Shortest Remaining Time (SRT)

- Preemptive version of shortest process next policy
- Must estimate processing time

Response Time and Ratio

- Response Ratio R is
 - total time spent waiting and executing normalized to the execution time
 - w: waiting time (waiting for a processor)
 - s: expected service (execution) time

\[R = \frac{w + s}{s} \]

- Note: In scheduling theory response time is called flow time $F_i = C_i - r_i$
 - i.e., completion time minus ready time
 - this is the sum of waiting and processing times

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Service Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
Highest Response Ratio Next (HRRN)

• Choose next process with the greatest response ratio

Feedback

• SPN, SRT and HRRN require that something is known about the execution times
 – e.g., expected execution time
• Alternative policies
 – give preference to shorter tasks by penalizing tasks that have been running longer
Use multiple queues, pushing tasks to the next queue after each preemption

Feedback

- Potential problems
 - starvation
 - low response times for longer tasks
 - many solutions exists, e.g.,
 - use fixed quantum
 - \(q = 1 \)
 - use different quantum in consequent queues
 - \(q = 2^i \) for queue \(i \)
 - starvation still possible though
 - solution: “promote” jobs to higher queue after some time
• Don’t know remaining time process needs to execute

Table 9.4 Process Scheduling Example

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Service Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 9.3 Characteristics of Various Scheduling Policies

<table>
<thead>
<tr>
<th>Selection Function</th>
<th>Decision Mode</th>
<th>Throughput</th>
<th>Response Time</th>
<th>Overhead</th>
<th>Effect on Processes</th>
<th>Starvation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCFS</td>
<td>max([w])</td>
<td>Nonpreemptive</td>
<td>Not emphasized</td>
<td>May be high, especially if there is a large variance in process execution times</td>
<td>Minimum</td>
<td>Penalizes short processes, penalizes IO bound processes</td>
</tr>
<tr>
<td>Round Robin</td>
<td>constant</td>
<td>Preemptive (at time quantum)</td>
<td>May be low if quantum is too small</td>
<td>Provides good response time for short processes</td>
<td>Minimum</td>
<td>Fair treatment</td>
</tr>
<tr>
<td>SPN</td>
<td>min([z])</td>
<td>Nonpreemptive</td>
<td>High</td>
<td>Provides good response time for short processes</td>
<td>Can be high</td>
<td>Penalizes long processes</td>
</tr>
<tr>
<td>SRT</td>
<td>min([z - \phi])</td>
<td>Preemptive (at arrival)</td>
<td>High</td>
<td>Provides good response time</td>
<td>Can be high</td>
<td>Penalizes long processes</td>
</tr>
<tr>
<td>HRRN</td>
<td>max(\frac{w + \phi}{z})</td>
<td>Nonpreemptive</td>
<td>High</td>
<td>Provides good response time</td>
<td>Can be high</td>
<td>Good balance</td>
</tr>
<tr>
<td>Feedback</td>
<td>(see text)</td>
<td>Preemptive (at time quantum)</td>
<td>Not emphasized</td>
<td>Not emphasized</td>
<td>Can be high</td>
<td>May favor I/O bound processes</td>
</tr>
</tbody>
</table>

\(w\) = time spent waiting
\(\phi\) = time spent in execution so far
\(z\) = total service time required by the process, including \(\phi\)
Table 9.5 A Comparison of Scheduling Policies

<table>
<thead>
<tr>
<th>Process</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival Time</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Service Time (T_s)</td>
<td>1.00</td>
<td>1.17</td>
<td>2.25</td>
<td>2.40</td>
<td>6.00</td>
<td>2.56</td>
</tr>
</tbody>
</table>

- **FCFS**: First In, First Out
 - Finish Time: 3, 9, 13, 18, 20
 - Turnaround Time (T_s): 1.00, 1.17, 2.25, 2.40, 6.00
 - Average Turnaround Time: 8.60

