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Using Semaphores 

•  It is difficult to use semaphores 
–  see example in Fig 5.9 
–  semaphores may be scattered throughout 

the program 
•  difficult to assess overall effect 

•  Monitors provide similar functionality  
–  but are easier to control 
–  implemented in languages like Concurrent 

Pascal, Pascal-Plus, Modula-2 & 3, and 
Java 
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Monitors 

•  A Monitor is a software module 
•  Chief characteristics 

– Local data variables are accessible only by 
the monitor 

– Process enters monitor by invoking one of 
its procedures 

– Only one process may be executing in the 
monitor at a time 
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Monitors 

•  Provides mutual exclusion facility 
•  Shared data structure can be protected by 

placing it into a monitor 
•  If the data in a monitor represents some 

resource, then mutual exclusion is 
guaranteed for that resource 
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Monitors 

•  Synchronization support is needed 
–  implemented using special data types called 

condition variables 
–  these variables are affected by two 

functions 
• cwait(c) 

–  suspend calling process on condition c 
–  now monitor can be used by other process 

• csignal(c) 
–  resume blocked process after cwait on same 

condition c!
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Monitors 

•  So what is the difference between the 
use of cwait and csignal in monitors and 
the wait and signal of semaphores? 
– Hint: remember what got us in trouble when 

using semaphores!
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Monitors 

•  Monitor wait and signal operations are 
different from their counterparts in 
semaphores 
–  If a process in a monitor signals and 

corresponding queue is empty then signal is 
lost 
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Message Passing 

•  Interaction between processes 
–  synchronization 
–  communication 

•  One solution to this is message passing 
– works in tightly and loosely coupled 

systems 
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Message Passing 

•  Enforce mutual exclusion 
•  Exchange information 
 

 send (destination, message) 
 receive (source, message) 
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Synchronization 

•  Sender and receiver may or may not be 
blocking (waiting for message) 

•  Blocking send, blocking receive 
– Both sender and receiver are blocked until 

message is delivered 
– This is called a rendezvous 
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Synchronization 

•  Nonblocking send, blocking receive 
– Sender continues on 
– Receiver is blocked until the requested 

message arrives 

•  Nonblocking send, nonblocking receive 
– Neither party is required to wait 
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Addressing 

•  Direct addressing 
– Send primitive includes a specific identifier 

of the destination process 
– Receive primitive could know ahead of 

time which process a message is expecting 
– Receive primitive could use source 

parameter to return a value when the 
receive operation has been performed 
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Addressing 

•  Indirect addressing 
– Messages are sent to a shared data structure 

consisting of queues 
– Queues are called mailboxes 
– One process sends a message to the mailbox 

and the other process picks up the message 
from the mailbox 

–  relationship between sender & receiver 
•  1-to-1, many-to-1, 1-to-many, many-to-many 
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Message Format 

18 

Assumptions: 
 blocking receive 
 non-blocking send 

What happens if the 
send is omitted? 
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What does the 
for loop do? 
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Readers/Writers Problem 

•  Different variations on the theme, e.g., 
–  dedicated readers and dedicated writers 
–  they all can read and write 

•  Here we look at the “dedicated” case 
– Any number of readers may simultaneously 

read the file 
– Only one writer at a time may write to the file 
–  If a writer is writing to the file, no reader may 

read it 
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x: controls updating readcount 
wsem: controls writing 
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z: prevent long reader queue; 
    only 1 reader lines up at rsem, 
    other readers line up at z 

y: controls updating of writecount 


