CS120 – Computer Science I

Instructor: Jia Song
Instructor Contact Information

Instructor: Dr. Jia Song
Email: jsong@uidaho.edu (Preferred)
Phone: (208) 885-1710
Office: JEB 240 (CSDS Security Lab)
 JEB 340
Office Hour:
 MTW 2:30pm – 3:30pm
 Schedule an appointment by Email

• Use “CS120 YOUR SUBJECT HERE” in the subject field.
• Look for a response email (in 24 hours) if you send documents to me.
About this course

• **Time and Location:**

 Lecture: WMF 12:30pm – 1:20 pm (MCCL 209)

 Labs:
 - Section 1 – **T 10:30am – 12:20pm** (JEB 321)
 - Section 2 – **T 12:30pm – 2:20pm** (JEB 321)
 - Section 3 – **R 2:30pm – 4:20pm** (JEB 321)
Learning Outcomes

After successfully completing this course, each student will have learned how to do the following:

• Apply knowledge of computing and mathematics appropriate to the program’s student outcomes and to the discipline (ABET student outcome A (introduce))

• Design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs (ABET student outcome C (introduce))

• Function effectively on teams to accomplish a common goal (ABET student outcome D (introduce))

• Communicate effectively with a range of audiences (ABET student outcome F (introduce))

• Use current techniques, skills, and tools necessary for computing practice (ABET student outcome I (introduce))

• Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates an understanding of the tradeoffs involved in design choices (ABET student outcome J (introduce))

• Apply design and development principles in the construction of software systems of varying complexity (ABET student outcome K (introduce))
Textbook

Recommended C++ books

• C++ Primer (Stanley B. Lippman, Josee Lajoie, Barbara E. Moo)

• The C++ Programming Language (Bjarne Stroustrup)
Recommended C++ books

- Programming: Principles and Practice Using C++ (Bjarne Stroustrup)
- C++ Primer Plus (Stephen Prata)
Course website

• http://www2.cs.uidaho.edu/~jsong/cs120spring2018.html
Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 10 – Jan 12</td>
<td>Introduction to Computers and programming</td>
<td>1</td>
</tr>
</tbody>
</table>
| 2 | Jan 15 – Jan 19 | Variables, basic I/O, conditionals, libraries
Idaho Human Rights Day Jan 15 (No classes) | 2 |
| 3 | Jan 22 – Jan 26 | Conditionals, loops, random numbers | 3 |
| 4 | Jan 29 – Feb 2 | More Loops | 3 |
| 5 | Feb 5 – Feb 9 | Functions | 4 |
| 6 | Feb 12 – Feb 16 | Classes | 5 |
| | | ***short exam #1 Fri Feb 16*** | |
| 7 | Feb 19 – Feb 23 | More classes | 5 |
| | | ***Presidents Day Feb 19 (No classes)*** | |
Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topic</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Feb 26 – Mar 2</td>
<td>Software design and engineering</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Mar 5 – Mar 9</td>
<td>Passing arrays to functions, binary, hex</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Mar 12 – Mar 16</td>
<td>Spring break – No classes</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mar 19 – Mar 23</td>
<td>Arrays</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Mar 26 – Mar 30</td>
<td>Two-dimensional arrays</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>short exam #2 Fri Mar 30</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Apr 2 – Apr 6</td>
<td>Pointers</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>Apr 9 – Apr 13</td>
<td>More pointers</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>Apr 16 – Apr 20</td>
<td>Linked lists</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>Apr 23 – Apr 27</td>
<td>Recursion</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>Apr 30 – May 4</td>
<td>Final Exam Review</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>May 7 – May 11</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>
Grading

<table>
<thead>
<tr>
<th>Course</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two 50-minutes exams</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>20%</td>
</tr>
<tr>
<td>Assignments</td>
<td>30%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>15%</td>
</tr>
<tr>
<td>Labs</td>
<td>15%</td>
</tr>
</tbody>
</table>

Score	Grade
90 - 100 | A
80 - 89 | B
70 - 79 | C
60 - 69 | D
0 - 59 | F

How to learn a programming language?