- **RR q = 3**
 - Finish Time: 4, 18, 37, 20, 15
 - Turnaround Time (T_s): 2.67, 3.25, 2.80, 3.50, 2.71

- **RR q = 4**
 - Finish Time: 3, 17, 11, 20, 19
 - Turnaround Time (T_s): 2.5, 1.75, 2.80, 5.50, 2.71

- **SPN**
 - Finish Time: 3, 9, 15, 20, 11
 - Turnaround Time (T_s): 1.00, 1.17, 2.75, 2.00, 1.50
 - Average Turnaround Time: 7.60

- **SRT**
 - Finish Time: 3, 15, 8, 20, 10
 - Turnaround Time (T_s): 3, 13, 4, 14, 2
 - Average Turnaround Time: 7.20

- **HRN**
 - Finish Time: 3, 9, 13, 20, 15
 - Turnaround Time (T_s): 3, 9, 14, 7, 8.00
 - Average Turnaround Time: 8.00

- **FB q = 1**
 - Finish Time: 4, 20, 16, 19, 11
 - Turnaround Time (T_s): 1.33, 3.00, 3.00, 2.60, 1.5
 - Average Turnaround Time: 10.00

- **FB q = 2**
 - Finish Time: 4, 17, 18, 20, 14
 - Turnaround Time (T_s): 1.33, 2.50, 3.50, 2.80, 3.00
 - Average Turnaround Time: 2.63

Table 9.6 Formulas for Single-Server Queues with Two Priority Categories

Assumptions:
1. Poisson arrival rate.
2. Priority 1 items are serviced before priority 2 items.
3. First-in-first-out dispatching for items of equal priority.
4. No item is interrupted while being served.
5. No items leave the queue (lost calls delayed).

(a) General Formulas
- \(\lambda = \lambda_1 + \lambda_2 \) arrival rate
- \(\rho_1 = \lambda_1T_{s1} \) utilization
- \(\rho = \rho_1 + \rho_2 \)
- \(T_s = \frac{\lambda}{\lambda_2} T_{s1} + \frac{\lambda_2}{\lambda_1} T_{s2} \) average service time
- \(T_r = \frac{\lambda}{\lambda_2} T_{r_1} + \frac{\lambda_2}{\lambda_1} T_{r_2} \) turnaround time

(b) No interrupts; exponential service times
- \(T_{s1} = T_{s1} + \frac{\rho T_{s1} + \rho_2 T_{s2}}{1 - \rho} \)
- \(T_{r1} = T_{r1} + T_{s1} - T_{s2} \)

(c) Preemptive-resume queuing discipline;
 exponential service times
- \(T_{s1} = T_{s1} + \frac{\rho T_{s1}}{1 - \rho_1} \)
- \(T_{r2} = T_{r2} + \frac{1}{1 - \rho} \left(\rho_1 T_{r1} + \rho_2 T_{r2} \right) \)
Fair-Share Scheduling

- All previous approaches treat collection of ready processes as single pool
- User’s application runs as a collection of processes (threads)
 - concern about the performance of the application, not single process; (this changes the game)
 - need to make scheduling decisions based on process sets
Fair-Share Scheduling

• Philosophy can be extended to groups
 – e.g. time-sharing system,
 • all users from one department treated as group
 • the performance of that group should not affect other groups significantly
 – e.g. as many people from the group log in performance degradation should be primarily felt in that group

Fair-Share Scheduling

• Fair share
 – each user is assigned a weight that corresponds to the fraction of total use of the resources
 – scheme should operate approximately linear
 • e.g. if user A has twice the weight of user B, then (in the long run), user A should do twice the work than B.
Traditional UNIX Scheduling

- Multilevel feedback using round robin within each of the priority queues
- If a running process does not block or complete within 1 second, it is preempted
- Priorities are recomputed once per second
- Base priority divides all processes into fixed *bands* of priority levels

Bands

- Decreasing order of priority
 - Swapper
 - Block I/O device control
 - File manipulation
 - Character I/O device control
 - User processes