
Manual of
Puissant Skill

at Game
Programming

Clinton Jeffery

ii

Manual of Puissant Skill at Game Programming

by Clinton Jeffery

Portions adapted from "Programming with Unicon", http://unicon.org

Copyright © 1999-2015 Clinton Jeffery

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Dedication
This book is dedicated to Curtis and Cary and future programmers
everywhere.

This is a draft manuscript dated 1/6/2015. Send comments and
errata to jeffery@cs.uidaho.edu.

This document was prepared using LibreOffice 4.2.

ii

mailto:jeffery@cs.nmsu.edu

Contents
Dedication..ii

Preface..vi
Introduction..vii
Chapter 1: Preliminaries..1

Variables...3
Reading from the keyboard..3
Random Thoughts..3
Deciding what to do next...3
Repeating Yourself...4

Chapter 2: Guessing Games...5
Scrambler...5
Hangman..7
Thespian's Little Helper...10
Play Files and the Gutenberg Repository...11
Reading in a Play...11
Giving the User their Queues...11
Testing the Responses: How Perfect Must it Be?..12
Exercises..15

Chapter 3: Dice Games..17
Scoring...18
Complete Program...20
Graphics...23
Exercises..24

Chapter 4: Tic Tac Toe...25
The Tic Tac Toe Board...25
Taking Turns..26
Reading the Player's Move...27
A Complete Two-Player Tic Tac Toe Program...27
Graphical TTT...28
Adding a Computer Player...31
Making the Computer Smarter..32
Exercises..34

Chapter 5: Card Games..35
Representing Cards..35
The Deck..36
Dealing...36
Turns in War...36
Graphics...37
Exercises..38

Chapter 6: Checkers...39
Drawing the Checkers Board Textually...40
Taking Turns..41
Reading the Player's Move...42
Checkers Graphics...44

Moving Pieces Around...44
Animation..45

A Computer Checkers Player...45
The Minimax Algorithm..46

Exercises..54

iii

Chapter 7: Text Adventures..55
Design..55
CIA...56
The Adventure Shell..72

Chapter 8: Resource Simulation..73
Hamurabi...73
Taipan...80

Chapter 9: Turn-based Role-Playing..81
Pirate Duel...81

Chapter 10: Paddle Games...87
Ping..87
Brickout...90
Exercises..96

Chapter 11: Sesrit...97
The Gameplay of Falling Blocks...97

Chapter 12: Blasteroids..112
Creating Graphical User Interfaces with Ivib...113
The Blasteroid Game Class..115
Exercises..120

Chapter 13: Network Games and Servers..122
An Internet Scorecard Server...122

The Scorecard Client Procedure..122
The Scorecard Server Program..123

Chapter 14: Galactic Network Upgrade War...127
The Play's the Thing...127
Background..128
The Map...129
The User Interface..129

Index..133

iv

v

Preface
This book will teach you game programming using a
computer language called Unicon. Writing computer games
may be of interest to both computer professionals and
hobbyists. Unicon is an excellent language for writing simple
games and for rapidly developing prototypes of complex
games. Unicon will probably never be the best language for
the cutting-edge video games or specialized game hardware,
but for many kinds of games it is ideal.

Clinton Jeffery

vi

Introduction
The definition of a game used in this book is our own composition,
consciously generalizing typical dictionary definitions of the term.

A competitive or cooperative activity involving skill, chance,
or endurance, whose primary goals are amusement,
improvement, or both.

There are fun games, and serious games, and every once in awhile
you run into a game that is seriously fun.

To use this book, you need to install Unicon from the Internet at
http://unicon.org. Do that, and then you can go on to Chapter 1.

vii

http://unicon.sf.net/

1

Chapter 1: Preliminaries
Every Unicon program starts like this:

procedure main()

In practice this may be anywhere in a source file, but execution
starts with main(). A whole program that does nothing would look
like this:

procedure main()

end

To write something on the screen, you use the write instruction:

write(12)
write(“Hi folks!”)

To run a program you must save the code in a file, and translate it
into a machine language that the computer can run. Unicon
includes a simple IDE called Ui; more powerful IDE's are
available. Fire up Ui (or Wi) by typing “ui” at a command line or
launching the menu item labeled "Windows Unicon" and type:
procedure main()
 write("Hello, amigo!")
end
Your screen should look something like Figure 1-1. The top of the
window is where you type your program. The bottom is where the
computer tells you what it is doing.

2

Figure 1-1:
Writing an Unicon program using the Ui program.

If you select Run->Run, Ui will do the following things for you.

1. Save the program in a file on disk. Icon and Unicon programs
end in .icn.

2. Translate the Unicon program to machine language.

3. Execute the program. This is the main purpose of the Run
command.

If you type the hello.icn file correctly, the computer should chug
and grind its teeth for awhile, and
Hello, amigo!
should appear in a window on your screen.

3

Variables
Unicon's local variables do not have to be declared. To assign a
value to a variable, use a colon (:) followed by equals (=).
procedure main()
 answer := 7 + 5
 write(answer)
end

Reading from the keyboard
A program can read from the keyboard in Unicon using a function
called read(). This function takes what you type on one line and
puts it in the program.
procedure main()
 write(“What is seven plus five?”)
 answer := read()
 write(“You say it is “, answer, “ and I say it is “, 7+5)
end
Run the program to see what it does. The write() instruction is
happy to print out more than one value on a line, separated by
commas. The write() instruction must have all of its parameters
before it can go about its business.

Random Thoughts
To ask the computer to flip a coin or roll a die, just put a question
mark in front of a value, and the computer will choose something
randomly out of it. For example,

 write("die roll: ", ?6)

picks a random number between 1 and 6. To flip a coin:

 write("coin toss: ", ?["heads", "tails"])

The square brackets [] here are making a list of two words, and
the random operator is choosing one or the other.

Deciding what to do next
There are a number of typical conditional expressions in Unicon,
such as if-then-else. For example, you can write

4

if ?6 + ?6 = 2 then write(“snake eyes”) else write(“no dice”)
Later chapters will show you other ways to decide what instruction
to do next, such as case expressions.

Repeating Yourself
Unicon has many ways to repeat an instruction. For example,
every 1 to 3 do write(“crazy”)
does the same write() instruction three times. Later chapters will
show you other ways to write iterations, such as while loops.

Figure 1-2:
The first rule of random selection is: No peeking.

5

Chapter 2: Guessing Games
Some of the easiest games are guessing games. Have you guessed
which games this chapter will show you? First, a word-
unscrambler, then a classic called hangman, and finally, a “serious
game”: the thespian's little helper.

Scrambler
In this program, the computer takes a word, scrambles it, and
makes the user guess which word it was. Consider the following
list of words:

words := [“fish”, “beagle”, “minotaur”, “tiger”, “baseball”]
The previous chapter showed how to select randomly from a list
with the ? operator. The code ?words would pick one of these
words. The program can store that choice like this:

word := ?words
We want to scramble a copy of this word, but we want to remember
the original word, so we make a copy to scramble:

scramble := word
A program can look at or modify individual letters within a word
by subscripting the word with a position. A subscript is when you
pick an element out by following the word with a position in
square brackets: []. For example, if the word is “fish”, word[1] is
“f”, word[2] is “i”, word[3] is “s” and word[4] is “h”. Inside the
computer, the figure below is what the memory for words looks
like. The list called words can be subscripted to pick a specific
word, and the word can be subscripted to pick a letter. words[2][1]
is “b”. You could also write this as words[2,1].

6

Figure 2-1:
How a list of strings really looks in memory.

The total number of letters in the word is given by *word. The
asterisk * is an operator with two different meanings. When the
asterisk is in between two numbers it multiplies them, but when it
has nothing in front of it to multiply, it tells the size of the thing
that comes after it.

If ?6 was a random number between 1 and 6, like rolling a dice,
then ?*word is a random number between 1 and the number of
letters in word, and word[?*word] is a random letter from a word!
Now for a crazy jumble of a word you might say

every 1 to 99 do
scramble[?*scramble] :=: scramble[?*scramble]

The operator :=: exchanges the thing on its left with the thing on its
right, in this case two different random letters. The first line says to
do the command on the second line 99 times. The second line
“swaps” two characters in the word at random positions. Doing
that 99 times will pretty well jumble most ordinary words.

Notice that this “every” command was spread across two lines. We
have not done that much so far, but it is usually OK so long as the
first line ends with a word that is obviously “unfinished” and needs
more after it.

The whole program is

7

procedure main()
 words := ["fish", "beagle", "minotaur", “tiger”, “baseball”]
 word := ?words
 scramble := word
 every 1 to 99 do
 scramble[?*scramble] :=: scramble[?*scramble]
 write("Unscramble: ", scramble)
 answer := read()
 if answer == word then
 write("correct!")
 else write("no, it was ", word)
end
The comparison operator == might look strange. In Unicon one
equals sign = compares numbers; two equals is similar, ==
compares words to see if they are the same.

Hangman
Hangman is a classic letter-guessing game. First, the computer
picks a word, like in the scramble program.
 word := ?[“beagle”, “tiger”]
You probably want more than just two words here, and probably
need to randomize your random numbers as discussed in the
previous section. Anyhow, instead of scrambling the letters,
hangman makes a word consisting of blanks, the same length as the
word chosen.
 blanks := repl(“-”, *word)
The repl(s, number) instruction builds a word consisting of a
number of copies of s, one after another.

In hangman each time you miss, more of the person being hanged
gets drawn. The program needs to count how many misses the
player makes. The program starts with 0 misses and ends if the
player misses 5 guesses.
 misses := 0
Here is what the hanged person looks like in text form. The
backslash character \ is special and it takes two backslashes in a
row to print one out.

8

 hangedperson := [
“ o “,
“\\ | /”,
“ \\|/ “,
“ / \\ “,
“/ \\”

]
In many games, play lasts not some fixed number of times, but
until there is a winner or a loser. The repeat instruction takes a list
of instructions and does them over and over forever until the
computer runs out of electricity...or in this case, until the stop()
instruction ends the program!
 repeat {
To write out part of the hanged person, we are using the every
instruction we saw before, except we are using the count of how
many times we are repeating ourself, to pick out a different element
of hangedperson each time.
 every write(hangedperson[1 to misses])
The program is finished if the player has missed 5 guesses. If not,
for each turn we write out the player's partly filled-in blanks and
read a new letter from the player.
 if misses = 5 then stop(“you lose! The word was ”, word)
 write(blanks)
 letter := read()
The program looks for that letter in the word, and if it is there, then
it fills in the blanks with the correct letter from the word. There is
an instruction named find(s1, s2) that looks for s1 inside s2 and
returns each place that it finds s1.
 if find(letter, word) then
 every i := find(letter, word) do
 blanks[i] := word[i]
 else misses := misses + 1
 if not find(“-”, blanks) then
 stop(“You win! The word was ”, word)
 }
end

9

Graphics

It will be more fun if our games use graphics, or pictures, instead
of just letters and digits. Drawing pictures on the computer is just
as easy as writing words. The following example draws a simple
picture of a die. Opening a window is similar to opening a file:

w := open(“hangman”, ”g”, “size=400,400”)
This gives you a rectangle on the screen within which you might
draw a picture of your hanged man. In the hangman program, we
would need to open this file sometime after procedure main() and
before we start the “repeat” instruction that plays the game.

Dots on computer monitors are called pixels, and are numbered
using (x,y) coordinates, starting at (0,0) in the upper-left corner.
The x coordinate gives the pixel column, and y gives the pixel row.
The function

DrawCircle(w, 300, 50, 25)
draws a circle centered at dot (300,50), with a radius of 25 pixels.
This might be a reasonable “head” for a stick-figure person for the
hangman game. Drawing the body and arms might look like:

DrawLine(w, 300,75, 300,150)
DrawLine(w, 300,75, 250,125)
DrawLine(w, 300,75, 350,125)
DrawLine(w, 300,150, 250,200)
DrawLine(w, 300,150, 350,200)

We don't want to draw the whole body all at once like this, we
want to draw more each time the “misses” value increases. To do
this in the actual hangman program, replace the old way of drawing
the body

every write(hangedperson[1 to misses])
with the following:

if misses = 1 then DrawCircle(w, 300, 50, 25)
if misses = 2 then DrawLine(w, 300,75, 300,150)
if misses = 3 then DrawLine(w, 300,75, 250,125)
if misses = 4 then DrawLine(w, 300,75, 350,125)
if misses = 5 then {

10

DrawLine(w, 300,150, 250,200)
DrawLine(w, 300,150, 350,200)
}

A losing game should end up with a window that looks something
like the following:

Figure 2-2:
A simple stick figure for a graphical version of the hangman game.

Thespian's Little Helper
Here is a more advanced guessing game of sorts: a “serious game”
for folks that are memorizing passages, such as actors. A thespian
is an actor, and this program, the thespian's little helper, was
suggested by a young actress named Rebeca Rond, who wanted a
program to help a cast learn their lines. The thespian's little helper,
or tlh.icn, is a memory game, and could be used for any recitation
based exercise, from plays to scripture memorization to a
geography bee. It is a “serious game”, where the hope for this
guessing game is that eventually you win by no longer needing to
guess.

The program reads the work you are to memorize, which is taken
to be a long play, in which the user is practicing one part in one
scene. It “reads” the scene to you, slowly printing the text on the
screen until it comes to your lines, which you are to recite by
typing them.

11

Play Files and the Gutenberg Repository
The text file format required for the plays is that found in the plays
of William Shakespeare in the plain text files available via Project
Gutenberg (www.gutenberg.org). A rough description would be:
each scene starts with a line of the form ACT n SCENE m, and
each actor's lines start with the actor's name in all uppercase.

Reading in a Play
The main procedure of tlh.icn starts with command line argument
processing, followed by reading the play into a list of strings, and
selecting the scene for that play:
procedure main(arg)
 write("Welcome to the Thespian's Little Helper.")
 if *arg ~= 4 then stop("usage: tlh play act scene role")
 if arg[1] == "-help" then
 stop("usage: tlh play act scene role\n",
 "Play abbreviations:\n",
 " AWEW for All's Well that Ends Well\n",
 " AC for Antony and Cleopatra, etc.")
 act := arg[2]
 scene := arg[3]
 role := map(arg[4],&lcase,&ucase)
 L := selectscene(readin(arg[1]), act, scene)

Giving the User their Queues
The main procedure continues with string processing code that
looks for the actor's line(s). This is a loop that reads lines, and by
default writes them out to the screen (reading the play to queue the
user for their lines). The loop is structured similar to the following:
 # for every line in the play
 i := 1
 while i <= *L do {
 s := L[i]
 ... if the line is for the speaker then {
 ... test them on it
 }
 else {
 write(s)

http://www.gutenberg.org/

12

 delay(500) # half-second, let user read it
 }
 i +:= 1
 }

Testing the Responses: How Perfect Must it Be?
The code for testing the speaker on his lines is a bit tricky because
it must grab multiple lines (when the actor has a lot to say), and
must handle misspellings and punctuation errors which normally
would not be considered an error on the part of the actor. First test
whether the line is in fact for the speaker. trim(s, ' ',1) skips over
any leading whitespace in string s, while match(role, ...) succeeds
if the line starts with the character's role.
 # if the line is for the speaker
 if match(role, trim(s,' ',1)) then {
To grab all the speaker's lines, look for the next line that starts with
some all capitals followed by a colon or period – the start of the
next speaker's lines. This brings up a whole new control structure
that is very important in Unicon: string scanning.

A string scanning control structure is an expression s ? expr in
which expr performs a scan on string s. In this case, the string is
tested to see if it starts with upper-case letters followed by a colon
or period, indicating a new speaker.
 j := i+1
 #
 # grab all the speaker's lines
 #
 while not (trim(L[j], ' \t',1) ? tab(many(&ucase)) &
 tab(any(':.'))) do {
 L[i] ||:= "\n " || L[j]
 s := L[i]
 delete(L, j)
 }
To test the speaker, we must read their input:
 #
 # Test the speaker's version
 #

13

 write(role,": ")
 line := read()
The comparison code is tricky because it should really be an
approximate string comparison, and the approximation might well
need to use a phone-company-style soundex algorithm for
homonyms and similar-sounding words. For now, we just skip the
punctuation differences:
 if (role || " " || supertrim(line)) == supertrim(s) then {
 i +:= 1
 next
 }
 else {
 write("No, you said --> ",
 image((role || " " || supertrim(line,'\n,.!?'))),
 "\nThe line is ---> ", image(supertrim(s, '\n,.!?')),
 "\n<--")
 }
 }
We have now covered the main procedure, but this program has a
few vital helper procedures. A program can consist of as many
procedures as you like, each one starting with the word procedure
and ending with the word end, like procedure main() does.
Procedure supertrim(s, c) removes characters from c found in s,
and removes any leading or trailing spaces or tabs.
procedure supertrim(s, c : ',.?!')
 s := trim(s,' \t',0)
 while s[upto(c,s)] := ""
 return s
end
Procedure playurl(s) returns an URL for the play named s if one is
known. It is initialized with knowledge of a few (15, so far) of
Shakespeare's more famous plays, available from Project
Gutenberg:
procedure playurl(s)
 static t
 initial {
 t := table()

14

 t["All's Well that Ends Well"] := t["AWEW"] :=
 "http://www.gutenberg.org/dirs/etext97/1ws3010.txt"
 ...
 }
 return \ (t[s])
end
Procedure readin(s) opens an URL if one is known, or a local file,
and reads the play into a list of strings.
procedure readin(s)
local f, L := []
 if not (f := (open(playurl(s),"m") | open(s))) then
 stop("usage: tlh play act scene role")
 while line := read(f) do put(L, line)
 write("Read ", *L, " lines.")
 return L
end
Finally, procedure selectscene(L, act, scene) reduces the play to
the desired scene, discarding scenes that come before and after it.
procedure selectscene(L, act, scene)
local i := 1, as
 as := "ACT " || act || ". SCENE " || scene || "."
 while L[1] ~== as do pop(L)
 if *L = 0 then stop("didn't find ", as)
 write(pop(L))
 write(pop(L))
 i := 1
 while i < *L do {
 if match("ACT", L[i]) then {
 L := L[1:i]
 break
 }
 i +:= 1
 }
 return L
end

http://www.gutenberg.org/dirs/etext97/1ws3010.txt

15

Exercises
1. The hangman program needs to tell the human what it is

doing and what the human is supposed to do at each step.
Add prompts to explain this.

2. Add eyes or other details such as hands or feet to the picture.

16

17

Chapter 3: Dice Games
Dice games are easy and fun. This chapter presents a public
domain poker dice game called Yatzy that is popular in
Scandinavia. It is similar to the trademarked Hasbro game Yahtzee
and numerous close relatives. Along the way, it is time to learn
some more programming concepts. Suppose you roll 5 dice:

dice := [?6, ?6, ?6, ?6, ?6]
What kinds of things should a dice game program do? Roll the
dice, and tell the user what the dice say. Let the user pick which
dice to keep. Reroll the dice. Let the user decide how to score the
turn. For each of these many tasks, the program might want to
define a new instruction to perform that task. For now, hold that
thought, and just see if the following works:
procedure main()

roll dice
dice := [?6, ?6, ?6, ?6, ?6]
write(“The dice are: “,

dice[1], dice[2], dice[3], dice[4], dice[5])

select keepers
write(“Which dice do you keep?”)
keep := read()

OK, ready to reroll the dice?
end
I have stopped here, because there is a basic question. When you
run this program, what do the input and output look like, and what
do they mean? The output looks like:
The dice are: 13216
Which dice do you keep?
OK, so each digit is one of the dice. How is the player supposed to
answer the question: which dice do you keep? Suppose the player
wants to keep the 1's and try for more 1's. One possible way to say
this is to type an answer of
11

18

meaning that the two ones are to be kept. Another possible answer
would be to type
14
meaning that the first and fourth dice are to be kept. Neither
humans nor computers will know, unless you decide which way the
answer should be specified, and explain it clearly. Let us use the
first interpretation: the user actually types the dice values they wish
to keep. Now we can write computer code to handle the reroll.
Continue your main() procedure like so

write(“Which dice values do you keep?”)
keep := read()

Reroll the dice
every i := 1 to 5 do {

if not find(dice[i], keep) then dice[i] := ?6
else keep[find(dice[i], keep)] := “”
}

write(“The dice are: “,
dice[1], dice[2], dice[3], dice[4], dice[5])

This example shows a fundamental way to use an every
instruction: to make a name (in this case i) hold each value in a
sequence (in this case, 1 2 3 4 5). For each of these values, the
instructions in the loop body (the stuff inside the do { ... }) are
executed.