• Practice, practice and practice! (Homework, Lab)
• Review what you have learned before! (Quiz, exam)
• Ask for help when you need! Don’t wait!
 • Ask me
 • Ask TA in the lab
 • Stop by CSAC (Computer Science Assistance Center) located in JEB211D
Terms and Conditions

You are responsible for:

• Reading and Understanding the course material.
• Turning in your homework, lab reports and other assignments ON TIME. Weekly homework will be due every Sunday 11:59pm.
 (Late homework: 1 day – 70%, 2 days – 50%, more than 2 days – 0)
• Attending the class and pay attention in class.
• Finding out the exam times (2 short exams and 1 final exam) and being there.
• No cheating! Cheating will result in failing the class.
Terms and Conditions

• Group work
 Homework and labs can be conducted in groups. I encourage working in group and sharing the knowledge. However, **you must understand the materials and turn in your individual copy of homework and lab report.**

• No group work on exams.
• Questions?
Programming

• **Programming** is the process of writing a program that a computer can run.

• A **programming language** is a specific set of basic instructions that can be combined to create a program.
Hello world! in different languages

• Assembly language

```assembly
global _main
extern _printf

section .text
_main:
push message
call _printf
add esp, 4
ret
message:
db 'Hello, World', 10, 0
```

• BASH (UNIX SHELL)

```bash
#!/bin/bash
STR="Hello World!"
echo $STR
```

• Applescript

```applescript
say "Hello, world!"
```

From: https://excelwithbusiness.com/blog/say-hello-world-in-28-different-programming-languages/
Hello world! in different languages

• C

```c
#include <stdio.h>

int main(void)
{
    printf("hello, world\n");
}
```

• C++

```cpp
#include <iostream>

int main()
{
    std::cout << "Hello, world!\n";
    return 0;
}
```

• FORTRAN

```fortran
program helloworld
    print *, "Hello world!"
end program helloworld
```

• JAVA

```java
class HelloWorldApp {
    public static void main(String[] args) {
        System.out.println("Hello World!");
    }
}
```
Hello world! in different languages

• MACHINE CODE

```
b8  21 0a 00 00  #moving "!\n" into eax
a3  0c 10 00 06  #moving eax into first memory location
b8  6f 72 6c 64  #moving "orld" into eax
a3  08 10 00 06  #moving eax into next memory location
b8  6f 2c 20 57  #moving "o, W" into eax
a3  04 10 00 06  #moving eax into next memory location
b8  48 65 6c 66  #moving "Hell" into eax
a3  00 10 00 06  #moving eax into next memory location
b9  00 10 00 06  #moving pointer to start of memory location into ecx
ba  10 00 00 00  #moving string size into edx
bb  01 00 00 00  #moving "stdout" number to ebx
b8  04 00 00 00  #moving "print out" syscall number to eax
cd  80  #calling the linux kernel to execute our print to stdout
b8  01 00 00 00  #moving "sys_exit" call number to eax
cd  80  #executing it via linux sys_call
```
High-level languages vs Low-level languages

• High-level languages:
 • human readable
 • hard for computer to understand
 • eg: Java, C, C++, Python, ...

• Low-level languages:
 • hard for people to understand
 • easy for computers to understand
 • eg: Assembly language

Levels of Programming Languages

High-level program

```
class Triangle {
  ...
  float surface()
    return b*h/2;
}
```

Low-level program

```
LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET
```

Executable Machine code

```
00010010010000101
0010010011101100
101101101001...
```
C++ Environment

• Because computers cannot directly execute a program written in a high-level language... -- Compiler & interpreter

• Compiler – translates the entire program
• Interpreter – translates a program one line at a time, as the computer is running the program.
IDE (Integrated Development Environment)

- GNU nano
- https://www.nano-editor.org/
IDE (Integrated Development Environment)

- https://www.gnu.org/software/emacs/emacs.html
• Assignment #0 (Do not need to turn in)
 • Set up the environment
 • login to cs server (wormulon.cs.uidaho.edu)
 • type, compile and run your first c++ program

• No class on Monday Jan 15
• Will have labs next week
History of C and C++

History of C:
• C is a programming language developed in the 1970's alongside the UNIX operating system.
• Evolved from two other programming languages
 • BCPL and B
• Dennis Ritchie (Bell Laboratories)
 • Added data typing, other features
• C provides a comprehensive set of features for handling a wide variety of applications, such as systems development and scientific computation.
History of C and C++

History of C++:
- Extension of C
- Early 1980s: Bjarne Stroustrup (Bell Laboratories)
- Provides capabilities for object-oriented programming
 - Objects: reusable software components
 - Model items in real world
 - Object-oriented programs
 - Easy to understand, correct and modify

Video: Bjarne Stroustrup: Why I Created C++
https://www.youtube.com/watch?v=JBjijnqG0BP8