
1

1

Using Semaphores

•  It is difficult to use semaphores
–  see example in Fig 5.9
–  semaphores may be scattered throughout

the program
•  difficult to assess overall effect

•  Monitors provide similar functionality
–  but are easier to control
–  implemented in languages like Concurrent

Pascal, Pascal-Plus, Modula-2 & 3, and
Java

2

Monitors

•  A Monitor is a software module
•  Chief characteristics

– Local data variables are accessible only by
the monitor

– Process enters monitor by invoking one of
its procedures

– Only one process may be executing in the
monitor at a time

2

3

Monitors

•  Provides mutual exclusion facility
•  Shared data structure can be protected by

placing it into a monitor
•  If the data in a monitor represents some

resource, then mutual exclusion is
guaranteed for that resource

4

Monitors

•  Synchronization support is needed
–  implemented using special data types called

condition variables
–  these variables are affected by two

functions
• cwait(c)

–  suspend calling process on condition c
–  now monitor can be used by other process

• csignal(c)
–  resume blocked process after cwait on same

condition c!

3

5

Monitors

•  So what is the difference between the
use of cwait and csignal in monitors and
the wait and signal of semaphores?
– Hint: remember what got us in trouble when

using semaphores!

6

Monitors

•  Monitor wait and signal operations are
different from their counterparts in
semaphores
–  If a process in a monitor signals and

corresponding queue is empty then signal is
lost

4

7

8

5

9

10

Message Passing

•  Interaction between processes
–  synchronization
–  communication

•  One solution to this is message passing
– works in tightly and loosely coupled

systems

6

11

Message Passing

•  Enforce mutual exclusion
•  Exchange information

 send (destination, message)
 receive (source, message)

12

Synchronization

•  Sender and receiver may or may not be
blocking (waiting for message)

•  Blocking send, blocking receive
– Both sender and receiver are blocked until

message is delivered
– This is called a rendezvous

7

13

Synchronization

•  Nonblocking send, blocking receive
– Sender continues on
– Receiver is blocked until the requested

message arrives

•  Nonblocking send, nonblocking receive
– Neither party is required to wait

14

Addressing

•  Direct addressing
– Send primitive includes a specific identifier

of the destination process
– Receive primitive could know ahead of

time which process a message is expecting
– Receive primitive could use source

parameter to return a value when the
receive operation has been performed

8

15

Addressing

•  Indirect addressing
– Messages are sent to a shared data structure

consisting of queues
– Queues are called mailboxes
– One process sends a message to the mailbox

and the other process picks up the message
from the mailbox

–  relationship between sender & receiver
•  1-to-1, many-to-1, 1-to-many, many-to-many

16

S1

Sn

R1

Rn

Mailbox

S1

Sn

R1Port

Figure 5.18 Indirect Process Communication

(b) Many to one

S1 R1Port

S1

(a) One to one

(d) Many to many

R1

Rn

Mailbox

(c) One to many

9

17

Message Format

18

Assumptions:
 blocking receive
 non-blocking send

What happens if the
send is omitted?

10

19

What does the
for loop do?

20

Readers/Writers Problem

•  Different variations on the theme, e.g.,
–  dedicated readers and dedicated writers
–  they all can read and write

•  Here we look at the “dedicated” case
– Any number of readers may simultaneously

read the file
– Only one writer at a time may write to the file
–  If a writer is writing to the file, no reader may

read it

11

21

x: controls updating readcount
wsem: controls writing

22

z: prevent long reader queue;
 only 1 reader lines up at rsem,
 other readers line up at z

y: controls updating of writecount