For Yatzy, the rules allow the player to select their dice and reroll a
third time. Instead of copying the code, you can use
every 1 to 2 do { ... } around this whole block of code, all the way
from “which dice values do you keep” down to “the dice are...”.
See if you can figure out how to do that.

Scoring
The turn, in Yatzy ends with whatever dice are the player's after the
third roll. First, be lazy and sort your dice so all the numbers that
are equal are next to each other.

dice := sort(dice)

19

Now, what are the possibilities? In Yatzy the user applies the dice
to one of 15 different categories each turn, ending after 15 turns
with a score for each category filled in. The scores are kept in a list
of 15 elements that are initially null and are filled in with integer
point scores as the turns progress.
 score := list(15)
 The 15 categories are named after the faces on the dice, and after
patterns in the dice that resemble various poker hands.
 category := [1, 2, 3, 4, 5, 6, "1 pair", "2 pair",

"3 of a Kind", "4 of a Kind", "Small straight",
"Large straight", "Full house", "Chance", "Yatzy"]

The user can select one of these categories by typing a number
from 1 to 15, but they must not pick the number of a category that
has already been scored:
 write("What category do you want to score in (1-15): ")
 repeat {
 cat := read() | stop("terminated, end of file")
 if /score[integer(cat)] then break
 write("What category do you want to score in (1-15): ")
 }
In the first six categories of a Yatzy board, the points awarded are
the sum of those dice with the value of the category number.
United States readers should beware that the scoring rules are
slightly different than those used by the game Yahtzee. The pair
categories award points if at least two of the same dice match;
similar points are awarded for attaining three or four dice of the
same number. A small straight receives the sum of the dice if they
read 1, 2, 3, 4, 5. A large straight receives the sum if they read 2, 3,
4, 5, 6. A user scores a 0 if they select a category for which the
requirements are not met.
 points := 0
 case category[cat] of {

 !6: every !dice=cat do points +:= cat

 "1 pair": if dice[j := (4|3|2|1)]=dice[j+1] then
 points := dice[j]*2

 "2 pair": if (dice[j := (4|3)]=dice[j+1]) &

20

 (dice[k := (j-2 to 1 by -1)]=dice[k+1]) then
 points := dice[j]*2 + dice[k]*2

 "3 of a Kind": if dice[j := (3|2|1)]=dice[j+2] then
 points := dice[j]*3

 "4 of a Kind": if dice[j := (2|1)]=dice[j+3] then
 points := dice[j]*4

 "Small straight": points := if dice[j:=!5]~=j then 0 else 15
 "Large straight": points :=

 if dice[j:=!5]~=j+1 then 0 else 20
 "Full house": if ((dice[1]=dice[3])&(dice[4]=dice[5])) |
 ((dice[1]=dice[2])&(dice[3]=dice[5]))

 then every points +:= !dice
 "Chance": every points +:= !dice
 "Yatzy": if dice[1]=dice[5] then points := 50
 }

 score[cat] := points

Complete Program
Here is the whole Yatzy program. It is playable, but could sure
benefit from a graphical user interface.
##
#
File: yatzy.icn
#
Subject: Program to play the dice game yatzy
#
Author: Clinton L. Jeffery
#
Date: January 2, 2015
#
##
#
This file is in the public domain.
#
##
#
From the Wikipedia entry (en.wikipedia.org/wiki/Yatzy):
#

21

Yatzy is a public domain dice game, similar to the Latin
American game Generala, the English games Poker Dice,
Yacht, Cheerio, and Yahtzee (trademarked by Hasbro in
the United States). Yatzy is most popular in the
Scandinavian countries.
#
##

global scores, categories

procedure main()
 score := list(15)
 category := [1, 2, 3, 4, 5, 6, "1 pair", "2 pair",

"3 of a Kind", "4 of a Kind", "Small straight",
"Large straight", "Full house", "Chance", "Yatzy"]

 every turn := 1 to 15 do {
 dice := [?6, ?6, ?6, ?6, ?6]
 write("The dice are: ",
 dice[1], dice[2], dice[3], dice[4], dice[5])

 every 1 to 2 do {
 write("Which dice values do you keep?")
 keep := read()

 every i := 1 to 5 do {
 if not find(dice[i], keep) then dice[i] := ?6
 else keep[find(dice[i], keep)] := ""
 }
 write("The dice are: ",

 dice[1], dice[2], dice[3], dice[4], dice[5])
 }

 dice := sort(dice)
 write("You ended with: ",
 dice[1], dice[2], dice[3], dice[4], dice[5])

 every i := 1 to 15 do {

 writes(i,"\t",left(category[i],15),"\t")
 write(\score[i] | "available")

22

 }

 write("What category do you want to score in (1-15): ")
 repeat {

 cat := read() | stop("terminated, end of file")
 if /score[integer(cat)] then break
 write("What category do you want to score in (1-15): ")
 }

 points := 0
 case category[cat] of {

 !6: every !dice=cat do points +:= cat

 "1 pair": if dice[j := (4|3|2|1)]=dice[j+1] then
 points := dice[j]*2

 "2 pair": if (dice[j := (4|3)]=dice[j+1]) &
 (dice[k := (j-2 to 1 by -1)]=dice[k+1]) then
 points := dice[j]*2 + dice[k]*2

 "3 of a Kind": if dice[j := (3|2|1)]=dice[j+2] then
 points := dice[j]*3

 "4 of a Kind": if dice[j := (2|1)]=dice[j+3] then
 points := dice[j]*4

 "Small straight": points := if dice[j:=!5]~=j then 0 else 15
 "Large straight": points :=

 if dice[j:=!5]~=j+1 then 0 else 20
 "Full house": if ((dice[1]=dice[3])&(dice[4]=dice[5])) |

 ((dice[1]=dice[2])&(dice[3]=dice[5])) then
 every points +:= !dice

 "Chance": every points +:= !dice
 "Yatzy": if dice[1]=dice[5] then points := 50
 }

 score[cat] := points
 }
write("Final score: ")

 total := 0
 every i := 1 to 15 do {
 total +:= score[i]
 writes(i,"\t",left(category[i],15),"\t")

23

 write(\score[i] | "available")
 sum := score[1]+score[2]+score[3]+
 score[4]+score[5]+score[6]
 if (i=6) & (sum > 62) then {

 write("\tbonus\t50")
 total +:= 50
 }

 }
 write("\t",left("Total:",15), total)
end

Graphics
The following example draws a simple picture of a die. Opening a
window is similar to opening a file:

w := open(“yaht”,”g”)
To draw a die, we need a square to outline it, and then we need to
draw the dots that tell what the die roll is. The function

DrawRectangle(w, 10, 10, 180, 180)
draws a square starting at dot (10,10), 180 dots wide and 180 dots
high. The center of this square will be at (100, 100). Dots on
computer monitors are called pixels, and are numbered using (x,y)
coordinates, starting at (0,0) in the upper-left corner. The x
coordinate gives the pixel column, and y gives the pixel row.

die := ?6
if die = (1 | 3 | 5) then FillCircle(w, 100, 100, 10)

On most dice, a one, a three, and a five have a dot in the middle.
This call to FillCircle() draws that dot, with a radius of 10 pixels.
You can read the vertical bar (|) as “or”: if the die is one or three
or five, draw a dot in the middle. The parentheses are necessary
because without them it would be like (die = 1) | 3 | 5: an equals
test normally applies to only the nearest thing to it. Here are the
rest of the dots on dice:

if die = (2 | 3 | 4 | 5 | 6) then {
FillCircle(w, 30, 30, 10) # upper left dot
FillCircle(w, 170, 170, 10) # lower right dot
}

if die = (4 | 5 | 6) then {

24

FillCircle(w, 170, 30, 10) # upper right dot
FillCircle(w, 30, 170, 10) # lower left dot
}

if die = 6 then {
FillCircle(w, 30, 100, 10) # midhigh left
FillCircle(w, 170, 100, 10) # midhigh right
}

Event(w) # waits for user to click

Exercises
1. Extend the dice game to handle multiple players and multiple

games. Keep score and report each player's single-game and
cumulative points after each game.

2. Extend the dice graphics to draw 5 dice instead of 1 die.
Tweak the dice graphics to look nicer; for example, maybe
the dots are too big or in the wrong places.

3. Extend the dice game to draw the dice graphically on each
roll. Call EraseArea(w) in between each roll.

4. Extend the game to display the scorecard graphically, and
allow the player to select the category in which to score each
turn by clicking on it.

25

Chapter 4: Tic Tac Toe
Have you ever played Tic Tac Toe? It is easy to play, and it makes
for a great computer program. This chapter presents two versions
of Tic Tac Toe, one with text, and one with pictures.

The Tic Tac Toe Board
In order to draw the board, the computer has to remember each
player's moves. One way to remember all the moves is to store the
whole board using names like this.

square[1] square[2] square[3]

square[4] square[5] square[6]

square[7] square[8] square[9]

Choosing a name to remember the contents of the 9 squares is only
the beginning. Each of those squares can have three possible states:

• no one has chosen that square yet, it is blank

• the square holds an X

• the square holds an O

The program could use numbers 1, 2, and 3 in each state to mean
empty, x, and o, but it is more readable to use “ “, “x”, and “o” to
remember these three possibilities. Before the game starts, start the
board as empty:
square := list(9, “ “)

This is the same as saying
square := [“ “, “ “, “ “, “ “, “ “, “ “, “ “, “ “, “ “]

in both cases the name square holds a list of 9 things which are
spaces.

Consider the following textual way to display the tic-tac-toe board.
The character "-" is used to draw horizontal lines, while "|" draws
vertical lines. The next version of this program will draw the boxes
using a graphical picture.
write(“-------”)

26

every i := 1 to 3 do
 write(“|”,square[i*3-2],”|”, square[i*3-1],”|”, square[i*3],”|”)
write(“-------”)

Taking Turns
Tic Tac Toe switches back and forth between x and o, so the
computer needs to remember which player played last. Player x
starts. To remember something like whose turn it is, make up a
name and use := to store a value using that name.
 turn := "x"

Now comes some tricky business. The computer must play a lot of
turns (up to 9 of them), and each turn does pretty much the same
thing: show the board, wait for the player to make his move, and
then draw an x or an o. The following code outline shows how to
repeat something 9 times, changing the “turn” each time. The lines
that start with a # are telling you what instructions the program
needs, but they aren't instructions, they are just comments to any
human who happens to read the program. Drawing the board was
already presented above. The sections to follow will need to add
instructions that read the players' moves and check if they won.
 every 1 to 9 do {
 # draw the board
 # read the player's move (x or o)
 # check if game is over
 if turn == “x” then turn := “o” else turn := “x”
 }

The game is over when there are three in a row of the same letter, x
or o, or if no squares remain blank. You can check for a win using
calls to a helper procedure:

 if won := check_win(board) then stop(“Player “, won, “wins”)

The check_win() procedure is given below. It returns an x or an o
if the corresponding player has won. The tests of equality produce
their right operand if they succeed; if they do not, the return does
not occur. The procedure fails if it falls off the end.
procedure check_win(board)
 every i := 1 to 3 do {
 # check horizontally

27

 return board[i*3-2]==board[i*3-1]==board[i*3]==(“x”|”o”)
 # check vertically
 return board[i]==board[i+3]==board[i+6]==(“x”|”o”)
 }
 # check diagonals
 return board[1]==board[5]==board[9]==(“x”|”o”)
 return board[3]==board[5]==board[7]==(“x”|”o”)
end

Reading the Player's Move
Reading the human user's input sounds simple (just read an x or an
o) but it is a bit trickier than that. The program already knows
whether the player is drawing an x or an o, it needs to find out
what location to draw it in. Locations are identified by a 1-9, but
the program has to check and make sure the user does not mark a
position that is already played, or type nonsense into the program!
It also needs to provide an explanatory prompt to tell the user what
it is expecting.
 repeat {
 write(“It is player “, turn,
 “'s turn. Pick a square from 1 to 9:”)
 pick := read()
 if square[integer(pick)] == “ “ then break
 }
 square[pick] := turn

A Complete Two-Player Tic Tac Toe Program
The complete program is
procedure main()
 turn := "x"
 square := list(9, “ “)
 every 1 to 9 do {
 # draw the board
 write(“-------”)
 every i := 3 to 9 by 3 do {
 write(“|”,square[i-2],”|”, square[i-1],”|”, square[i],”|\n-------”)
 }
 # read the player's move (X or O)
 repeat {
 write(“It is player “, turn,

28

 “'s turn. Pick a square from 1 to 9:”)
 pick := read()
 if square[integer(pick)] == “ “ then break
 }
 square[pick] := turn
 if won := check_win(board) then stop(“Player “, won, “wins”)
 # advance to the next turn
 if turn == “x” then turn := “o” else turn := “x”
 }
 write(“Cat game!”)
end
Check if the game is over; return the winner if there is one
procedure check_win(board)
 every i := 1 to 3 do {
 # check horizontally
 return board[i*3-2]==board[i*3-1]==board[i*3]==(“x”|”o”)
 # check vertically
 return board[i]==board[i+3]==board[i+6]==(“x”|”o”)
 }
 # check diagonals
 return board[1]==board[5]==board[9]==(“x”|”o”)
 return board[3]==board[5]==board[7]==(“x”|”o”)
end

Graphical TTT
 A graphical tic-tac-toe program can look something like this:

29

Figure 4-1:
A graphical tic-tac-toe board

Drawing lines and circles in a window is done using using
graphics. To draw some graphics you have to first tell the
computer to put a window on the screen.
procedure main()
 &window := open("TicTacToe", "g",
 "size=600,600", "linewidth=5")

The call to open() takes several parameters: first a name, then a
mode ("g" stands for graphics), then how big you want the window
to be, and lastly how wide the lines should be drawn. In this case
we want a window 600 dots wide and 600 dots high. Each dot is
called a pixel, and to pick out a particular pixel you give its
location as: how far over from the left edge (the "x" coordinate)
and how far down from the top (the "y" coordinate).

To draw the Tic Tac Toe board, we want to draw lines from top to
bottom at locations 200 and 400, which are one third and two
thirds of the way across.
 DrawLine(200,0,200,600)
 DrawLine(400,0,400,600)
 DrawLine(0,200,600,200)
 DrawLine(0,400,600,400)

There is a function named Event() that waits until the person
running your program types a key or clicks the mouse. There are

30

many different events, but the only one we care about is a left
mouse click, called &lpress. So we read one event, but if it isn't a
left mouse click, the next instruction will take us back to the repeat
so we can ask for another event. "if" and "then" are used to do an
instruction only after checking and seeing whether something is
true:
 if Event() ~=== &lpress then next

We divide the Tic Tac Toe board into three rows, from top to
bottom, numbered 0, 1, and 2. Similarly we divide the boardi into
three columns, from left to right, numbered 0, 1, and 2. On a mouse
click, the location where the mouse is can be found in &x and &y.
These numbers are how many dots from the top left corner of the
window. To find the row and column in the Tic Tac Toe board, we
divide by 200, and remember the results using a name we can ask
for later:
 y := &y / 200
 x := &x / 200

Now, draw a red x or a green o, depending on whose turn it is. The
name turn is remembering whose turn it is, and after we draw an x
or an o we change to the other player's turn. The Fg() instruction
tells what foreground color to draw with, and to draw an x we just
draw two lines.
 if turn == "x" then { # draw an X
 Fg("red")
 DrawLine(x*200 + 20, y*200 + 20,
 x*200 + 160, y*200 + 160)
 DrawLine(x*200 + 20, y*200 + 160,
 x*200 + 160, y*200 + 20)
 turn := "o"
 }

If you want, the if-then instruction lets you put in an "else"
instruction which tells what to do if the condition you checked
wasn't true. If it isn't x's turn it is o's turn, so we should draw a
circle.
 else { # draw on O
 Fg("green")
 DrawCircle(x * 200 + 100, y * 200 + 100, 60)
 turn := "x"

31

 }
 }
end

This is a pretty interesting program with a lot of ideas in it, but it is
only 28 lines of code, and if you ask enough questions you should
be able to understand every line. Later on after you learn more, you
might come back to this program and teach it how to stop anyone
from making an illegal move, how to quit, and how to tell who
wins. Here is the complete program so you can type it in and try it:
procedure main()
 &window := open("TicTacToe","g", "size=600,600",

"linewidth=5")
 DrawLine(200,0,200,600)
 DrawLine(400,0,400,600)
 DrawLine(0,200,600,200)
 DrawLine(0,400,600,400)
 turn := "x"
 repeat {
 if Event() ~=== &lpress then next
 y := &y / 200
 x := &x / 200
 if turn == "x" then { # draw an X
 Fg("red")
 DrawLine(x * 200+20, y * 200+20,
 x * 200 + 160, y * 200 + 160)
 DrawLine(x * 200+20, y * 200 + 160,
 x * 200 + 160, y * 200 + 20)
 turn := "o"
 }
 else { # draw on O
 Fg("green")
 DrawCircle(x * 200 + 100, y * 200 + 100, 60)
 turn := "x"
 }
 }
end

Adding a Computer Player
The first step towards providing an “intelligent” computer player
for a turn-based game like Tic Tac Toe is to encapsulate the task of

32

choosing the move for a given side. First, add a command-line
argument to specify whether the human is playing “x” or “o”, at the
front of the main() procedure:
 human := (argv[1] == (“x”|”o”)) | “x”

The code for choosing the current move then becomes:
if human==turn then {
 # read the player's move (X or O)
 pick := humanmove(square, turn)
} else {
 pick := computermove(square, turn)
}

The humanmove() code is just a straightforward packaging of the
repeat loop given earlier, but the computermove() code is
strangely similar. Given the current program state, it asks that a
move be selected. In the following example, the move is selected
by trying moves at random until a legal move is found:
procedure computermove(square, turn)
 write("...")
 repeat {
 pick := ?9
 if square[integer(pick)] == " " then break
 }
 delay(500)
 return pick
end

The write(“...”) and the half-second delay are inserted just to give
the human time to notice that the computer has made its move.

