Disk Performance Parameters

• To read or write, the disk head must be positioned at the desired track and at the beginning of the desired sector
• Seek time
 – Time it takes to position the head at the desired track
• Rotational delay or rotational latency
 – Time its takes for the beginning of the sector to reach the head

Timing of a Disk I/O Transfer

Figure 11.6 Timing of a Disk I/O Transfer
Disk Performance Parameters

- Access time
 - Sum of seek time and rotational delay
 - The time it takes to get in position to read or write
- Data transfer occurs as the sector moves under the head

Disk Scheduling Policies

- Seek time is the reason for differences in performance
- For a single disk there will be a number of I/O requests
- If requests are selected randomly, we will poor performance
Disk Scheduling Policies

• First-in, first-out (FIFO)
 – Process request sequentially
 – Fair to all processes
 – Approaches random scheduling in performance if there are many processes

Disk Scheduling Policies

• Priority
 – Goal is not to optimize disk use but to meet other objectives
 – Short batch jobs may have higher priority
 – Provide good interactive response time
Disk Scheduling Policies

- Last-in, first-out
 - Good for transaction processing systems
 - The device is given to the most recent user so there should be little arm movement
 - Possibility of starvation since a job may never regain the head of the line

- Shortest Service Time First
 - Select the disk I/O request that requires the least movement of the disk arm from its current position
 - Always choose the minimum Seek time
Disk Scheduling Policies

- **SCAN**
 - Arm moves in one direction only, satisfying all outstanding requests until it reaches the last track in that direction
 - Direction is reversed

Disk Scheduling Policies

- **C-SCAN**
 - Restricts scanning to one direction only
 - When the last track has been visited in one direction, the arm is returned to the opposite end of the disk and the scan begins again
Disk Scheduling Policies

• N-step-SCAN
 – Segments the disk request queue into subqueues of length N
 – Subqueues are processed one at a time, using SCAN
 – New requests added to other queue when queue is processed

• FSCAN
 – Two queues
 – One queue is empty for new requests

Disk Scheduling Algorithms

Table 11.2 Comparison of Disk Scheduling Algorithms

<table>
<thead>
<tr>
<th>(a) FIFO</th>
<th>(b) SSTF</th>
<th>(c) SCAN</th>
<th>(d) C-SCAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next track accessed</td>
<td>Number of tracks traversed</td>
<td>Next track accessed</td>
<td>Number of tracks traversed</td>
</tr>
<tr>
<td>55</td>
<td>45</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>59</td>
<td>3</td>
<td>59</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>19</td>
<td>39</td>
<td>16</td>
</tr>
<tr>
<td>21</td>
<td>39</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>72</td>
<td>58</td>
<td>12</td>
</tr>
<tr>
<td>160</td>
<td>70</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>150</td>
<td>10</td>
<td>150</td>
<td>132</td>
</tr>
<tr>
<td>38</td>
<td>112</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>184</td>
<td>146</td>
<td>184</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average seek length</th>
<th>55.3</th>
<th>Average seek length</th>
<th>27.5</th>
<th>Average seek length</th>
<th>27.8</th>
<th>Average seek length</th>
<th>35.8</th>
</tr>
</thead>
</table>
RAID

- Redundant Array of Independent Disks
- Set of physical disk drives viewed by the operating system as a single logical drive
- Data are distributed across the physical drives of an array
- Redundant disk capacity is used to store parity information

RAID 0 (non-redundant)
RAID 1 (mirrored)

RAID 2 (redundancy through Hamming code)
RAID 3 (bit-interleaved parity)

(d) RAID 3 (bit-interleaved parity)

RAID 4 (block-level parity)

(e) RAID 4 (block-level parity)
RAID 5 (block-level distributed parity)

RAID 6 (dual redundancy)
RAID 10

RAID 10 is sometimes also called RAID 1+0

RAID 0+1

Disk Cache

- Buffer in main memory for disk sectors
- Contains a copy of some of the sectors on the disk

Least Recently Used

- The block that has been in the cache the longest with no reference to it is replaced
- The cache consists of a stack of blocks
- Most recently referenced block is on the top of the stack
- When a block is referenced or brought into the cache, it is placed on the top of the stack
Least Recently Used

- The block on the bottom of the stack is removed when a new block is brought in
- Blocks don’t actually move around in main memory
 - A stack of pointers is used

Least Frequently Used

- The block that has experienced the fewest references is replaced
- A counter is associated with each block
- Counter is incremented each time block accessed
- Block with smallest count is selected for replacement
- Some blocks may be referenced many times in a short period of time and the reference count is misleading
Figure 11.9 Frequency-Based Replacement

Figure 11.10 Some Disk Cache Performance Results Using LRU
UNIX SCR4 I/O

- Each individual device is associated with a special file
- Two types of I/O
 - Buffered
 - Unbuffered

Figure 11.11 Disk Cache Performance Using Frequency-Based Replacement [ROB90]

Figure 11.12 UNIX I/O Structure
Linux I/O

- Elevator scheduler
 - Maintains a single queue for disk read and write requests
 - Keeps list of requests sorted by block number
 - Drive moves in a single direction to satisfy each request
Linux I/O

- Deadline scheduler
 - Uses three queues
 - Incoming requests
 - Read requests go to the tail of a FIFO queue
 - Write requests go to the tail of a FIFO queue
 - Each request has an expiration time
 - defaults for requests:
 - 0.5s for read
 - 5s for write

1. Put requests in sorted queue *and* FIFO
 - remove request from both Qs when processed
 - Schedule from sorted Q and check expiration date of FIFO entry.
 - if date has expired, schedule from FIFO until “caught up”

Figure 11.14 The Linux Deadline I/O Scheduler
Linux I/O

- Anticipatory I/O scheduler
 - Delay a short period of time after satisfying a read request to see if a new nearby request can be made

Windows I/O

- Basic I/O modules
 - Cache manager
 - File system drivers
 - Network drivers
 - Hardware device drivers
Windows I/O

I/O Manager
- Cache Manager
- File System Drivers
- Network Drivers
- Hardware Device Drivers

Figure 11.15 Windows I/O Manager