resource Allocation Graphs

Figure 6.5 Examples of Resource Allocation Graphs
Conditions for Deadlock

- Mutual exclusion
 - Only one process may use a resource at a time
- Hold-and-wait
 - A process may hold allocated resources while awaiting assignment of others
- No preemption
 - No resource can be forcibly removed from a process holding it
Conditions for Deadlock

• Circular wait
 - A closed chain of processes exists, such that each process holds at least one resource needed by the next process in the chain