Making the Computer Smarter
If you are playing solitaire, this “dumb” computer player may be
more entertaining than moving the pieces for both sides yourself. A
more satisfying computer player will at least rate its available
moves in order to select which one it will choose.
procedure computermove(square, turn)
 every square[i := 1 to 9] == " " do {
 newboard := copy(square)
 newboard[i] := turn
 pick := evaluate(newboard, turn)

33

 if /bestpick | (pick > bestpick) then bestpick := pick
 }
 return bestpick
end

The real question, then, is how to evaluate board positions from the
point of view of a given player. How to you evaluate a given board
position in a strategy game? Usually, there is an absolute best and
worst (where the game is won or lost outright), and otherwise it
comes down to an opinion based on how the pieces are lined up.
The technical term for this is heuristic – an evaluation that is just
based on (hopefully good) judgment, without a guarantee of
correctness or optimality, is a heuristic judgment. When a judgment
is formed by a combination of such rules of thumb, we say the
evaluation is based on heuristics. Here is a sample set of heuristics:

• if I have a win: award the board position +10000

• if the opponent has a win: award the board position -10000

• for every opponent's unblocked two-in-a-row, award -1000

• for every one of my unblocked two-in-a-row, award +300

Combining these rules, we get the following evaluator:
procedure evaluate(board, turn)
 if won := check_win(board) then
 return if won == turn then 10000 else -10000
 points := 0
 every play := two_in_row(board, turn) do
 if play==turn then points +:= 300
 else points -:= 1000
 return points
end

In order to finish this version, another helper function is required.
Later in the chapter on checkers, we will contemplate how all these
helper functions that evaluate board positions would be easier to
keep straight if we had a new data type for evaluating and
operating on board positions. The way such data types are
introduced is called object-oriented programming.
generate all the un-blocked two-in-a-rows
procedure two_in_row(board, turn)

34

 every i := 1 to 3 do {
 # check horizontally
 if board[i*3-2]==” “ & board[i*3-1]==board[i*3] then
 suspend board[i*3]
 if board[i*3-1]==” “ & board[i*3-2]==board[i*3] then
 suspend board[i*3]
 if board[i*3]==” “ & board[i*3-2]==board[i*3-1] then
 suspend board[i*3-1]
 # check vertically
 if board[i] == “ “ & board[i+3]==board[i+6] then
 suspend board[i+6]
 if board[i+3] == “ “ & board[i]==board[i+6] then
 suspend board[i]
 if board[i+6] == “ “ & board[i]==board[i+3] then
 suspend board[i]
 }
 # check diagonals
 if board[1]==” “ & board[5]==board[9] then suspend board[5]
 if board[5]==” “ & board[1]==board[9] then suspend board[1]
 if board[9]==” “ & board[1]==board[5] then suspend board[1]

 if board[3]== “ “ & board[5]==board[7] then suspend board[5]
 if board[5]== “ “ & board[3]==board[7] then suspend board[3]
 if board[7]== “ “ & board[3]==board[5] then suspend board[3]
end

By way of further study, the Icon Program Library has another
version of Tic Tac Toe written by Chris Tenaglia in which the
computer plays against the human player reasonably well. You can
find it at

http://www.cs.arizona.edu/icon/library/src/progs/ttt.icn

Exercises
1. Merge the various of tic-tac-toe into one version that draws

pictures and checks for legal moves and wins properly.

2. Modify Tic Tac Toe's evaluator to look two moves ahead.

http://www.cs.arizona.edu/icon/library/src/progs/ttt.icn

35

Chapter 5: Card Games
Card games are an excellent opportunity to learn more about how
computers organize information. A card game is slightly trickier
than a dice game from the standpoint that there is a fixed deck and
each card you remove from it won't be in the deck the next time
you draw, unless it was put back for some reason. In this chapter
you will look at a card game called “war” that uses a standard deck
of 52 cards (aces through kings in each of hearts, diamonds,
spades, and clubs). This version of “war” might not be identical to
how you have played it before, since there are many variations.

There are a few basic questions that will be relevant for any card
game: how do we store cards, hands, and decks in the computer's
memory, and how do we present them legibly to the user? Other
issues include: how do we shuffle, and how do we deal out cards?

Representing Cards
It would be easy to store the cards as unique numbers from 1-52,
but the user won't know what these numbers mean unless they read
the program code. The cards might be stored as a more self-
explanatory code such as “ace of spades” or “seven of hearts”,
which might be easier for the human but more work for the
computer to use. For humans, the ultimate way to show the cards is
with a picture, and this chapter will show a way to do that also.

In order to make it easy for both humans and computers to know
what a card means, in this chapter we will represent a card in the
computer's memory as a list of three items:

[rank, suit, label]

where rank and suit are human-readable and label is a computer
code for the card. Rank will be an integer from 1-13 to indicate
ace, two, on up to king. Suit will be a string (“hearts”, “clubs”,
“diamonds”, or “spades”). The label will be a single letter in the
range A-Z or a-z. A-M are ace..king of clubs, N-Z are ace..king of
diamonds, a-m are ace..king of hearts, and n-z are ace..king of
spades. The reason for the label is that Gregg Townsend wrote
instructions to draw pictures of cards using these codes.

36

The Deck
To create the deck and shuffle it, start your program like this:
link random
procedure main()
 randomize()
 deck := []
 suits := [“hearts”, “diamonds”, “spades”, “clubs”]
 every i := 1 to 4 do # for each suit
 every j := 1 to 13 do # for each rank
 put(deck, [j, suits[i], char(ord(“A”) + (i-1)*13 + (j-1))])
There is some gross and unexplained code on that last line. The
rank is j, and the suits are understandable (“hearts” and so on), but
the label depends on a mysterious code called ASCII that the
computer uses to store letters like “A” in memory. The call
ord(“A”) gives the number that the computer uses to store an “A”,
which is our code for “ace of hearts”.
Shuffling
To shuffle the deck, use the random operator (?) like so:
every 1 to 100 do ?deck :=: ?deck
check whether this is shuffled enough by printing out your deck.
 every card := !deck do

write(card[1], “ of “, card[2])

Dealing
In war, the cards are dealt out to two players. In our version, one
player will be the human user while the other will be the computer.
Player1 := []
Player2 := []
every 1 to 26 do {
 put(Player1, pop(deck))
 put(Player2, pop(deck))
 }

Turns in War
Each turn, the top card on each player's hand is turned up, and
whoever is higher wins both cards.

37

while *Player1 > 0 & *Player2 > 0 do {
 write(“Player1: “, Player1[1][1], “ of “, Player1[1][2])
 write(“Player2: “, Player2[1][1], “ of “, Player2[1][2])
 delay(1000)
 if Player1[1][1] > Player2[1][1] then {
 write(“Player1 wins”)
 put(Player1, pop(Player2), pop(Player1))
 }
 else if Player1[1][1] < Player2[1][1] then {
 write(“Player2 wins”)
 put(Player2, pop(Player2), pop(Player1))
 }
 else { # tie; should resolve tiebreak better
 write(“Tie”)
 put(Player1, pop(Player1))
 put(Player2, pop(Player2))
 }
 }
if *Player1 = 0 then write(“Player2 wins”)
else write(“Player1 wins”)

Graphics
To add graphics, you will want to link in Gregg Townsend's
drawcard module. At the top of your program before your
procedure main(), add
link drawcard
To open a window, add the following call on a line at the beginning
of procedure main():
 &window := open(“War”,”g”)
To draw the cards, instead of writing them out, you would write
something like the following each turn. The numbers such as 10,50
are x,y coordinates that select the location of the dot at which to
start drawing something.
 EraseArea()
 DrawString(10, 50, “Player 1:”)
 drawcard (80, 10, Player1[1][3])
 DrawString(210, 50, “Player 2:”)

38

 drawcard (280, 10, Player2[1][3])

Exercises
1. Fix the War game's tiebreaker. In the event of a tie, place the
cards in a new list called “kitty”, and draw more cards until
eventually you have a winner. The winner wins all the cards in the
kitty.

2. Write another card game that you would like to play. The hard
parts will most likely be scoring and determining who wins.

39

Chapter 6: Checkers
Checkers is a classic game played on an 8x8 grid. Some of the
code might look similar to the tic tac toe program, since that
program used a 3x3 grid. One basic difference is that the pieces in
checkers start already on the board, and move from location to
location. This chapter presents a program for playing checkers with
two human players named Red and White. Red will go first.
procedure main()
 turn := “red”
In order to keep track of the board, the program could number the
checkerboard with positions from 1-64 like Tic Tac Toe used
positions 1-9, but instead it may be easier to keep things straight
using a list of 8 rows, each of which is a list of 8 squares.
 square := list(8)
 every !square := list(8, “ “)
From now on, you can refer to positions within the checkerboard
by saying the name square[x,y] where x and y refer to row and
column. The positions will have names that look like this

[1,1] [1,2] [1,3] [1,4] [1,5] [1,6] [1,7] [1,8]

[2,1] [2,2] [2,3] [2,4] [2,5] [2,6] [2,7] [2,8]

[3,1] [3,2] [3,3] [3,4] [3,5] [3,6] [3,7] [3,8]

[4,1] [4,2] [4,3] [4,4] [4,5] [4,6] [4,7] [4,8]

[5,1] [5,2] [5,3] [5,4] [5,5] [5,6] [5,7] [5,8]

[6,1] [6,2] [6,3] [6,4] [6,5] [6,6] [6,7] [6,8]

[7,1] [7,2] [7,3] [7,4] [7,5] [7,6] [7,7] [7,8]

[8,1] [8,2] [8,3] [8,4] [8,5] [8,6] [8,7] [8,8]

Checkers features an initial board that looks like the screen below.
Half the squares (the white squares) will always be empty. The
dark squares have either white or red pieces, or are empty. We will
use the values “ “, “white” and “red” to indicate the board contents.
Queens will be indicated by “white queen” or “red queen”.

40

Figure 6-1:
A checkers board

After starting every square out as a space, the initial board contents
can be generated as follows. The code uses “red” and “white” as
the players' sides, but other player colors can be substituted here
and in the section below titled Taking Turns.
 every row := 1 to 3 do
 every col := 1 + (row % 2) to 8 by 2 do
 square[row,col] := “white”
 every row := 6 to 8 do
 every col := 1 + (row % 2) to 8 by 2 do
 square[row,col] := “red”

Drawing the Checkers Board Textually
The following displays the checkers board textually. The character
“-” is used to draw horizontal lines, while “|” draws vertical lines.
If square[i,j] is a word such as “red” or “white”, then square[i,j][1]
or square[i,j,1] is the first letter (“r” or “w”). These letters will be
written to to textually indicate the positions of pieces on the board.
The next version of this program draws the board using a picture.

41

 write(“ \\ 1 2 3 4 5 6 7 8 column”)
 write(“row -----------------”)
 every i := 1 to 8 do {
 writes(“ “, i, “ “)
 every j := 1 to 8 do
 writes(“|”,square[i,j,1])
 write(“|”)
 write(“ -----------------”)
 }
The textual version of the board looks like:

Figure 6-2:
A textual representation of checkers.

Taking Turns
The program will repeat until one side or the other wins, similar to
the war program in the last chapter. The “while” instruction below
checks to see that there are still pieces on each side. Each turn the
instructions inside the do { ... } will resemble (at least a little bit)
the same steps as in tic-tac-toe.
 while find(“red”, !!square) & find(“white”, !!square) do {
 # draw the board
 # read the player's move and change the board

42

 if turn == “red” then turn := “white” else turn := “red”
 }

Reading the Player's Move
Moving is a bit tricker in checks than it was in tic-tac-toe. First the
program most prompt the user and read and interpret their desired
move. Then it must tell whether it is legal, and if so, move the
pieces accordingly. For this version we will read the player's move
using the following format: row,col,...rown,coln where the ... might
be nothing, or if the move is jumping multiple pieces, the ... would
be all the squares that the piece is to move through, separated by
commas.
 write(turn, “'s turn, move in row,col,...row,col format:”)
 input := read()
Processing this input string is going to be tricky. It is really a list of
numbers.
 L := []
 To break it up into pieces, look for the commas. This uses a feature
of Unicon called string scanning. Strings are just a sequence of
letters, which we have been calling “words” up to now. String
scanning uses the notation (s ? instructions) in which a string s is
examined by the instructions. In checkers, the program puts the
numbers it finds into the list.
 input ? while put(L, integer(tab(many(&digits)))) do =”,”
Is this a legal move for the current player? If so, square[L[1],L[2]]
holds a piece of his color, and all the other locations are empty. In
addition, either the move was to an adjacent diagonal, or the move
was a jump. All this must be checked.
 # read the player's move
 repeat {
 write(“It is “, turn, “'s turn, move in x,y,...xn,yn format:”)
 input := read()
 L := []
 input ? while put(L, integer(tab(many(&digits)))) do =”,”
 # if starting square did not hold our piece, re-do
 if not find(turn, square[L[1],L[2]]) then {
 write(“Requested move is illegal, try again.”)

43

 next
 }
 every i := 3 to *L by 2 do {
 # if target square is not empty, re-do
 if square[L[i], L[i+1]] ~== “ “ then next
 if find(“queen”, square[L[1],L[2]]) then { # queen rules
 if abs(L[3]-L[1]) = abs(L[4]-L[2]) = 1 then {
 square[L[1],L[2]] :=: square[L[3],L[4]]
 break break
 }
 else if abs(L[i]-L[i-2]) = abs(L[i+1]-L[i-1]) = 2 then {
 square[L[i],L[i+1]] :=: square[L[i-2],L[i-1]]
 square[(L[i]+L[i-2])/2, (L[i+1]+L[i-1])/2] := “ “
 }
 else {
 write(“Can't perform requested move.”)
 break next
 }
 }
 else { # regular piece
 direction := (if turn==”red” then -1 else 1)
 if abs(L[2]-L[4]) = 1 & (L[3]-L[1]) = direction then {
 square[L[1],L[2]] :=: square[L[3],L[4]]
 break break
 }
 else if abs(L[i]-L[i-2]) = 2 &
 (L[i+1]-L[i-1]) = direction*2 then {
 square[L[i],L[i+1]] :=: square[L[i-2],L[i-1]]
 square[(L[i]+L[i-2])/2, (L[i+1]+L[i-1])/2] := “ “
 }
 else {
 write(“Can't perform requested move.”)
 break next
 }
 }
 }
 break
 }

44

Checkers Graphics
The additional graphics functions you need to know in order to
draw the checkerboard are Fg(s) to set the foreground color, along
with FillRectangle(x,y,width,height) and FillCircle(x,y,radius) to
do the drawing. In addition, you will want to know how to open a
window of the correct size and shape. Suppose we want each
square of the board to be 64 dots wide and 64 dots high. Then the
total board should be 64x8 pixels wide and high.
 &window := open(“Checkers”,”g”,”size=512,512”)
The board needs to have alternating light and dark rectangles. The
checker color “green” here may be changed to be any dark color.
 Fg(“green”)
 every i := 1 to 8 do
 every j := 1 + (i % 2) to 8 by 2 do
 FillRectangle((j-1) * 64, (i-1) * 64, 64, 64)
To handle the moves, the program could redraw the board from
scratch each time, or it could just erase where the piece has left (a
call to FillRectangle() should do the trick) and then draw the piece
at the new location (a single call to FillCircle() will work). In both
cases the foreground color will need to be set first.

Also it would be nice if the game were played by clicking on the
board, instead of having to type coordinates. The function Event()
reads mouse clicks and stores their coordinates in &x and &y. If
you take those pixel coordinates and divide by 64 (and add 1) you
will get the row and column.

Moving Pieces Around

The main challenge in moving pieces around a checkerboard is to
calculate the (x,y) pixel coordinates that identify the position of the
dot at which to draw. Once you have those coordinates, erasing
where a checker piece used to be looks like:
 Fg(“green”)
 FillRectangle(x, y, 64, 64)
Drawing a checker piece in its new location looks like:
 Fg(turn)
 FillCircle(x+32, y+32, 28)

45

The +32 parts are because FillCircle() works from its center point,
not its upper-left corner the way FillRectangle() works.

Animation

In a really cool checkers game, the pieces would slide or jump to
their new positions. A slide can be done by many calls to
FillRectangle() and FillCircle(), with x and y just changing by 1
(or a small number) each time going from the old values to the new
values. The stuff to be erased is going to be some mixture of up to
four different squares, so maybe four different squares have to be
redrawn at each step.

Suppose you are moving from position (64,64) down to position
(0,128). You might try the following code:
 x := y := 64
 every i := 0 to 63 do {
 Fg(“green”)
 FillRectangle(x-i, y+i, 64, 64)
 Fg(turn)
 FillCircle(x-i + 32, y+i + 32, 28)
 delay(50)
 }
Try numbers other than 50 in the delay() and see what number
looks best. The delay is a number of milliseconds (the units are
1/1000th of a second), so 50/1000 is 1/20th of a second.

Making a jump “look cool” remains an exercise for the reader, and
you might have to bring in some trigonometry or physics equations
to do it properly. You would be amazed, however, at how much you
can do without any advanced math, if you are clever.

A Computer Checkers Player
Checkers is an almost ideal platform for introducing a more serious
computer player, and this game was one of the first to be
conquered by artificial intelligence researchers. For turn-based
games such as checkers and chess (it would have worked for tic-
tac-toe, but was overkill), the most popular brute force technique
for computer play looks ahead several moves, considering every
possibility. The algorithm is called minimax.

46

The Minimax Algorithm

Given a board position P, the computer player's goal is to calculate
the best possible move. Position P is the root of a tree of board
positions in which P's children are the board positions of each of
the possible moves. Each of P's children either denote a terminal
position such as a win for one side or the other, or they have one or
more children that are possible moves.

In order to evaluate all possible moves and select one from the
current position, the minimax algorithm selects the child whose
board position is best (maximizing the computer's position).
Evaluation of board positions can consider further moves (looking
further ahead) to the extent that the CPU allows within some real-
time constraint. The algorithm pessimistically assumes that the
adversary will make their best possible move (minimizing the
computer player's position). The computer's best move, short of
forcing a win, will be whatever gives the opponent the least
opportunity to win.

This algorithm can be generically applied to a broad range of turn-
based games. It requires a game-specific board position
representation (board positions are nodes in the game tree), and
several helper functions that operate on a (possible, future) board
position. These requirements can be specified using the following
abstract class. A game such as checkers will implement a subclass
that provides a board position in one or more member variables,
and use that data structure to implement at least these five methods.
class GameState(player, # list of players
 turn) # whose turn it is
 abstract method evaluate()
 abstract method finished()
 abstract method generate_moves()
 abstract method copy()
 abstract method draw_board()
The methods finished() and evaluate() return whether a board
position is terminal, and a heuristic assessment of the strength of
the board position, respectively. The method generate_moves()
generates all the possible board positions that can immediately
follow a given position. The method copy() creates a physical copy

47

of the game state, with which the minimax algorithm applies
prospective moves and evaluates them recursively. The method
draw_board() is used to render a current or prospective game state
visually for the human user. The abstract class GameState does
implement two methods, the first of which is the minimax()
algorithm itself.
 method minimax(depth, player)
 local alpha
 /player := turn
 if (depth = 0) | finished() then {
 ev := evaluate()

if ev === &null then {
 stop("evaluate() returned null for preceding board")
 }

 return ev
}

 else if player == turn then {
 every childmove := generate_moves(node) do {

 child := copy()
 child.apply_move(childmove)

 kidval := child.minimax(depth-1, player)
 if not (/alpha := kidval) then

 alpha <:= kidval
 }

 }
 else { # minimizing player
 every childmove := generate_moves(node) do {

 child := copy()
 child.apply_move(childmove)

 kidval := -child.minimax(depth-1,player)
 if not (/alpha := kidval) then

 alpha >:= kidval
 }

 }
 return \alpha | 0
 end

48

The GameState class also provides a method advance_turn() that
sets the turn member variable to the next player in the list of
players, wrapping around to player[1] when it reaches the end.
 method advance_turn()
 if turn == player[i := 1 to *player] then {

 i +:= 1
 if i > *player then i := 1
 }

 else stop("no player named ", image(turn))
 turn := player[i]
 end
Given the abstract class, the checkers game logic is captured in a
subclass. The representation of the board is a list of lists of strings
with names like “red queen” or “white”.
class CheckersGameState : GameState(square, mydepth)
The representation of a move is a list of row1,col1,row2,col2...
that moves a piece from row1,col1 to rowN,colN through a series
of 0 or more intermediate locations.
 method apply_move(L)
 i := 0
 while i+4 <= *L do {

 srcrow := L[i+1]; srccol := L[i+2];
 destrow := L[i+3]; destcol:=L[i+4]

 square[srcrow,srccol] :=: square[destrow, destcol]
 if abs(srcrow-destrow)=2 then
 square[(srcrow+destrow)/2,(srccol+destcol)/2] := " "
 i +:= 2
 }

 end
The heuristic for evaluating a board position in checkers is vital to
the skill level exhibited by the computer player. A checkers expert
could undoubtedly provide a much stronger evaluation function
here. The basic tenets of the following relatively brute-force
evaluation are: add 1000 points for each friendly piece, where rank
indicates how far that piece has advanced towards the end. Add
10,000 points for each friendly queen. Subtract points for distance

49

from promotion, for non-queen pieces. Assess enemy pieces and
positions with the symmetric opposite point scores.
 method evaluate()
 local dir # direction this player is moving
 if turn=="white" then dir := 1 else dir := -1
 points := 0
 every row := 1 to 8 do

 every col := 1 to 8 do {
 if square[row,col] == " " then next
 else if find(turn,square[row,col]) then

 sgn := 1
 else sgn := -1

 points +:= 1000*sgn
 if find("queen", square[row,col]) then {
 points +:= 10000*sgn
 }
 else {

 points -:= sgn * 2 ^ (if dir=-1 then row else (8-row))
 }

 }
 return points
 end
The code to generate all possible moves from a given board
configuration must first find every piece owned by the current
player and then consider all moves in all directions that are
possible.
 method generate_moves()
 # for every current-player's piece on the current board...
 every row := 1 to 8 & col := 1 to 8 &
 match(turn,square[row,col]) do {
An important issue is: how are moves represented? In this game, a
move is represented as a list of positions, where each position is
denoted by two elements, a row followed by a column. Regular
moves are easy, they move the piece forward one row and into an
adjacent column that must be empty.

 if turn=="white" then dir := 1 else dir := -1
 every square[row+dir,(c := ((col-1)|col+1))]== " " do {

50

 suspend [row,col,row+dir,c]
 }

Jumps are somewhat more involved. The conditions include an
enemy piece in an adjacent diagonal, with an empty square behind
it. In addition, such a jump allows the possibility of multiple jumps
if the same conditions are present at the destination.

 # jumps
 every (csgn := (1|-1)) &
 (square[row+dir*2, col+csgn*2]== " ") &
 enemy_in(row+dir,col+csgn) do {
 L:= [row,col,row+dir*2, col+2*csgn]
 suspend L
 # multijumps logic here
 suspend generate_jumps(L)
 }

Queen moves are similar, but less constrained since they can move
both forward and backward.

 every (dir := (1|-1)) & (csgn := (1|-1)) do {
 if square[row+dir,col+csgn] == " " then

suspend [row,col,row+dir,col+csgn]
 if square[row+dir*2,col+csgn*2] == " " &

enemy_in(row+dir, col+csgn) then {
L := [row,col,row+dir,col+csgn]
suspend L
multijumps logic here
suspend generate_jumps(L)
}

 }
The generate_moves() code depended on a couple helper functions.
A simple predicate function enemy_in() succeeds if an enemy piece
is located at a given row and column.
 method enemy_in(row,column)
 if (row|column)=0 then fail
 s := square[row,column]
 return not (s == (" " | turn))
 end

51

A more significant helper function generate_jumps() looks at a
given jump move and generates additional moves possible due to
jumping a second or subsequent pieces. The function is recursive.
 method generate_jumps(L)
 local dir # direction this player is moving
 if turn=="white" then dir := 1 else dir := -1
 row := L[-2]
 col := L[-1]

 every (rsgn:=(dir|
 (if find("queen",square[row,col]) then -dir))) &

 (csgn := (1|-1)) &
 (square[row+rsgn*2, col+2*csgn]==" ") &
 enemy_in(row+rsgn, col+csgn) do {
 L2 := L ||| [row+rsgn*2, col+2*csgn]
 suspend L2
 suspend generate_jumps(L2)
 }

 end
Detection of a terminal board position is achieved by method
finished(), which returns the winning player if there is one. The
version below is incomplete in that conditions need to be added to
detect when the game is over because a player is unable to move.
 method finished()
 if not find(player[1], !!square) then return player[2]
 if not find(player[2], !!square) then return player[1]
 end
The following ASCII art rendition of the checkers board might be
replaced with a graphical version.
 method draw_board()
 local i, j
 write("(draw board ",image(square),")")
 write(" \\ 1 2 3 4 5 6 7 8 column")
 write("row -----------------")
 every i := 1 to 8 do {
 writes(" ",i," ")
 every j := 1 to 8 do {

52

 if find("queen", square[i,j]) then
 writes("|",map(square[i,j,1],&lcase,&ucase))
 else
 writes("|",square[i,j,1])
 }

 write("|\n -----------------")
 }

 end
The actual game A/I is provided in a method computermove() that
rates each possible move and selects the best one using minimax.
The game tree nodes are constructed by copy+modify of the
current game state. The moves are flat lists of alternating row,col
coordinates; returning the computer move like this, instead of the
winning "game state" allows the computer player to look just like a
human player who input their move as a list of row,col coordinates.
 method computermove()
 list_of_possible := []
 t1 := &time
 every possible := generate_moves() do {
 put(list_of_possible, possible)

 mv := copy()
 mv.apply_move(possible)
 thepoints := mv.minimax(mydepth)
 mv.draw_board()
 if /bestpoints | thepoints>bestpoints then {
 bestpoints := thepoints
 bestmove := possible
 list_of_possible := [possible]
 }
 else if thepoints=bestpoints then {
 put(list_of_possible, possible)
 }
 }

 if *list_of_possible = 0 then stop("no possible moves")
 possible := ?list_of_possible

 t2 := &time
 if t2-t1 < 1000 then {
 delay(1000-(t2-t1))

53

 mydepth +:= 1
 }
 else {
 mydepth -:= 1
 }

 return possible
 end
The initialization for the CheckersGameState class is given in an
initially section. Minimax depth starts at 1; players are initialized
to be named “red” and “white”, and the board is initialized to a list
of 8 lists of 8 strings as seen at the beginning of this chapter.
initially(p)
 mydepth := 1
 player := ["red", "white"]
 human := p
 turn := "red"
 # … code for initializing square[], as shown earlier
end
The main() procedure starts by initializing a CheckersGameState
object. The human player's color is read from the first command
line argument, defaulting to “red”, which is the color that moves
first. The skeleton of the main game loop is given below.
procedure main(argv)
 game := CheckersGame((argv[1]==("red"|"white")) | "red")
 while not game.finished() do {
 game.draw_board()
 if not (L := game.get_move()) then stop("goodbye")
 if game.apply_move(L) then

 game.advance_turn()
 }
 write((game.finished() || " wins") |
 "game over, result a draw?")
end

54

Exercises
1. Test and correct the checkers program. There are many

missing rules that aren't being checked.

2. Modify the graphical version of the checkers program so that
the user specifies their move by left-clicking the mouse on
the piece to move and the (sequence of) destination square(s).
Right-click on the final destination.

3. Modify the checkers program so the computer player is
smarter. This may involve improving the evaluation function,
performance tuning, or allowing the computer more time for
deeper lookahead.

55

Chapter 7: Text Adventures
Text adventures are one of the early forms of computer game,
originating in the mid-1970's on timesharing computers' terminals
and early PC's where little or no graphics were supported. Text
adventures were (perhaps) directly inspired by pencil-and-paper
roleplaying games such as Dungeons and Dragons, which took a
popular genre of fiction and allowed players to imagine being in
the story and interacting with it. A text adventure typically does so
using a computer, but this form of interactive fiction became so
popular that it in turn spawned a particularly odd form of books in
which the reader makes choices which determine the outcome of
the story – books imitating the computer games which imitate the
paper games which imitate the great stories in books.

Besides spawning “interactive books”, text adventures went on to
spawn other genres of computer games (graphical adventures such
as King's Quest, and multiple-user dungeons (MUDs) which were
the precursors to the modern Massively Multi-player On-line Role
Playing Games that have become a multi-billion dollar industry.
Text-adventure-style prose descriptions and location-based puzzles
still form a core of the gameplay: they handle the exposition of
quests and give meaning or purpose to the virtual lives of the
players' characters.

Design
A text adventure needs to store a lot of text, which could be in an
external file or could be embedded directly in the code. Far more
importantly though, a text adventure needs to store a model of the
imaginary world and the player's progress through the game. This
includes: the locations and how to get from place to place, the
objects the player needs, and a record of what the player has done.

The virtual world in a text adventure is typically a graph of nodes,
where each node is a room or other discrete location. If each node
is labeled with an integer, the player's location can be very easily
stored and updated as a simple integer. It might be just as easy to
store it as a string name of the location, such as “kitchen” or
“backyard”. Text adventures typically allow the player to go from

56

place to place by commands such as “go north”, the programmer
noting for each direction whether it has a door (or opening, or trail,
or whatever) that constitutes an edge in the graph that takes you to
a different location.

In each location, there is a text description of what you see when
you get there, and usually one or more objects you can look at
more closely, or possibly take with you. Besides recording about
the player what room they are in, the program maintains an
inventory of virtual objects that they are carrying.

CIA
CIA is an example text adventure inspired by an old game written
in BASIC by Susan Lipscomb and Margaret Zuanich. It illustrates
typical text adventure structure and features. The program features
the following state variables.
cia.icn – a CIA text adventure, inspired by Lipscomb/Zuanich

global verbs, # set of verbs allowed in actions
 directions, # four directions in which one can move
 ca, # list of (integer codes of) what the player is carrying
 vs, # the current verb/action the player is performing
 rooms, # array of rooms (adjacency list representation of graph)
 ob, # array of obj (objects)
 li, # list of (integer codes of) evidence toward conviction
 tt, # game time elapsed
 maxtime, # maximum game time allowed for victory
 g, # 0 = Griminski not home, 1 = dead, 2 = he's attacking
 r, # current room (integer code)
 rs, # "read string" (or "response") == what the user said to do
 n, ns # the noun (integer code, string) the player is acting on

Two complex structure types are used, to represent information
about nouns (objects) and about rooms. These are both really
record types, although the room type is declared as a class in order
to take advantage of flexible constructor parameter handling.
record obj(as, ds, m, l, v, t)

class room(ds, e)
initially(descrip, h, e1,e2,e3,e4)
 ds := descrip
 hs := h
 e := [e1, e2, e3, e4]

57

end

CIA recognizes two kinds of input: single-word commands and
verb-noun actions. The main() routine determines whether to call
action() or command() based on whether a space character is
found.
procedure main()
 init()
 r := 1
 write("\n", rooms[r].ds, "\n")
 repeat {
 if input() then {

 if parsing() then
 action()

 }
 else command()
 }
end

The input handler checks if time has run out, writes a prompt, and
reads the user's answer. If it had a space in it, the procedure
succeeds to indicate a verb-noun action; if there was no space, it
fails, indicating a command.
procedure input()
 rs := ""
 tt +:= 3
 if tt > maxtime then stop("sorry... you ran out of time")
 writes("\nNow what? ")
 rs := read()
 write()
 rs ? if vs := tab(find(" ")) then { =" "; ns := tab(0); return }
end

“Parsing” is an overstatement, but verb-noun actions are validated
by checking whether the verb is recognized, and checking whether
the noun can be used with that verb. A primary side effect here is to
compute the integer code of the noun of interest.
procedure parsing()
 if member(verbs, vs) then {
 every n := 1 to *ob do {

 if ns == ob[n].as & (ob[n].m = (r | 100)) then return
 }

 write("it won't help")
 }
 else
 write("i don't know how to ", vs)

58

 vs := ns := &null
end

Movement (a phrase such as “go west”) in this world is handled by
checking the direction requested to see if the current room has an
adjacency (edge) to a new room.
procedure go()
 every j := 1 to 4 do
 if directions[j] == ns then {

 if rooms[r].e[j] = 0 then { write("I can't go that direction"); return }
 r := rooms[r].e[j]
 write("\n", rooms[r].ds, "\n")
 return

 }
end

Initialization sets up several large static lists, particularly of objects
and of rooms. Each object has a short name, a detailed description,
and four codes indicating the object's location (field m, value 100
means the user possesses it), a link (in the sense of a linked list) to
related/contained objects, an evidence value (field v), and a “take
code” (field t) which determines which verbs work on that object.
procedure init()
 directions := ["north", "east", "south", "west"]
 ca := []
 li := []
 tt := g := 0
 et := 1000

 ob := [
 obj("north","it doesn't help",100,0,0,4),
 obj("east","it doesn't help",100,0,0,4),
 obj("south","it doesn't help",100,0,0,4),
 obj("west","it doen't help",100,0,0,4),

 obj("shelves","Shelves for weapons and tools line the wall next to your_
 desk.\nThere are numerous items which may help you on your _
 assignment.", 1,6,0,3),

 obj("screwdriver", "an all-purpose screwdriver with collapsible handle.",
 1,7,0,1),

 obj("bomb", "a mark mx high-intensity smoke bomb", 1,8,0,1),
 obj("pistol", "an automatic ppk-3 pistol", 1,9,0,1),
 obj("key", "a skeleton key", 1,10,0,1),
 obj("drug","a small can of insta-knockout drug", 1,11,0,1),

59

 obj("gun", "a mark 3k harpoon gun with grapple and line", 1,0,0,1),
 obj("door","The heavy door is painted black. A brass keyhole and _

 doorknob are here. You can see the circular holes on either side _
 of the door which must mean an electronic alarm beam.", 2,13,0,5),

 obj("alarm","The alarm is screwed into place.",2,0,0,5),

 obj("dog","The savage doberman leaps at you with bared fangs.\n _
 He will not let you past him.", 3,0,0,4),

 obj("table","The venetian front hall table has a tortoise shell letter\n_
 tray on it for business cards and mail. There is a letter on the _
 tray.", 3,0,0,1),

 obj("letter","This is apparently a phone bill that has been paid and\n_
 is being sent to the telephone company.", 3,0,10,1),

 obj("umbrella","There is a black businessman's umbrella with a _
 pointed end.", 4,18,0,1),

 obj("briefcase","There is a black leather briefcase with a _
 combination lock.", 4,0,0,1),

 obj("desk", "The large oak desk has a blotter and pen set on it. _
 A phone is here. a blank notepad is by the phone. _
 The desk has a pigeonhole and one drawer on it.", 5,0,0,1),

 obj("notepad", "Although the notepad is blank, you can see the _
 indentation of writing on it.", 5,0,0,1),

 obj("drawer", "This is a standard pull desk drawer.", 5,0,0,4),
 obj("pigeonhole", "The pigeonhole has a paid bill in it.",5,0,0,4),
 obj("bill","The bill is from the telephone company.",5,0,0,1),
 obj("phone","This is a beige pushbutton desk phone.",5,25,0,4),
 obj("number","The telephone number is printed on the base",5,0,0,4),
 obj("panel","The panels are tongue-in-groove. One of the panels _

 seems more worn than the others", 5,0,0,4),
 obj("shelves","There are software programs, manuals, and blank _

 disks on the shelves.",6,0,0,4),
 obj("program","One program is for communicating with the U.S. _

 defense department's mainframe computer.", 6,0,10,5),
 obj("phone","This is a standard desk-type dial telephone. _

 The receiver is set into a modem.",6,30,0,4),
 obj("number","The telephone number is printed on the base",6,0,0,1),
 obj("computer","this is a standard office computer with a keyboard.\n_

 A cd is inserted into one of the drives. The power switch is off.",
 6,0,0,5),

 obj("monitor","This is a high resolution LCD monitor. _

60

 The power switch is off.",6,0,0,5),
 obj("modem","The modem is one that can use an automatic dialing\n_

 communications program. The power switch is off.", 6,0,0,5),
 obj("tray","the silver tray holds a decanter partially filled with _

 claret.", 7,0,0,1),
 obj("decanter","the decanter is of etched crystal. it probably holds _

 some claret.", 7,0,0,1),
 obj("claret", "An amber liquid", 7,0,0,1),
 obj("cabinet", "this is a fairly standard kitchen cabinet.",8,0,0,4),
 obj("bottle","a bottle of capsules are here.",8,39,0,2),
 obj("capsule","the capsules are elongated and have a slight aroma _
 of burnt almonds.",8,0,0,1),
 obj("table","the bedside table has a phone on it. _

 a piece of paper and a lamp are here.", 9,0,0,3),
 obj("phone","there is a number printed on the phone.", 9,0,0,4),
 obj("paper","a piece of monogrammed writing paper",9,43,0,1),
 obj("combination","there is a combination written on it",9,0,0,4),
 obj("safe","this is a standard combination safe.",9,0,0,4),
 obj("gum","a pack of stick-type peppermint gum. _

 each stick is wrapped in paper.", 9,0,0,2),
 obj("microfilm","the microfilm has been developed but you can't _

 see it without special equipment. Nevertheless it's pretty _
 certain what you have found.",9,0,10,2),

 obj("shelves","a very sophisticated camera is on one of the shelves.",
 10,0,0,4),

 obj("camera","This camera is used to transfer documents to microfilm.",
 10,0,10,1),

 obj("cabinet","this is a large mirrored bathroom cabinet.", 10,0,0,4),
 obj("bureau","a wall safe is set into the wall above the low _

mahogony carved bureau.", 9,0,0,3),
 obj("bottles","bottles of fixer and photoflo are on the shelves.",

 10,52,0,2),
 obj("tank","there is a film developing tank and a film apron _

and tank cover here too.", 10,0,0,2),
 obj("headquarters","headquarters",100,0,0,4),
 obj("capsules","the capsules are elongated and have a slight aroma _
 of burnt almonds.",8,0,0,1),
 obj("sideboard","a large ornate sideboard with a beveled glass mirror _

dominates the east wall.", 7,34,0,4),
 obj("number","there is a number printed on the phone.", 9,0,0,1),
 obj("paper","the numbers 2-4-8 are written on a piece of paper _

on the top of the drawer.", 5,0,0,2),
 obj("griminski","the white-haired man is dressed in evening clothes.",

 6,0,0,4),
 obj("corner","you are looking at the corner of the closet.",

 4,17,0,4)
]

61

 rooms := [

 room("You are in your office at the CIA.\n_
 On the shelves are tools you've used in past missions.\n_
 Ambassador Griminski's apartment is North.",

 "You'll need some tools to get into the apartment.", 2,0,0,0),

 room("You are at 14 Parkside Avenue. The entrance to ambassador\n_
 Griminski's small but elegant bachelor apartment. You see a \n_
 heavy wooden door with a notice on it warning of an alarm system.",

 "Maybe your tools will help you.", 0,0,1,0),

 room("This is the marbled foyer of the ambassador's apartment. \n_
 A table is in the corner. The master bedroom is east, the drawing \n_
 room is north, and a closet west. A fierce dog charges to attack.",

 "Something from your office could be helpful now.", 0,0,2,0),

 room("You are in the front hall cedar closet. Heavy overcoats and a \n_
 trenchcoat are hanging up. Boots are on the floor and other items \n_
 are in the corner.", "First impressions can be deceiving.", 0,3,0,0),

 room("You are in the drawing room. A desk is here. A sofa and a\n_
 coffee table are in front of the fireplace set into the paneled \n_
 east wall. The dining room is north.",

 "There is more here than meets the eye.", 7,0,3,0),

 room("You can see a microcomputer, monitor, and a cable modem \n_
 on a table against the east wall of this over-sized closet. A phone is by_
 the computer. A chair and shelves are here.",

 "Running a program is always interesting.", 0,0,0,5),

 room("You are standing in a small formal dining room. The table \n_
 seats six guests. A sideboard with a tray on it is against the east\n_
 wall. The kitchen is to the north.", "I can't help you here", 8,0,5,0),

 room("You are in the apartment kitchen which shimmers with\n_
 polished chrome appliances and butcherblock counters. A long\n_
 cabinet above the stainless steel sinks is closed.",

 "Be suspicious of items in small bottles.", 0,0,7,0),

 room("This is ambassador Griminsky's bedroom. A bed and bedside\n_
 table are here. A safe is in the wall above the bureau. The\n_

 bathroom and dressing area are to the north.",
 "Things are often not what they seem.", 10,0,0,3),

 room("You are in a combined bathroom / dressing area. The\n_

62

 ambassador's clothes are hanging neatly on rods and open shelves\n_
 hold towels and sweaters. The medicine cabinet is closed.",

 "Don't overlook the obvious.", 0,0,9,0)]

 verbs := set(["look","get","take","go","crawl","walk","open","read",
 "drop","call","unscrew","spray","push","load","run","drink",
 "eat","chew","unwrap","talk","shoot","unlock","on","off"])

 return
end

There are seven commands, each of which has a corresponding
procedure.
procedure command()
 case rs of {
 "help": help()
 "quit": quit()
 "inventory": inventory()
 "look": look()
 "time": printtime()
 "score": printscore()
 "restart": restart()
 default: write("I can't understand ", rs)
 }
end

The help command writes out a string that is determined by what
room the player is in (“context sensitive help”).
procedure help()
 write(rooms[r].hs)
end

procedure quit()
 write("are you sure you want to quit? (yes/no)")
 rs := read()
 if rs == "no" then return
 printtime()
 printscore()
 stop()
end

The inventory is maintained in a list of items carried (ca) which are
subscripts into the global object list.
procedure inventory()
 if *ca = 0 then { write("you aren't carrying anything"); return }
 write("you have")
 every write(ob[!ca].as)
end

63

The look command simply prints out the detailed description of the
current room. The current (game) time is kept in a simple counter
(tt), while the score is tracked by counting up the values of the
objects the player is carrying (state secrets count more than
screwdrivers or pistols).
procedure look()
 write(rooms[r].ds)
end

procedure printtime()
 write("elapsed time is ", tt, " minutes.")
end

procedure printscore()
 s := 0
 every s +:= ob[!ca].v
 write("you have ", s, " points for evidence.")
end

procedure restart()
 writes("are you sure you want to restart? ")
 if read() == "yes" then {
 main()
 stop()
 }
 write("Since you don't want to restart...")
end

Like the commands, the actions are handled by helper procedures.
It is easy to extend this game with new verbs.
verb handlers
procedure action()
 if ob[n].t ~= 2 then {
 case vs of {

 "look": verblook()
 "take"|"get": takeget()
 "go"|"crawl"|"walk": go()
 "open": verbopen()
 "read": verbread()
 "drop": drop()
 "call": call()
 "unscrew": unscrew()
 "spray": spray()
 "push": verbpush()
 "load": verbload()
 "run": verbrun()

64

 "drink": drink()
 "eat"|"chew": cheweat()
 "unwrap": unwrap()
 "talk": talk()
 "shoot": shoot()
 "unlock": unlock()
 "on": onoff("on")
 "off": onoff("off")
 default: write("invalid verb ", v)

 }
 }
 else write("You can't ", vs, " ", ns, " yet.")
end

To look at an object, you write its detailed string. Objects can in
fact point at a linked list of contents or subobjects.
procedure verblook()
 write(ob[n].ds)
 repeat {
 if ob[n].l = 0 then return
 n := ob[n].l
 if ob[n].m = r then

 write(ob[n].ds)
 }
end

By default, objects can be “taken” and placed in one's inventory.
Exceptions are marked in the object's t field.
procedure takeget()
 k := ob[n].t
 case k of {
 1: {

 if *ca < 6 then takeit()
 else write("you can't carry anything else")
 }

 2: { write("you can't take ", n, " yet"); return }
 3: { write("silly, that's too heavy to carry"); return }
 4: { write("that's ridiculous!"); return }
 5: { write("you can't take ", n, " yet"); return }
 default: {

 write("invalid take code for object ", ob[n].as,ob[n].t)
 return

 }
 }
end

procedure takeit()

65

 if ob[n].m = 100 then { write("you already have it"); return }
 write("taken.")
 ob[n].m := 100
 put(ca, n)
end

Opening an object is one of the most complex actions in the game,
since several different types of objects can be opened with different
effects.
procedure verbopen()
 case ns of {
 "door": {

 if ob[12].t = 4 & ob[13].t = 4 then {
 write("opened")
 rooms[2].e[1] := 3
 }
 else if ob[12].t = 5 then write("the door is locked.")
 else if ob[13].t = 5 then
 stop("You didn't disconnect the alarm. It goes off and the\n",

 "police come and arrest you. Game over.")
 else write("can't get through door yet")
 }

 "briefcase": {
 write("combination ")
 cs := read()
 if cs == "2-4-8" then {
 write("opened")
 ob[18].ds ||:="parts of an rr-13 rifle are inside the padded case."
 }
 else write("sorry you don't have the right combination")
 }

 "safe": {
 write("combination ")
 cs := read()
 if cs == "20-15-9" then {
 write("opened")
 ob[44].l := 45
 ob[45].t := 1
 ob[44].ds ||:= " inside is"
 }
 else write("sorry you don't have the right combination")
 }

 "cabinet": {
 write("opened")
 if n = 49 then {ob[51].t := 1; ob[49].l := 51; rooms[10].ds ||:= " open"}

 else {ob[38].t := 1; ob[37].l := 38; rooms[8].ds ||:= " open"}
 }

66

 "umbrella": {
 stop("you stab yourself with the tip, which is a poisoned dart.\n",
 "you are rushed to the hospital, but it is no use.\n",
 "Game over.")
 }

 "drawer": {
 write("opened")
 ob[21].l := 57
 ob[57].t := 1
 }

 default: {
 write("A ", ns, " can't be opened.")
 }

 }
end

Reading secret messages is an important part of the clue finding in
CIA.
procedure verbread()
 case n of {
 (r = 3) & 16: {
 write("The telephone bill is made out to 322-9678 -V.Grim, P.O. X\n",

 "Grand Central Station, NYC\n", “The amount is $247.36 _
 for long distance charges to Washington DC")

 return
 }
 20: {
 write("You can just make out this message: HEL-ZXT.93.ZARF.1")
 return
 }
 23: {
 write("The bill is made out to 322-8721, Dr. Vladimir Griminski",

 "14 Parkside Avenue - NYC.\n",
 "The bill is for $68.34 for mostly local calls.")

 }
 25: write("322-8721")
 30: write("322-9678")
 42: write("20-15-9")
 56: write("322-8721")
 default: write("There is nothing to read.")
 }
end

To drop an object, you tell it what room it is now in (set its .m
field) and delete it from the carry list.
procedure drop()
 every i := 1 to *ca do

67

 if n = ca[i] then {
 ob[ca[i]].m := r
 delete(ca, i)
 write("dropped")
 return

 }
 write("You aren't carrying a ", ns)
end

Phoning home in this game allows you to check whether you've
solved the puzzle yet or not. This game dates to before cellphones!
procedure call()
 if n = 53 & (r = (5 |6 | 9)) then {
 write("Ring...ring")
 write("Hello, agent. This is your control speaking.")
 write("List your tangible evidence.")
 ll := 0
 li := []
 if get_evidence() >= 40 then {

 write("Fantastic job!!")
 write("We'll be over in a flash to arrest the suspect!")
 tt +:= 6
 if tt > maxtime then stop("sorry... you ran out of time")
 write(" -----------------")
 write("Ambassador Griminski arrives home at 10:30 to find\n",
 "operatives waiting to arrest him.")
 write(" -----------------")
 write("You are handsomely rewarded for your clever sleuthing.")
 write("You solved the mystery in ", tt, " minutes")
 exit()
 }

 }
 else if n ~= 53 then write("it's no use to call ", ns)
 else write("You are not near a phone")
end

Listing tangible evidence requires that the user remember what
they are carrying.
procedure get_evidence()
 local ev := 0
 repeat {
 rs := read()
 if rs == "" then return ev
 every i := 1 to *ca do {

 if rs == ob[ca[i]].as then {
 if !li = ca[i] then {
 write("you already said ", rs)

68

 break next
 }
 ev +:=ob[ca[i]].v
 put(li, ca[i])
 break next
 }
 }

 write("You're not carrying a ", rs)
 }
end

Several of the remaining verbs solve unique puzzles that are part of
the game's challenge. Reading the source code gives spoilers.
procedure unscrew()
 if n = 13 then {
 if ob[!ca].as=="screwdriver" then {

 write("The alarm system is off.")
 ob[13].t := 4
 ob[13].ds := "The alarm system is disabled."
 return
 }

 write("you have nothing to unscrew with")
 }
 else write("you can't unscrew a ", ns)
end

procedure spray()
 if n = (13|10) then {
 if !ca = 10 then {

 write("The dog is drugged and falls harmlessly at your feet.")
 rooms[3].e[1] := 5
 rooms[3].e[2] := 9
 rooms[3].e[4] := 4
 rooms[3].ds[-31:0] := " The drugged dog is on the floor."
 ob[14].ds := "The fierce doberman is drugged on the floor."
 delete(ca, i)
 write("The drug is used up and is no longer in your inventory.")
 return
 }

 write("you have nothing to spray with")
 }
 else {
 write("you can't spray a ", ns)
 }
end

procedure verbpush()

69

 if n = 26 then {
 write("The panel pops open to reveal the presence of a \n",

 "previously hidden room.")
 rooms[5].e[2] := 6
 ob[26].ds ||:= "A hidden room can be seen behind one panel."
 }
 else
 write("It doesn't do any good to push a ", ns)
end

procedure verbload()
 if n = 28 then {
 if ob[28].m = 6 then {

 write("The program is already loaded.")
 }
 else write("That won't help you.")
 }
 else write("can't load a ", ns)
end

procedure verbrun()
 if n = 28 then {
 if ob[31 | 32 | 33].t = 5 then {

 write("The computer can't run the program yet.")
 return

 }
 ob[28].t := 1
 write("The program dials a Washington D.C. number.\n",

 "A message appears on the monitor.\n")
 writes("PLEASE LOG IN: ")
 cs := read()
 if cs == "HEL-ZXT.93.ZARF.1" then {

 write("The following message appears on the monitor.\n")
 write(" WELCOME TO THE U. S. DEPARTMENT OF DEFENSE")
 write(" RADAR RESISTANT AIRCRAFT PROGRAM.")
 write("ALL INFORMATION ON THIS SYSTEM”)
 write(“IS CLASSIFIED TOP SECRET.")

 }
 else if g = 0 then {

 g := 2
 write("\n\nINVALID LOGON CODE\n\n")
 write("The screen goes blank. You hear footsteps.\n",
 "Griminski looms in the doorway with an 8mm Luger in hand.")
 write("You'd better have the PPK-3 pistol or you're doomed.")
 input()
 if b~= 0 then {
 parsing()

70

 if vs == "shoot" & (n=(8 | 58)) then {
 if shoot(1) === "return" then

 return
 }
 }
 write("It's hopeless! Griminski fires....")
 stop("You crumple to the floor. End of game.")

 }
 else write("INVALID LOGON CODE")
 }
 else write("you can't run a ", ns)
end

Beware, the espionage business is dangerous!
procedure drink()
 if n = 36 then {
 write("You are poisoned.")
 stop("You stagger to the phone and call the ambulance. Game over.")
 }
 write("You can't drink ", ns)
end

procedure cheweat()
 if n = (39 | 54) then {
 write("You fool! These are cyanide capsules.")
 stop("You fall to the floor and die in agony. Game over.")
 }
 if n = 45 then {
 write("You idiot! The gum is a plastic explosive.")
 stop("You have just blown yourself to smithereens. Game over.")
 }
 write("You can't ", vs, " ", ns)
end

procedure unwrap()
 if n = 45 then {
 write("The wrapper conceals a tiny strip of microfilm.")
 ob[46].t := 1
 }
 else write("It doesn't help to unwrap ", ns)
end

procedure talk()
 if n = 14 then write("He doesn't speak English.")
 else write("That won't help you.")
end

71

Shooting the gun is really a last resort, intended to be used when
the comes home while you are still in the house.
procedure shoot(x)
 if \x | (n=(8 | 14 | 58)) then {
 every i := 1 to *ca do {

 if ca[i] = 8 then {
 if r = 3 & n = (8 | 14) then {
 write("The dog bites your hand.")
 return
 }
 if r ~= 6 then {
 write("That just makes a big mess.")
 return
 }
 if g ~= 2 then {
 write("That won't help.")
 return
 }
 write("Your shot grazes his forehead. He crashes to the floor")
 write("You have time to gather more evidence to apprehend him.")
 g := 1
 rooms[6].ds ||:=" Griminski is lying unconscious on the floor."
 }
 }

 if r=6 & g = 2 then {
 write("You don't have the pistol. Anything else is too slow.")
 fail
 }

 write("You have nothing to shoot with.")
 fail
 }
 else write("That won't help")
end

procedure unlock()
 if n = 12 then {
 if ob[!ca].as == "key" then {
 write("Unlocked.")
 ob[12].t := 4
 return

 }
 write("You have nothing to use to unlock.")
 }
 else
 write("You can't ", vs, " a ", ns)
end

72

procedure onoff(o)
 case n of {

31: m := 137
32: m := 57
33: m := 111
default: { write("You can't turn ", o, " a ", ns); fail }

 }
 if ob[n].ds[-3:0] == ("off"|" on") then {

while ob[n].ds[-1] ~== "o" do ob[n].ds[-1] := ""
ob[n].ds[-1] := ""

 }
 ob[n].ds ||:= " " || o
 write(o, ".")
 if o=="on" then ob[n].t := 3 else ob[n].t := 5
end

The Adventure Shell
Many people like text adventures more than their command-line
interface shells, enough so that it was suggested as an alternative
interface. Certainly it has the potential to be more user friendly. For
example, why should I want to “cd ~” when I could “go home”
instead? Why should I “ls -la” or “dir /w” when I could “look”?

73

Chapter 8: Resource Simulation
Resource simulation games are another ancient genre that spun off
of the early use of the computer for running simulations.

Hamurabi
Hamurabi is one of the oldest and simplest games ever written. It
simulates the king of Babylon giving orders regarding the
management of the city's agriculture in order to keep everyone fed
and the empire growing. Much of the charm of this game is derived
from the sardonically obsequious tone of its narrator, your
nameless prime minister. The discrete simulation is coarse-grained,
with one turn per year.

Our version of Hamurabi is translated from BASIC into a
simplistic object-oriented program with one singleton class. A more
advanced simulation game like Civilization might start by creating
multiple instances to simulate different cities. Hamurabi executes
by creating an instance of class Babylon() and invoking a play()
method.
procedure main()
 write("Try your hand at governing ancient Sumeria\n_

 successfully for a 10 year term of office.")
 Babylon().play()
end
The header comments are preserved for historic pedigree purposes.
Hamurabi
Converted from the original FOCAL program and modified
for EDUSYSTEM 70 by David Ahl, Digital.
Modified for 8K Microsoft BASIC by Peter Turnbull.
Then translated to C# by Bill Lange on codeproject.com.
Translated to Unicon by Clint Jeffery

The class in this program simulates a city very very crudely, with a
small number of integer parameters including population, size (in
acres), and how much grain is in the granary.
class Babylon (

Z, # Year
D, # People died this turn

74

D1, # People died, cumulative
I, # Immigrants
P, # Population
P1, # Starvation percentage
A, # Acres
Y, # Yield
E, # Eaten
S, # Store
C, # Random yearly yield modifier
Q, # Input
L, # Acres per person
H

)

If you look at the original BASIC source, you will never guess that
the spaghetti code executes a one-turn = one-year simulation
consisting of reporting the state of the country, taking buy (for
acres) and sell orders, taking Hamurabi's instructions on how much
grain to plant, and calculating the amount of grain harvested.
method play()
 repeat {

report()
buy()
sell()

 feed()
plant()
harvest()

 }
end

The annual report is fairly refreshing. In reports on births and
deaths, the current population and grain reserves. The game is over
in year 11.
method report()
 write("\n\nHamurabi: I beg to report to you,")
 Z +:= 1
 write("in year ", Z, ", ", D, " people starved; ", I,
 " came to the city.")

75

 P +:= I
 if Q <= 0 then {
 P /:= 2
 write("A horrible plague struck! Half the people died.")
 }

 write("Population is now " , P, ". The city now owns " ,
 A , " acres.")
 write("You harvested ", Y, " bushels per acre. Rats ate ",
 E, " bushels.")
 write("You now have " , S , " bushels in store.\n")
 if Z == 11 then evaluate()
end

The simulation gets interesting when it starts asking for your
orders. The price of land is made to vary randomly. Generally, all
input is taken using a loop that repeats until the input is legal.
method buy()
 C := ?11-1
 Y := C + 17
 write("Land is trading at " , Y , " bushels per acre.")
 repeat {
 writes("How many acres do you wish to buy? ")
 Q := integer(read())
 if Q < 0 then finish("quit")
 else if Y * Q <= S then return
 else {

 write("Hamurabi: think again. You have only ", S)
 write(" bushels of grain. Now then,")
 }

 }
end

The user (Hammurabi) is only asked if they want to sell acres if
they did not buy acres.
method sell()
 if Q == 0 then {
 repeat {

76

 writes("How many acres do you wish to sell? ")
 Q := integer(read())
 if Q < 0 then finish("quit")
 else if Q < A then {
 A -:= Q; S +:= Y * Q; C := 0
 write()
 break
 }
 else {
 write("Hamurabi: think again. You own only " , A ,

 " acres. Now then,")
 }

 }
 }
 else {
 A +:= Q; S -:= Y * Q; C := 0
 write()
 }
end

If you don't feed the people enough, they will starve.
method feed()
 repeat {
 writes("How many bushels shall we feed your people? ")
 Q := integer(read())
 if Q < 0 then finish("quit")
 else {

 # Trying to use more grain than in the silos?
 if Q <= S then break

 else {
 write("Hamurabi: think again. You have only")
 write(S , " bushels of grain. Now then,")
 }

 }
 S -:= Q
 C := 1
 write()
 }

77

end
If you don't plant enough grain for next year, you will starve then.
It takes workers and seed grain to plant acres.
method plant()
 repeat {
 writes("How many acres do you wish to plant? ")
 D := integer(read())
 if D == 0 then return
 else if D < 0 then finish("quit")
 # Trying to plant more acres than you own?
 else if D <= A then {

 # Enough grain for seed?
 if D / 2 < S then {
 # Enough people to tend the crops?
 if D < 10 * P then {
 S -:= D / 2
 return
 }
 else {
 write("but you have only " , P ,

 " people to tend the fields. Now then,")
 next
 }
 }
 else {
 write("Hamurabi: think again. You have only ", S,

 " bushels of grain. Now then,")
 next
 }
 break
 }

 else {
 write("Hamurabi: think again. You own only " , A ,

 " acres. Now then,")
 }
 }
end

78

The harvest method does a lot more than just selecting randomly
how much grain per acre is harvested, simulating the highly
variable weather conditions. Randomly, the rats are especially bad
some years. Population changes are calculated and if things look
bad enough, the game ends prematurely.
method harvest()
 C := integer(?0 * 5 + 1)
 # A bountiful harvest!!
 Y := C; H := D * Y; E := 0
 C := integer(?0 * 5 + 1)
 if C % 2 = 0 then {
 # THE RATS ARE RUNNING WILD!!
 E := S / C
 }

 S := S - E + H
 C := ?0 * 5 + 1
 # Lets have some babies
 I := integer((C * (20 * A + S) / P / 100 + 1))
 # How many people had full tummies?
 C := integer(Q / 20)
 # Horrors, a 15% chance of plague
 Q := integer(10 * (2 * ?0 - .3))

 if P < C then { D:= 0; return }
 else {
 # Starve enough for impeachment?
 D := P - C
 if D > .45 * P then {

 write("\nYou starved " , D , " people in one year!!!")
 finish("fink")
 }

 else {
 P1 := ((Z - 1) * P1 + D * 100 / P) / Z
 P := C
 D1 +:= D
 return

 }

79

 }
end

The normal end of the game includes an evaluation of how you did
in your ten years as emperor.
method evaluate()
 write("In your 10-year term of office, " , P1 ,
 " percent of the population starved per year on _
 average, i.e., a total of", D1 , " people died!!")
 L := A / P

 write("You started with 10 acres/person and ended with ",
 L , " acres/person.\n")

 if P1 > 33 | L < 7 then finish("fink")
 else if P1 > 10 | L < 9 then finish("nero")
 else if P1 > 3 | L < 10 then finish("notbad")
 else finish("fantastic")
end

The exit message you receive depends on your performance.
method finish(as)
 case as of {
 "quit": {

 write("Hamurabi: I cannot do what you wish.")
 write("Get yourself another steward!!!!!")
 }

 "fantastic": {
 write("A fantastic performance!!! Charlemagne, _

 Disraeli, and Jefferson combined could not _
 have done better!")

 }
 "fink": {

 write("Due to this extreme mismanagement you have _
 not only been impeached and thrown out of _
 office but you have also been declared 'national
 fink' !!")

 }

80

 "nero": {
 write("Your heavy-handed performance smacks of _

 Nero and Ivan IV. The people (remaining) find _
 you an unpleasant ruler, and, frankly, hate _
 your guts!")
 }
 "not bad": {

 write("Your performance could have been somewhat _
 better, but really wasn't too bad at all. ",
 integer(P * .8 * ?0) , " people would dearly like _
 to see you assassinated but we all have _
 our trivial problems.")

 }
 }
 stop("So long for now.")
end

The class initialization sets parameters up the same each time.
initially
 Z := D := I := P := A := Y := E := S := C := Q := D1 := P1 :=
 0
 P := 95
 S := 2800
 H := 3000
 E := H - S
 Y := 3
 A := H / Y
 I := 5
 Q := 1
end

Taipan
Coming soon.

81

Chapter 9: Turn-based Role-Playing
The text adventures described in Chapter 7 model the world as a
series of rooms, depicting the spaces with prose text at a coarse
granularity (or resolution, if you prefer) of one move = one room.
Their imaginary worlds were followed by a more detailed level of
play, where some rooms are larger than others and each move
might be 5 feet. Turn-based role-playing games such as rogue and
nethack created vastly different, tactical fun than text adventure
games which were typically mysteries or puzzles. These games
used a bird's-eye view from the top to show the scene, often using
ASCII art. Later turn-based role-playing games replaced each text
character with a sprite, resulting in 2D games that lead to arcade
games once they switch from turn-based to real-time.

Pirate Duel
This example turn-based role-playing game pits the player against
a series of progressively more ferocious pirates. The version in this
book is incomplete, showing a single level against a single pirate
foe. Figure 9-1 shows an example screen shot.

Figure 9-1:
The Pirate Duel

82

The code for Pirate Duel uses a graphics mode to do its ASCII art
at present, which is ironic but the most portable option available.
Classic text games were written for terminals connected using
serial ports, and used non-portable escape sequences to position the
cursor, clear the screen and so on. This style of programming has
almost disappeared from the modern world of computing. Some
printers are still controlled in a similar fashion.
#
piraduel.icn - a simple rogue-like pirate duel game
#
link graphics
global player, world

open a window, create the world, create the player, draw
procedure main()
 &window := open("Pirate Duel!","g",

 "rows=24","columns=80")
 world := ship("ship.dat")
 player := character()
 world.add_npc("P")
 world.draw()

 repeat {
 player.turn()
 if (!world.npcs).turn() then break
 world.draw()
 }
 world.draw()
 while Event() ~== "q"
 stop()
end

a virtual world is a grid with npcs/monsters, treasure etc.
class World(grid, npcs)
 method add_npc(s)
 put(npcs, npc(s))
 end
 method draw()

83

 every r := 1 to 24 do {
 GotoRC(r,1)
 WWrites(left(grid[r], 80, " "))
 }
 grid[1] := ""
 end
initially
 npcs := []
end

a ship is a world whose shape is read from a file.
there is nothing actually ship-like about this semantics yet.
class ship : World(shipfile)
initially
 self.World.initially()
 grid := list(24)
 every !grid := repl(" ", 80)
 f := open(shipfile) | stop("can't open ", image(shipfile))
 i := 1
 while line := read(f) do {
 grid[i][1:*line+1] := line
 i +:= 1
 }
 close(f)
end

the player character is modeled with a location, name, etc.
class character(x, y, name, hitpoints, armorclass, damage)
 method hittest(enemy)
 die := ?20
 if die > 10 + (9 - enemy.armorclass) then {
 enemy.hitpoints -:= ?damage
 return
 }
 end
 method attack(enemy)
 if hittest(enemy) then {
 world.grid[1]||:= "You have hit the " || enemy.name || ". "

 enemy.awake := 1

84

 if enemy.hitpoints < 1 then {
 world.grid[1] ||:= "You have defeated the " ||
 enemy.name

 enemy.die()
 }
 }
 else {

 world.grid[1] ||:= "You missed the " || enemy.name || ". "
 if / (enemy.awake) := (?1=1) then

 world.grid[1] ||:= "The enemy awakes. "
 }

 end
 method move(newx,newy, letter : "@")
 world.grid[y,x] := "."
 x := newx; y := newy
 world.grid[y,x] := letter
 end
 method trymove(newx, newy)
 if world.grid[newy, newx] == "." then move(newx, newy)
 else if (m := !world.npcs) & m.y = newy & m.x = newx
 then
 attack(m)
 end
 method turn()
 e := Event()
 case e of {

 "q": { stop("goodbye") }
 "h": { trymove(x-1, y) }
 "l": { trymove(x+1, y) }
 "k": { trymove(x , y-1) }
 "j": { trymove(x , y+1) }
 "y": { trymove(x-1, y-1) }
 "u": { trymove(x+1, y-1) }
 "b": { trymove(x-1, y+1) }
 "n": { trymove(x+1, y+1) }
}

 end

 # keep trying random placement until you get a legal spot

85

 method place(c)
 repeat {
 x := ?80
 y := ?24
 if world.grid[y,x] == "." then {
 world.grid[y,x] := c
 break
 }
 }
 end

initially
 place("@")
 hitpoints := 12
 damage := 6
 armorclass := 6
end

class npc : character(awake, letter)
 method die()
 world.grid[y,x] := "."
 every 1 to *world.npcs do {

 put(world.npcs, self ~=== pop(world.npcs))
 }
 end
 method distance(enemy, x, y)
 return abs(y-enemy.y)^2 + abs(x-enemy.x)^2
 end
 method attack(enemy)
 if hittest(enemy) then {
 world.grid[1] ||:= "The " || name || " has hit you. "
 if enemy.hitpoints < 1 then {
 world.grid[1] ||:= "You were defeated by the " || name

 return
 }
 }
 else
 world.grid[1] ||:= "The " || name || " missed you. "
 end

86

 method turn()
 local dist, minx, miny
 if /awake then fail
 every row := y-1 to y+1 do
 every col := x-1 to x+1 do {
 if world.grid[row,col] == "@" then {
 return attack(player)
 }
 }
 dist := distance(player, x, y)
 every row := y-1 to y+1 do
 every col := x-1 to x+1 do {
 if world.grid[row,col] == "." &

 dist >:= distance(player,col,row) then {
 minx := col

 miny := row
 }
 }
 if \minx then move(minx, miny, letter)
 end
initially(c)
static nametable
 /nametable := table("O","Orc","P","Pirate")
 letter := \c | ?"PO"
 name := nametable[letter]
 if awake := (?3 = 1) then
 world.grid[1] ||:= "The " || name || " is awake. "
 hitpoints := ?8
 armorclass := 6
 damage := 8
 place(letter)
end

87

Chapter 10: Paddle Games
The simplest and earliest arcade video games involve hitting
bouncing balls with paddles (or if you prefer, rackets).

Ping
Ping is a remake of the original classic VideoGame, Atari's Pong. It
is stunning to think that the program for this game is around 80
lines of code in Unicon, short enough that you can type it in in just
a few minutes, but Pong made many millions of dollars in quarters,
arcade tokens, and game cartridge sales. Ping starts by opening a
window (640 pixels wide, 480 high) with a black background color
and a white foreground color. The foreground color is the color
that will be used in drawing operations.

A special name called &window will be used to remember the
window the game is playing in. The reason it is special is because
when this name is used, we do not have to refer to it in graphics
calls, it is the default window.
procedure main()
 &window := open("Ping","g",
 "size=640,480", "bg=black", "fg=white")
Ping draws rectangles for the players' paddles, the ball, and a
center stripe. The rectangles are filled (solid white) using
FillRectangle(). The function DrawRectangle() would instead draw
an outline of the shape.
 FillRectangle(10,220,10,40) # left player
 FillRectangle(318,0,4,480) # center stripe
 FillRectangle(620,220,10,40) # right player
 FillRectangle(340,240,10,10) # ball
Ping has to remember where the ball is, and what direction it is
heading. dx and dy tell how to change the ball's position on each
turn.
 x := 340
 y := 240
 dx := 1
 dy := 0

88

Ping also has to remember the players' paddle positions.
 p1x := 10
 p1y := 220
 p2x := 620
 p2y := 220
Lastly, Ping has to keep score of who wins how many points.
 p1score := 0
 p2score := 0
After all of these preliminaries, the Ping program does the same
thing over and over...
 repeat {
First it erases the ball at the old position. It redraws the center
stripe just in case part of it got erased.
 EraseArea(x,y,10,10)
 FillRectangle(318,0,4,480)
It calculates the ball's new position by adding dx to x and dy to y.
 # calculate new position
 x +:= dx
 y +:= dy
If the ball hits player 1's paddle, it bounces off. Bouncing off
reverses the delta x so it is heading at the other player. The angle of
the the return shot (determined by dy) is proportional to the
distance from the center of the ball (y+5) to the center of the
paddle (p1y+20). The "divides by 15" part was determined by
guessing and replaying until it "felt OK".

To tell if the ball "hit", you check whether x and y are inside the
paddle rectangle. Actually, to be picky you check whether either
left corner of the ball hits the paddle. The coordinates are (x,y) and
(x,y+10) but you have to check x and y separately.
 if p1x <= x <= p1x + 10 &
 p1y <= (y | y+10) <= p1y + 40 then {
 dx := dx * -1
 dy +:= ((y+5) - (p1y+20))/15
 }

89

You do the same thing for player 2's paddle, except check the right
corners of the paddle.
 if p2x <= x+10 <= p2x + 10 &
 p2y <= (y | y+10) <= p2y + 40 then {
 dx := dx * -1
 dy +:= ((y+5) - (p2y+20))/15
 }
If the ball hits the top of the screen it bounces down. If it hits the
bottom of the screen it bounces up.
 if y <= 0 then dy *:= -1
 if y+10 >= 480 then dy *:= -1
After drawing the ball, on Linux at least, you must call WSync() to
make sure the X Window System receives your command
immediately instead of waiting until later.
 # draw ball at new position
 FillRectangle(x,y,10,10)
 WSync()
The last thing in each step is to check if the ball reaches either the
left or right screen edge, and if it does, score a point for the
appropriate player.
 if x + 10 > 640 then {
 dx := dx * -1
 p1score +:= 1
 dy := 0
 GotoXY(10,10)
 writes(&window, p1score)
 }
 if x <= 0 then {
 dx := dx * -1
 p2score +:= 1
 dy := 0
 GotoXY(600,10)
 writes(&window, p2score)
 }
A small delay helps so that players can hope to keep up with the
action. The units here are 1/1000 of a second.

90

 delay(8)
At each step, the program needs to read the players' paddle
commands. Player 1 uses "q" and "a" keys to go up and down.
Player 2 uses "p" and "l" to go up and down. Pending() tells
whether any input is waiting; it returns a list of events. The *
operator checks the size of the list, and if the size is more than 0
there is a user event to read.
 if (* Pending() > 0) then {
 e := Event()
 if e == ("q"|"a") then EraseArea(p1x,p1y,10,40)
 if e == "q" then p1y -:= 5
 if e == "a" then p1y +:= 5
 if e == ("q"|"a") then FillRectangle(p1x,p1y,10,40)
 if e == ("p"|"l") then EraseArea(p2x,p2y,10,40)
 if e == "p" then p2y -:= 5
 if e == "l" then p2y +:= 5
 if e == ("p"|"l") then FillRectangle(p2x,p2y,10,40)
 }
The program finishes its "repeat" instruction with a } and then is at
its end. But, this means it really goes on forever; what happens
when the players get tired?
 }
end

Brickout
Brickout is a remake of the classic Atari game, Breakout. This
program is directly based on the Ping program, with a few
exceptions. The paddle moves horizontally across the bottom of the
screen, and the ball bounces up and down. The most important
difference, however, are a large number of bricks in the upper
portion of the screen. The object of the game is to knock the ball
into each of these bricks in order to destroy them and clear the
screen. The following figure is an example of the screen from
Brickout.

91

Figure 10-1:
The Brickout program.

The Brickout program starts by opening a window almost
identically to the Ping program.
procedure main()
 &window := open("Brickout", "g", "size=640,480",
 "fg=white","bg=black")
The bricks are organized into rows and columns, similar to the
checkerboard from Chapter 6. However, the contents of each brick
position will be a Brick object instead of a word. Brick objects
don't behave like numbers or words, they behave like bricks.
Actually, each brick will keep track of its (x,y) position and color,
and know how to do exactly four things: draw itself, erase itself,
report whether or not a ball hits it, and report how many points it is
worth. The details of the Brick type will be given soon, but for
now, creating a brick is done by calling Brick(x, y, color).
 bricks := []

92

 every row := 0 to 7 do {
 if row = 0 then color := "blue"
 else if 1 <= row <= 4 then color := "yellow orange"
 else if row > 4 then color := "green"
 put(bricks, [])
 every column := 0 to 12 do {
 b := Brick(column * 49 + 2, row * 24 + 12, color)
 put(bricks[-1], b)
 }
 }
A lot of the initialization of Brickout looks just like Ping. The
paddle is drawn short and wide at the bottom of the screen instead
of tall and thin. The ball motion starts going down instead of right.
 Fg("white")
 FillRectangle(320,460,40,10) # paddle
 FillRectangle(320,260,10,10) # ball
 x := 320
 y := 260
 dx := 0
 dy := 1
 px := 320
 py := 460
 score := 0
 lives := 0
A big difference between Brickout and Ping is seen in the drawing
of the bricks on the screen. This could be done simply enough
using FillRectangle(), but Unicon has a notation for this: if b is a
Brick, b.draw() asks that Brick to draw itself. If bricks is a list of
lists of bricks, !bricks will produce all the lists of bricks, and
!!bricks will produce all the bricks in all those lists, so to draw all
of the bricks one may write:
 every (!!bricks).draw()
Having drawn the paddle, ball, and bricks, the program enters its
main loop, again based closely on that of the Ping program.
 repeat {
 # erase ball at old position
 EraseArea(x,y,10,10)

93

 # calculate new position
 x +:= dx
 y +:= dy
 # draw ball at new position
 FillRectangle(x,y,10,10)
 WSync()
 # bounce off paddle
 if px <= x <= px + 40 &
 py <= y+10 <= py + 10 then {
 dy := dy * -1
 dx +:= ((x+5) - (px+20))/10
 }

 # bounce off left, right, or top wall
 if x <= 0 then dx := dx * -1
 if x+10 >= 640 then dx := dx * -1
 if y <= 0 then dy := dy * -1

 # take a life when the ball hits the bottom edge
 if y + 10 > 480 then {
 dy := dy * -1
 lives +:= 1
 dx := 0
 if lives = 4 then {
 WAttrib("label=Bricks [game over, q to quit] score: " ||
 score)

 while *Pending() > 0 do Event()
 while Event() ~== "q"
 exit(0)
 }

 else
 WAttrib("label=Bricks [" || lives || " / " || "4] score: " ||
 score)
 }
The part where Brickout really diverges from Ping is in the
handling of the bricks. Given the ball's (x,y) position, every brick
is checked to see whether it was hit by the ball, and if so, the score
is updated and the brick is erased. With the Brick type, this is

94

accomplished by using three aptly named messages. b.hittest(x,y)
succeeds if the ball at (x,y) will hit Brick b. b.score() produces the
points awarded if b is hit. b.erase() removes the brick from the
field.
 every b := !!bricks do {

 if b.hittest(x,y) then {
 score +:= b.score()
 b.erase()
 WAttrib("label=Bricks [" || lives ||

 " / "||"4] score: "||score)
 dy := dy * -1

 }
 }
An early version of this program used a call to delay() to slow the
program down enough for the human to keep up. This might work
well on some platforms, but if the operating system timer is too
coarse, delay() may wait longer than desired and make the game
too slow. In that case, one can get a smaller delay by simply telling
the program to do something stupid for a little while, such as this
instruction to count to 75000. This isn't a very good solution, since
the delay will get smaller and smaller over time as CPU's and
compilers get faster and more efficient.
 # use a delay smaller than delay(1); may need to adjust
 # for CPU speed and implementation efficiency
 every 1 to 75000
The easiest way to give the player smooth control over the position
of the paddle is to have it follow the mouse. Keypress events and
even mouse clicks and drags may not provide this information as
fast as the program can explicitly request it. QueryPointer()
generates two results (the x and y locations of the mouse pointer)
of which this program only needs the first value.
 # move paddle left or right in response to user input
 EraseArea(px,py,40,10)
 px := QueryPointer()
 FillRectangle(px,py,40,10)
 }
 Event()

95

end
The program is finished except for one small problem: there is no
Brick data type in Unicon. In order to create one, a programmer
declares a class to model the behavior of bricks in the game. A
class is a user-defined type of value that can be stored in variables
and used in many ways similar to built-in types such as numbers
and words. Instead of using arithmetic operators such as + - * or /,
a class defines a set of named operations called methods to
manipulate values of that class. The methods are basically a set of
procedures that work on Brick objects. For each class there can be
many distinct occurrences, or instances.

The class Brick() used in this program is given below. Each
instance will have its own, separate x, y, and color, but all instances
will use the same code to determine their behavior.
class Brick(x, y, color)
 method score()
 if color == "blue" then return 10
 else if color == "orange" then return 5
 if color == "green" then return 1
 end
 method draw()
 Fg(color)
 FillRectangle(x,y,45,20)
 end
 method erase()
 color := "black"
 EraseArea(x,y,45,20)
 end
 method hittest(ballx, bally)
 if color == "black" then fail
 if x-10 < ballx < x + 45 &
 y-10 < bally < y + 20 then return
 fail
 end
end

96

Exercises
1. Fix the paddle programs to check and prevent a player from

moving their paddle above the top or below the bottom of the
screen.

97

Chapter 11: Sesrit
To fully understand some of the graphics facilities used in this
chapter you may wish to consult the book Graphics Programming
in Icon. This chapter shows you:

 How to animate objects within a graphics screen.

 How to represent on-screen objects with internal data
structures.

 Steps to take in an object-oriented design for a complex
game.

 An example of a moderately sophisticated custom user
interface design.

The Gameplay of Falling Blocks
Sesrit is a game written by David Rice back when he was a high
school student, based on the classic game of Tetris. A free software
program called xtetris inspires Sesrit's look and feel. Sesrit is
written in about five hundred lines of Unicon.

In Sesrit, like Tetris, pieces of varying shape fall from the top of a
rectangular play area. Sesrit, however, uses randomly generated
shapes, making it more difficult than tetris, which uses a small,
fixed set of shapes for its pieces. The object of the game is to keep
the play area clear so that there is room for more objects to fall.
The play area is a grid of cells, ten cells wide and thirty cells high.
Sesrit pieces fall at a rate that begins slowly, and increases in speed
as play progresses.

A piece stops falling when it reaches the bottom row, or when one
of its cells has another piece directly beneath it, preventing its fall.
When a piece stops falling, a new randomly selected piece is
created and starts to fall from the top of the play area. If the cells in
a given row completely fill, they dissolve, and all cells above that
row drop down.

The user moves the falling piece left or right by pressing the left or
right arrow keys. The user may rotate the piece clockwise or

98

counterclockwise by pressing the up arrow or down arrow,
respectively. The spacebar causes the falling object to immediately
drop as far as it can. Figure 9-1 shows a sample screen from Sesrit.

Figure 11-1:
An example screen image from the Sesrit game.

This section presents the key elements of Sesrit's design and
implementation. A few of the more mundane procedures are not
described. The complete Sesrit source code is on the book's web
site. Like most games with a graphical user interface, Sesrit starts
with link declarations that give it access to graphics library
procedures and to a function that randomizes program behavior on
each run. Sesrit also links in the Internet high score client
procedure from Chapter 15 of the book “Programming with
Unicon”. Including the file "keysyms.icn" introduces defined

99

symbols for special keyboard keys such as the arrow keys used in
Sesrit.
link graphics
link random
link highscor
$include "keysyms.icn"
Sesrit has a number of global variables that are used to maintain its
internal representation of the game state and screen contents. The
global variable L represents the actual playing area contents as a
list of lists of cells, where each cell is represented by the string
name for the color of that cell. For example, L[12,7] could have the
value "red".

Several other global variables are important. A list of two-element
lists containing (x,y) coordinates represents the current piece
(variable activecells) and the next piece (variable nextpiece).
Other global variables maintain details such as the rate at which the
pieces fall, and the current score. The global table named colors
holds a mapping from colors' string names to window bindings
whose foreground colors are set to that color.
global activecells, activecellcolor, nextpiece, nextcolor, L,
 colors, score, numrows, level, delaytime, pieceposition,
 button_status, game_status, tot_score
Sesrit's procedure drawcell(x,y,color) fills a rectangle of the
appropriate color and then (for nonempty cells) draws a white
border around it. You can draw a cell such as L[12,7] with a call to
drawcell(x, y, L[12, 7]).
procedure drawcell(x,y,color)
 FillRectangle(colors[color],x,y,15,15)
 if color ~=== "black" then
 DrawRectangle(colors["white"], x, y, 14, 14)
end
The main() procedure of Sesrit initializes the graphics and state
variables and then executes a loop that allows the user to play one
game on each iteration. After each game the user has the option of
playing again, or quitting. For each game, the main action is
accomplished by a call to procedure game_loop().

100

procedure main()
 init()
 repeat
 if buttons(15, 105, 270, 290, ["Start", "green", 45, 285],
 ["Pause", "red", 40, 285]) == "done" then break
 repeat {
 game_loop()
 init()
 }
end
Sesrit performs initialization with a procedure named init(). The
first time init() is called, it must do a bit more work than in
subsequent calls, so it has an initial section, which starts by
opening a window and creating the color table. Initialization would
be where you would set the random number seed, if you cared
about whether the random sequence was repeatable. Like its
predecessor the Icon language, Unicon's random number generator
used to use the same sequence each time it executes, which is very
helpful for debugging, but not a good feature in games that are
supposed to be unpredictable. The Unicon language default
behavior was modified for the sake of games to set the random
number seed based on the current time, so every game is different.
procedure init()
 initial {
 &window := Wopen("label=sesrit","size=276,510",
 "posx=20")
 colors := table(&window)
 every c := ("blue"|"yellow"|"cyan"|"green"|"red"|"white"|
 "red-yellow" | "purple-magenta") do
 colors[c] := Clone("fg=" || c)
 colors["black"] := Clone("fg=dark vivid gray")
 }
The rest of the init() procedure consists of drawing the window's
starting contents and initializing global variables. Most of that is
not worth presenting here, but it is worth showing how Sesrit's
"playing field" (global variable L) and first two objects are
initialized. L is a list of 30 lists of 10 elements that should all start
as "black". The list(n,x) call creates a list of n elements, all with the

101

initial value x. You cannot just initialize the variable L to
list(30, list(10, "black")) because that would create a list of 30
references to a single list of 10 cells. The inner call to list() would
only get called once. Instead, each of L's thirty rows is initialized
with a different list of 10 cells.
 ...
 L := list(30)
 every !L := list(10, "black")
 newobject()
 activecells := copy(nextpiece)
 activecellcolor := copy(nextcolor)
 every point := !activecells do
 L[point[1], point[2]] := activecellcolor
 newobject()
end
With the window and variables initialized, the main task of the
game is to repeat a sequence of steps in which the current piece
falls one row each step, until the game is over. Like many other
games, this infinite loop starts with a check for user input, and
since several events could be waiting, the check for user input is
itself a loop that terminates when the window's list of pending
events (returned by Pending()) is empty. A case expression
performs the appropriate response to each type of user input.
Notice how ordinary keyboard characters are returned as simple
one-letter strings, while special keys such as the arrows have
defined symbols. Mouse event codes have keyword constants such
as &lpress to represent their value. The &lpress constant indicates
a left mouse key press. When Event() returns it assigns keywords
&x and &y to the mouse location, so it is common to see code that
checks these keywords' values while processing an input event.
Several other keywords (&control, &meta, &shift) are also set to
indicate the state of special keys (Control, Alt, and Shift on most
keyboards). These keywords fail if the special key was not pressed
at the time of the event.
procedure game_loop()
 game_status := 1
 repeat {
 while *Pending() > 0 do {

102

 case Event() of {
 Key_Left : move_piece(-1, 0)
 Key_Right: move_piece(1, 0)
 Key_Down : rotate_piece(1, -1)
 Key_Up : rotate_piece(-1, 1)
 " " : while move_piece(0, 1) # drop to bottom
 "q" : if &meta then exit()
 "a" : if &meta then about_itetris()
 "p" : if (&meta & game_status = 1) then pause()
 "n" : if &meta then return
 &lpress : {
 if 15 <= &x <= 105 then {
 if 270 <= &y <= 290 then pause()
 else if 300 <= &y <= 320 then return
 else if 360 <= &y <= 380 then about_sesrit()
 }
 }
 &lrelease :
 if ((15 <= &x <= 105) & (330 <= &y <= 350)) then
 exit()
 } # end case
 } # end while user input is pending
Once user input has been handled, the piece falls one row, if it can.
If the object could not fall, it is time to either bring the next object
into play, or the game is over because the object is still at the top of
the screen. The game_over() procedure is not shown in detail; it
marks the occasion by drawing random colors over the entire
screen from bottom to top and top to bottom and then asks whether
the user wishes to play again.
 if not move_piece(0, 1) then {
 if (!activecells)[1] < 2 then { # top of screen
 game_over()
 return
 }
In the more common occurrence that the object could not fall but
the game was not over, procedure scanrows() is called to check
whether any of the rows are filled and can be destroyed. The next
piece replaces the active cell variables, and procedure newobject()

103

generates a new next piece. The score is updated for each new
object, and the current and next pieces are drawn on the display.
 while get(Pending())
 scanrows()
 Fg("black")
 drawstat(score, , , tot_score)
 score +:= 5
 tot_score +:= 5
 Fg("white")
 drawstat(score, , , tot_score)
 activecells := copy(nextpiece)
 activecellcolor := copy(nextcolor)
 every point := !activecells do
 L[point[1], point[2]] := activecellcolor
 newobject()
 EraseArea(120,481,150,15)
 Bg("black")
 every cell := !activecells do {
 EraseArea(-40 + (cell[2]-1)*15,
 60 + (cell[1]-1)*15, 15, 15)
 drawcell(120 + (cell[2]-1)*15, 481,
 activecellcolor)
 }
 every cell := !nextpiece do
 drawcell(-40 + (cell[2]-1)*15,
 60 + (cell[1]-1)*15, nextcolor)
 }
Each step is completed by a call to WSync() to flush graphics
output, followed by a delay period to allow the user to react. The
WSync() procedure is only needed on window systems that buffer
output for performance reasons, such as the X Window System.
The delay time becomes smaller and smaller as the game
progresses, making it harder and harder for the user to move the
falling pieces into position.
 WSync()
 delay(delaytime)
 }
end

104

Procedure newobject() generates a new object, which will be
displayed beside the game area until the current object stops
falling. The object is stored in global variable nextpiece, and its
screen color is given in variable nextcolor. Objects are represented
as a list of (row,column) pairs where the pairs are two-element
lists.

One quarter of the objects (?4 = 1) are of a random shape; the
remainder are taken from the set of four-cell shapes found in
xtetris. Random shapes are obtained by starting with a single cell,
and adding cells in a loop. Each time through the loop there is a
25% chance that the loop will terminate and the object is complete.
The other 75% of the time (?4 < 4), a cell is added to the object,
adjacent in a random direction from the last cell. The expression ?
3-2 gives a random value of 1, 0, or -1. This expression is added to
each of the x and y coordinates of the last cell to pick the next cell.
procedure newobject() pieceposition := 1
 if ? 4 = 1 then {
 nextcolor := "pink"
 nextpiece := [[2,6]]
 while ?4 < 4 do {
 x := copy(nextpiece[-1])
 x[1] +:= ?3 - 2
 x[2] +:= ?3 - 2
 if x[1] = ((y := !nextpiece)[1]) & x[2] = y[2] then
 next
 put(nextpiece, x)
 }
There is a bunch of sanity checking that is needed for random
objects, given below. If the object is so big that it won't fit in the
next piece area beside the playing field, it is filtered out. In
addition, we need to center the object horizontally. The subtlest
task is to move the "center" cell of the random object (if it has one)
to the front of the list, so the object rotates nicely. To do all this, the
code first computes the boundaries (min and max) of the random
object's row and column values. The solution for finding a center
cell, checking each cell to see if it is at row
(miny + maxy)/2, column (minx + maxx)/2 is pretty suboptimal

105

since it only succeeds if an exact center is found, instead of
looking for the cell closest to the center. How would you fix it?
 miny := maxy := nextpiece[1][1]
 minx := maxx := nextpiece[1][2]
 every miny >:= (!nextpiece)[1]
 every minx >:= (!nextpiece)[2]
 every maxy <:= (!nextpiece)[1]
 every maxx <:= (!nextpiece)[2]
 every i := 2 to *nextpiece do
 if nextpiece[i][1] == (miny + maxy) / 2 &
 nextpiece[i][2] == (minx + maxx) / 2 then

 nextpiece[1] :=: nextpiece[i] # swap!
 if miny < 1 then every (!nextpiece)[1] +:= -miny + 1
 every minx to 3 do every (!nextpiece)[2] +:= 1
 if (!nextpiece)[1] > 5 then return newobject()
 if (!nextpiece)[2] > 8 then return newobject()
 }
In contrast to the random shapes, the standard shapes use
hardwired coordinates and colors.
 else
 case nextcolor := ?["red-yellow","red","yellow","green",
 "cyan", "blue", "purple-magenta"] of {
 "red-yellow": nextpiece := [[1,5], [1,6], [2,5], [2,6]]
 "yellow": nextpiece := [[2,6], [1,6], [2,5], [2,7]]
 "blue": nextpiece := [[2,6], [1,5], [2,5], [2,7]]
 "purple-magenta": nextpiece := [[2,6], [1,7], [2,5], [2,7]]
 "red": nextpiece := [[3,6], [1,6], [2,6], [4,6]]
 "green": nextpiece := [[2,6], [1,5], [1,6], [2,7]]
 "cyan": nextpiece := [[2,6], [1,6], [1,7], [2,5]]
 }
end
Procedure move_piece(x,y) moves the active cells for the current
object by an offset (x,y) that handles movement left and right, as
well as down. The new desired location of all the cells is
calculated, and then procedure place_piece() is called to try to put
the piece at the new location.
procedure move_piece(x, y)

106

 newactivecells := []
 every cell := !activecells do
 put(newactivecells, [cell[1]+y, cell[2]+x])
 return place_piece(newactivecells, x)
end
The place_piece() procedure checks whether the object can go into
the location proposed, and if it can, it draws the piece in the new
location and updates the activecells variable. Testing whether
parameter horiz = 0 allows the code to skip redrawing the object's
"footprint" below the play area in the common case when the
object just drops one row. The backslash in \horiz causes the
expression to fail if horiz is null, so the second parameter may be
omitted.
procedure place_piece(newactivecells, horiz)
 if collision(newactivecells) then fail
 if not (\horiz = 0) then
 EraseArea(120,481,150,15)
 every cell := !activecells do {
 FillRectangle(colors["black"],
 120 + (cell[2]-1)*15,
 20 + (cell[1]-1)*15, 15, 15)
 L[cell[1], cell[2]] := "black"
 }
 every cell := !newactivecells do {
 L[cell[1], cell[2]] := activecellcolor
 drawcell(120 + (cell[2]-1)*15, 20 + (cell[1]-1)*15,
 activecellcolor)
 if not (\horiz = 0) then
 drawcell(120 + (cell[2]-1)*15, 481, activecellcolor)
 }
 WSync()
 activecells := newactivecells
 return
end
Procedure collision() checks each cell that the object is moving into
to see if it is occupied by something other than part of the currently
active piece. Check out the cool break next expression when a
black cell is found. It exits the inner loop and skips to the next

107

iteration of the outer loop, preventing some "false positive"
collision results.
procedure collision(cells)
 every c := !cells do {
 if not ((1 <= c[1] <= 30) & (1 <= c[2] <= 10)) then return
 if L[c[1], c[2]] === "black" then next
 every a := !activecells do {
 if (c[1] = a[1]) & (c[2] = a[2]) then
 break next
 }
 if L[c[1], c[2]] ~=== "black" then return
 }
 fail
end
Rotating a piece is similar to moving it, in that it involves
calculating a new location for each cell. The first active cell in the
list is considered the "center" around which the rest of the cells
rotate. To rotate a cell by ninety degrees around the center,
compute its x- and y-coordinate offsets from the center cell. The
cell's rotated position uses these same offsets, but swaps the x-
offset with the y-offset, and reverses the signs of one offset or the
other, depending on which quadrant the rotation is coming from
and going into. Figure 9-2 shows how the signs are reversed
depending on the quadrant.

108

Figure 11-2:
Rotating a cell swaps its x and y offsets, with sign changes

Four standard cell shapes, identified by color, are handled specially
during rotation. Squares (red-yellow) have no rotation. The other
three standard cell types (red, green, and cyan) are symmetric
shapes whose rotation appears smoother if it alternates clockwise
and counterclockwise. This alternation is handled by global
variable pieceposition.
procedure rotate_piece(mult1, mult2)
 if activecellcolor === "red-yellow" then fail
 newactivecells := list()
 centerpoint := copy(activecells[1])
 differencelist := list()
 every point := ! activecells do {
 temp := [centerpoint[1]-point[1], centerpoint[2]-point[2]]
 put(differencelist, temp)
 next
 }
 every cell := !activecells do
 put(newactivecells, copy(cell))
 if activecellcolor === ("red" | "green" | "cyan") then {
 if pieceposition = 2 then {
 mult2 :=: mult1
 pieceposition := 1
 }
 else pieceposition := 2
 }
 every foo := 1 to *newactivecells do
 newactivecells[foo] := [
 centerpoint[1] + differencelist[foo,2] * mult1,
 centerpoint[2] + differencelist[foo,1] * mult2
]
 return place_piece(newactivecells)
end
Each time a piece stops falling, procedure scanrows() checks to
see whether any rows in the playing area are filled and can be
removed. If no black is found on a row, that row is put on a list
called rows_to_delete.

109

The player scores 50 * 2k-1 points for k deleted rows. To maximize
your score you should try to always delete several rows at once!
procedure scanrows()
 scanned_rows := table()
 rows_to_delete := []
 every point := !activecells do {
 if \scanned_rows[point[1]] then next
 scanned_rows[point[1]] := 1
 every x := 1 to 10 do {
 if L[point[1], x] === "black" then
 break next
 }
 put(rows_to_delete, point[1])
 }
 if *rows_to_delete > 0 then {
 Fg("black")
 drawstat(score, numrows, level, tot_score)
 numrows +:= *rows_to_delete
 level := integer(numrows / 10)
 score +:= 50 * (2 ^ (*rows_to_delete - 1))
 tot_score +:= 50 * (2 ^ (*rows_to_delete - 1))
 delaytime := 200 - (10 * level)
 Fg("white")
 drawstat(score, numrows, level, tot_score)
 deleterows(rows_to_delete)
 }
end
The code to delete rows takes the list of rows to delete, sorts it, and
builds a corresponding set. It then moves the bottom rows of L, up
to the first row to be deleted, into a temporary list. For each row in
the temporary list, if it is to be deleted, a new row of black cells is
inserted at the top of L, otherwise the row is re-appended to the end
of L. When the play area has been reassembled it is redrawn.
procedure deleterows(rows_to_delete)
 temp := []
 rows_to_delete := sort(rows_to_delete)
 row_set := set()
 every insert(row_set, !rows_to_delete)

110

 current_row := 30
 while current_row >= rows_to_delete[1] do {
 push(temp, pull(L))
 current_row -:= 1
 }
 current_row := 1
 basesize := *L
 while *temp>0 do {
 if member(row_set, basesize + current_row) then {
 push(L, list(10, "black"))
 pop(temp)
 }
 else
 put(L, pop(temp))
 current_row +:= 1
 }
 refresh_screen()
 WSync()
end
Sesrit provides several buttons to the left of the play area that allow
the user to pause, quit, start a new game, or see author information.
The procedure buttons() is called to handle input events whenever
the game is not actually running, such as before it starts or when it
is paused. Its code is analogous to the user input handling in
game_loop() and is not shown here. The procedure about_sesrit()
implements the about box, a simple dialog that shows author
information until the user dismisses it. It illustrates several graphics
library procedures related to drawing of text. CenterString() is a
useful library procedure that draws a string centered about an (x,y)
location. Incidentally, the GUI facilities described in Chapter 17 of
the Unicon book include an interface builder for constructing
dialogs such as this, but for Sesrit the use of such a tool is overkill.
procedure about_sesrit()
 about := WOpen("label=About Sesrit",
 "size=330,200", "fg=white",
 "bg=black", "posx=10", "posy=155") | fail
 Bg("black")
 every cell := !nextpiece do

111

 EraseArea(-40 + (cell[2]-1)*15, 60 + (cell[1]-1)*15,15,15)
 FillRectangle(colors["black"],
 120,20,150,450,120,481,150,15)
 CenterString(about, 165, 25, "Written By: David Rice")
 CenterString(about, 165, 50,
 "Communications Arts HS, San Antonio")
 CenterString(about, 165, 90, "and")
 CenterString(about, 165, 115, "Clinton Jeffery")
 CenterString(about, 165, 180, "Spring 1999")
 Event(about)
 while get(Pending())
 WClose(about)
 if game_status = 1 then refresh_screen()
end
The last procedure from Sesrit that we present is the one that
redraws the play area, refresh_screen(). It draws the next piece
cells to the left of the play area, it draws the footprint outline of the
active cell below the play area, and then it draws the entire play
area with a big loop that draws filled rectangles. Cell L[x,y]'s colors
are looked up in the color table to determine the color of each
rectangle that is drawn.

procedure refresh_screen()
 every cell := !nextpiece do
 drawcell(-40 + (cell[2]-1)*15, 60 + (cell[1]-1)*15,
 nextcolor)
 every cell := !activecells do
 drawcell(120 + (cell[2]-1)*15, 481, activecellcolor)
 every (x := 1 to 30, y := 1 to 10) do
 drawcell(120 + (y-1)*15, 20 + (x-1)*15, L[x, y])
end

112

Chapter 12: Blasteroids
The classic Atari game asteroids is a more involved example of 2D
animation and simple physics. The program Blasteroids presented
in this chapter was written originally by Jared Kuhn while he was
an undergraduate student. It is 1100+ lines long and is organized
into four different .icn files which are combined together to form a
complete program. These files are separately compiled and then
linked together, along with many graphics and user interface
library modules. Blasteroids uses the following makefile which
links a main module (blaster), a game component (game), an
options dialog (optionsdialog), and an about box (aboutbox):
makefile for blaster
blaster: blaster.u game.u optionsdialog.u aboutbox.u

unicon blaster.u game.u optionsdialog.u aboutbox.u
blaster.u: blaster.icn

unicon -c blaster
game.u: game.icn

unicon -c game
aboutbox.u: aboutbox.icn

unicon -c aboutbox
optionsdialog.u: optionsdialog.icn

unicon -c optionsdialog
Most of the code in Blasteroids really lives in the game module,
but our description starts in blaster.icn because that is where the
main() procedure is located. The main procedure goes like this:
procedure main()
 local d
 d := blaster()
 d.show_modal()
end
This is not very long, but it bears some explaining. Blasteroids uses
a graphical interface built with Unicon's official GUI package, a
remarkable code library written mainly by Robert Parlett, an open
source volunteer from the United Kingdom. Most of the code in
blaster.icn, optionsdialog.icn, and aboutbox.icn is automatically
generated from an interface drawing tool called ivib, Unicon's

113

“improved visual interface builder”. This main procedure just
creates a “blaster” object and tells it to show itself. A blaster object
(an instance of class blaster) is a type of Dialog; a Dialog is an
object which controls a window by attaching a set of user interface
components to it and handles the window's input. From the point
the blaster dialog is asked to show itself, the GUI library takes over
and opens the window, draws the interface, and runs the game.

Creating Graphical User Interfaces with Ivib
The key aspects in writing programs with graphical user interfaces
are: (a) selecting and placing user interface elements on a dialog,
and (b) specifying how the program should respond or handle user
input, which is delivered in the form of “event” objects. The first
step is normally performed with Ivib. A screenshot of Ivib editing
the blaster dialog for this game looks like this:

Figure 12-1:
The Ivib graphical interface builder.

114

A full description of how to use Ivib is beyond the scope of this
book, but there is a fine tutorial: Unicon Technical Report #6
available at unicon.org. For the purposes of this book it is enough
to say that the Ivib toolbar at the top allows you to easily create
most routine user interface elements such as buttons or scrollbars.
The blaster interface consists of a simple menu and a custom
component (class Blasteroids_Game) written in game.icn to
implement the main game visual elements (ships, asteroids, etc.).
This custom component was inserted into the Ivib drawing using
the “custom” button (the button with the “?” in the second row of
the Ivib toolbar.

To tell what code should execute when the user interacts with a
user interface element, you right click the element within Ivib to
bring up a component Setup dialog that looks something like this:

Figure 12-2:
GUI components attributes are modified by means of a Setup dialog.

Poking around in the Setup dialog, you can find places where you
can set the name of the variable, what class it is an instance of, and

115

what method to call when the component is clicked on. There are
lots of options; see UTR6 and “Programming with Unicon” for
more details.

A final, special part of the blaster dialog class is a tweak for
videogame-style real-time input handling. Inside a method
init_dialog() which is called automatically after the window has
been created and the dialog is about to start, the blaster turns on
some extra input events: key release events. While mouse presses
and releases are separate events by default, keyboard events are
normally triggered on the press, with no event to tell you when the
key is released. This is bad for videogames, which need (for
example) to keep the spaceship turning as long as the arrow key is
held down. To get Unicon to report key release events, the
initi_dialog() looks like:
 method init_dialog()
 WAttrib(win, "inputmask=k")
 end

The Blasteroid Game Class
Almost all of the “real” code in Blasteroids lives in the custom
component found in game.icn. It is a pristine example of creating a
complex graphical element that in turn fits comfortably into a
standard user interface dialog. The file game.icn starts by
importing the GUI package (“import gui” will appear at the top of
all modern Unicon GUI programs) and including a file
keysyms.icn which contains symbolic names for the various integer
codes used for special keys such as the left arrow (Key_Left), the
function keys, and so forth. It then proceeds with a lot of $define'd
symbols such as
$define SPEEDINC 0.1 #acceleration constant
$define MAXSPEED 5.0 #maximum speed
$define NEGMAXSPEED -5.0 #negative of max speed
These make it relatively easy to change game behavior. For
example, after a few years the specified delay between each frame
was too small and the game was unplayably fast. It was increased
from 10ms (100fps) to 33ms (30fps) in order to slow the asteroids

116

down enough for a human to shoot them. On a PDA or other slow
platform, a smaller delay might be better.
$define DELAY_TIME 33 #length of a timeslice (ms)
The game module introduces several user-defined data types –
records – to improve the game organization and readability. A
record is just a class without any methods. If you have an array or
table full of data, organized into fields and want to refer to them by
name, records are the type to use.
record point(x,y) #a point on the screen
record rtrack(#asteroid tracking record

x, y, #center coordinates
angle, #angle of rotation (not used)
points, # polygon point coords (relative to center)
size, speed, #size / speed of asteroid
offset, #precomputed multiplier, saves computations
offset2x, #same
active) #boolean, active or not

record btrack(#blast tracking record
x, y, #center coordinates
angle, #angle of rotation of blast
flag, #active / inactive
traveled, #how far the blast has gone
deactnext) #flag: to be deactivated next time slice

The main Blasteroids_Game is a class, not a record. It is in fact a
subclass of the generic GUI package Component, from which it
inherits the fields and methods needed to reside and function
comfortably within a GUI dialog. The downside of this is that you
have to go read library documentation or source code in order to
fully understand a Blasteroids_Game object. There is a learning
curve for the GUI classes in all major languages. In Unicon that
learning curve is modest, but some will learn it more quickly than
others. Anyhow, here is the class header:
class Blasteroids_Game : Component(starsdone,

 tapped, gamestart,
 shipx, shipy, c,
 newwin, backwin,

117

 lookups, lookupc,
 currblast, blasts, blastwin,
 roids, currroids, roidwin,
 explodewins, shiphit,
 speedx, speedy, angle, currspeed,
 oldshipx, oldshipy,
 masterspeed, oldangle, negx, negy,
 redrawship,
 x1, y1, firsttime,
 livesleft, livesdone, score, oldscore,
 num_ships, num_range,
 chk_explode, chk_sound,
 num_torpedos, num_speed,
 num_rotation, num_level,
 left_pressed, right_pressed,
 up_pressed, down_pressed)

These class fields (instance variables) should really be commented.
For a class as large as this one, the programmer needs all the help
they can get. At least the variable names are good for the most part.

Class instances (objects) get initialized in an initially section,
which is just a special method that is automatically called when the
instance is created. The game class initially section is long, and
interesting, but we present the highlights (... indicates additional
lines of code which are omitted here).
initially
 self.Component.initially() ...
 blasts := list(MAXBLASTS)
 roids := list(MAXROIDS) ...
 every !roids := rtrack(-500, -500, 0, list(8), 0, 0, 0, 0, 0)
 every (!roids).points[1 to 8] := point(0,0)
 every !blasts := btrack(-500, -500, 0, 0, 0)
The preallocation of all the data keeps things short and sweet in-
game. The initially also creates an invisible, off-screen window
(attribute “canvas=hidden”) which is used for redrawing the scene
as dynamic objects whiz through space.

How do you handle real-time behavior in a graphical user
interface? The question is complicated because the user interface

118

owns the control flow and wants it to stick to a nice, tight “event
processing loop” which revolves around handling user input, but in
a real-time game the other objects (rocks in this case, but in other
games they might be AI-controlled beings with intelligent
behavior) want to move or act continuously whether the user is idle
or not.

In this game, at least, the “idle time” is utilized in a method called
main_game_loop() which is called after each user input event. As
long as there is nothing for the GUI to handle (if the Pending()
queue is empty) the code executes time steps in which the asteroids
and the ships blasts are updated.
method main_game_loop()
...
while *Pending() = 0 do {
 ...
 # if the ship has moved or turned, redraw it

 if (shipx~= x1 | shipy ~= y1 | oldangle ~= angle) &
 (shiphit = 0)then{

 redrawship := 0
 oldangle := angle
 #finally, draw the ship
 eraseblasts()
 drawship(x1, y1, angle-1)
 drawblasts()
 WDelay(DELAY_TIME)
 #already did delay, don't do it again
 delayed := 1
 }
... animate asteroids, check if ship is hit, etc.

}
To move an object you first erase it (by copying from the off-
screen background window) and then draw it:
 method eraseship()
 # copy background over area where ship is (done before
 # animating it)
 CopyArea(backwin, newwin, shipx-24, shipy-24,
 48,48, shipx-24, shipy-24)

119

 end
 method drawship(x, y, rot)
 local cs, si, si16, si10, cs16, cs10, count
 #make sure rot (angle of rotation) is between 0 and 359
 rot := rot % 360
 if rot < 0 then rot := rot + 360
 #erase
 CopyArea(backwin, newwin, shipx-24, shipy-24,
 48, 48, shipx-24, shipy-24)
 #use a lookup table for speed
 cs := lookupc[rot+1]
 si := lookups[rot+1]

 si16 := 16*si
 cs16 := 16*cs
 si10 := 10*si
 cs10 := 10*cs
 #do rotation (using x, y as center), and draw the 'ship'
 #might be a faster way (w/out so many multiplies...
 DrawLine(x - cs16, y-si16, x+(4*cs), y+(4*si))
 DrawLine(x-cs10-si16, y + cs16-si10, x, y,

 x-cs10+si16, y-cs16-si10)
 DrawLine(x+si16-cs16, y-cs16-si16, x+si16,

 y-cs16)
 DrawLine(x-cs16-si16, y+cs16-si16, x-si16, y+cs16)
 DrawPoint(x+cs10, y+si10)
 DrawCircle(x+cs10, y+si10, 6)
 #reset globals defining ship location
 shipx := x
 shipy := y
 end
Although the game class has many more details which deserve
study, the last aspect that we will present is the user input handling.
The input handling code is “legacy” code, so it is not entirely
representative of all GUI applications. But, in the Ivib program
Setup dialogs, you can specify what type of events a component
responds to and what method to call, which results in Ivib-
generated code of the form

120

your_item.connect(self,“your_method”, event_type)
Most components that respond to mouse clicks will specify an
event_type of ACTION_EVENT, but there are many other specific
kinds of events that you can request. In addition, your components
can write a handle_event(e) method that receives events in their
“raw” form (strings for regular keystrokes, and small integer codes
for mouse events and special keys). Inside the game class
handle_event(e) method, there is code that looks like:

 case e of {
 " ": {
 #space bar, fire guns

if shiphit = 0 then {
 redrawship := 5
 eraseblasts()
 eraseship()
 initblast(x1, y1, angle - 1)
 eraseblasts()
 drawship(x1, y1, angle)
 }

 }
 ...

 "q" | "Q": {
 exit()
 }
 Key_Left: {
 angle -:= 5
 if(angle <= 0) then angle +:= 360
 left_pressed := 1
 }
 -(Key_Left)-128: {
 left_pressed := &null
 }

Between such events, the method main_game_loop() described
earlier is busy updating the asteroids' positions.

Exercises
1. Modify Blasteroids so that it gets more difficult as time

progresses.

121

2. Fix the high score code to present results attractively in a
GUI dialog.

3. Add alien ships which attempt to shoot the player's ship.

4. Add limited-time shields so the player can protect their ship.

122

Chapter 13: Network Games and Servers

An Internet Scorecard Server
Many games with numeric scoring systems feature a list of high
scores. This feature is interesting on an individual machine, but it
is ten times as interesting on a machine connected to the Internet!
The following simple server program allows games to report their
high scores from around the world. This allows players to compete
globally. The scorecard server is called scored. By convention,
servers are often given names ending in "d" to indicate that they
are daemon programs that run in the background.

The Scorecard Client Procedure

Before you see the server program, take a look at the client
procedure that a game calls to communicate with the scored server.
To use this client procedure in your programs, add the following
declaration to your program.
link highscor
The procedure highscore() opens a network connection, writes four
lines consisting of the protocol name "HSP", the name of the game,
the user's identification (which could be a nickname, a number, an
e-mail address, or anything else), and that game's numeric score.
Procedure highscore() then reads the complete list of high scores from
the server, and returns the list. Most games write the list of high
scores to a window for the user to ponder.
procedure highscore(game, userid, score, server)
 if not find(":", server) then server ||:= ":4578"
 f := open(server, "n") | fail

 # Send in this game's score
 write(f, "HSP\n", game, "\n", userid, "\n", score) |
 stop("Couldn't write: ", &errortext)

 # Get the high score list
 L := ["High Scores"]

123

 while line := read(f) do
 put(L, line)
 close(f)
 return L
end

The Scorecard Server Program

The scorecard server program, scored.icn illustrates issues
inherent in all Internet servers. It must sit at a port, accepting
connection requests endlessly. For each connection, a call to
score_result() handles the request. The main() procedure given
below allows the user to specify a port, or uses a default port if
none is supplied. If another server is using a given port, it won't be
available to this server, and the client and server have to agree on
which port the server is using.
procedure main(av)
 port := 4578 # a random user-level port
 if av[i := 1 to *av] == "-port" then
 port := integer(av[i+1])

 write("Internet Scorecard version 1.0")
 while net := open(":" || port, "na") do {
 score_result(net)
 close(net)
 }
 (&errno = 0) | stop("scored net accept failed: ",
 &errortext)
end

The procedure score_result() does all the real work of the server,
and its implementation is of architectural significance. If any delay
is possible in handling a request, the server will be unable to
handle other simultaneous client requests. For this reason, many
server programs immediately spawn a separate process to handle
each request. You could do that with the system() function, but for
scored this is overkill. The server will handle each request almost
instantaneously itself.

124

Some small concessions to security are in order, even in a trivial
example such as this. If a bogus Internet client connects by
accident, it will fail to identify our protocol and be rejected. More
subtly, if a rogue client opens a connection and writes nothing, we
do not want to block waiting for input or the client will deny
service to others. A call to select() is used to guarantee the server
receives data within the first 1000 milliseconds (1 second). A last
security concern is to ensure that the "game" filename supplied is
valid; it must be an existing file in the current directory, not
something like /etc/passwd for example.

The score_result() procedure maintains a static table of all scores
of all games that it knows about. The keys of the table are the
names of different games, and the values in the table are lists of
alternating user names and scores. The procedure starts by reading
the game, user, and score from the network connection, and
loading the game's score list from a local file, if it isn't in the table
already. Both the score lists maintained in memory, and the high
scores files on the server, are sequences of pairs of text lines
containing a userid followed by a numeric score. The high score
files have to be created and initialized manually with some N
available (userid,score) pairs of lines, prior to their use by the
server.
procedure score_result(net)
 static t
 initial t := table()
 gamenamechars := &letters++&digits++'-_'

 select(net, 1000) | { write(net, "timeout"); fail }
 read(net) == "HSP" | { write(net, "wrong protocol"); fail }
 game := read(net) | { write(net,"no game?"); fail }
 game++gamenamechars === gamenamechars | { fail }
 owner := read(net) | { write(net,"no owner?"); fail }
 score := numeric(read(net)) | { write("no score?"); fail }

 if t[game] === &null then {
 if not (f := open(game)) then {
 write(net, "No high scores here for ", game)
 fail

125

 }
 t[game] := L := []
 while put(L, read(f))
 close(f)
 }
 else
 L := t[game]
The central question is whether the new score makes an entry into
the high scores list or not. The new score is checked against the last
entry in the high score list, and if it is larger, it replaces that entry.
It is then "bubbled" up to the correct place in the high score list by
repeatedly comparing it with the next higher score, and swapping
entries if it is higher. If the new score made the high score list, the
list is written to its file on disk.
 if score > L[-1] then {
 L[-2] := owner
 L[-1] := score
 i := -1
 while L[i] > L[i-2] do {
 L[i] :=: L[i-2]
 L[i-1] :=: L[i-3]
 i -:= 2
 }
 f := open(game,"w")
 every write(f, !L)
 close(f)
 }

Note

List L and t[game] refer to the same list, so the change to
L here is seen by the next client that looks at t[game].

Lastly, whether the new score made the high score list or not, the
high score list is written out on the network connection so that the
game can display it.
 every write(net, !L)
end
Is this high score application useful and fun? Yes! Is it secure and
reliable? No! It records any scores it is given for any game that has

126

a high score file on the server. It is utterly easy to supply false
scores. This is an honor system.

127

Chapter 14: Galactic Network Upgrade War
The next example is an illustration of object-oriented design for a
complex strategy game of a depth competitive with commercial
offerings. The scope of this example is enormous, and this chapter
only presents highlights from the design of this 10,000+ line
program. The focus is on the challenge of implementing an object-
oriented design in Unicon. Like many large programs, this game is
a "living thing" that is slowly evolving and never really finished.

The game presented in this section is a parody of many sacred
cows, from the software industry to the political system to the great
science fiction and fantasy epics of the twentieth century. It owes
inspirational credit to a charming old war game called Freedom in
the Galaxy, designed by Howard Barasch and John Butterfield, and
published originally by Simulations Publications, Inc. and later by
the Avalon Hill Game Company. Freedom in the Galaxy is in turn a
homage (or parody) to George Lucas' Star Wars films. Our game is
farther over-the-top than either of these fine works.

The Play's the Thing
What better medium for setting the mood, than epic poetry?

The Lord of the Nets

Green nets to snare compiler wizards from ivory towers in deep space,
Gold nets to lure database gurus, their galactic servers in place,
Silver nets for IT media pundits and their damned lies,
A black net for the Dark Lord, to mask his dark face.

One Net to take them all,
One Net to buy them,
One Net to tax them with
And in the license bind them
In the land of Redmond, where Executives lie.

Galactic Network Upgrade War (GW) is an epic space-fantasy
strategy game in which an evil empire holds an entire galaxy in its
iron grip by means of monopolistic software practices. A small
band of rag-tag independent software developers fight a hopeless
crusade against the ruthless tyrant, the Microsaur Corporation and
its Dark Lord, Microsauron.

128

To play the game, you take on the role of a young hacker who must
work your way up through the ranks, on the side of good or evil,
until you earn the respect and influence that enable you to lead
your side to victory, crush your opponents, and gain control over
the galactic Internet.

Background
In the year 9,999, as the entire galaxy struggles for its very survival
in the throes of the Y10K bug, one company holds all the cards.
Governments have long since defaulted on their loans and been
replaced by the rule of the multi-stellar corporations. After a time
of cataclysmic battles, all of the surviving corporations swore
fealty to one ruler, becoming subsidiaries with varying nano-
degrees of freedom. That ruler was the Microsaur Corporation.

Some say Microsaur took over through superior innovation,
blending the best aspects of biological and technological species
into a super-race, a hybrid of voracious reptile and implanted
artificial intelligence. Others say that the Microsaur Collective, a
predator unchecked, simply ate all organized resisters on the
galactic network. Perhaps both accounts are true. In any case,
Microsaur Corporation took over by controlling the amalgamated
IT resources of the entire galaxy, on every desk in every home and
office.

But although organized corporate resistance was futile, lonely
bands of mysterious rebels persisted in conveying an oral tradition
of a time when machines ran open source software. Unable to
maintain any presence on digital media, these groups, such as the
Gnights who say Gnu, memorized entire programs such as Gnu
Emacs in their heads and passed them on to their children for
generations. This went on until one day Tux the Killer Penguin
inexplicably appeared in a puff of logic on an unguarded
workstation at the edge of the galaxy in the office of one Doctor
Van Helsingfors. The Microsaur collective's presence on that
machine flickered out too instantaneously and too faintly to even
be noticed in the corporate campus at the center of the galactic
Internet. Finding him playful, cuddly, and more useful than the
Microsaur that Tux had slain, Doctor Van Helsingfors shared Tux

129

with a few thousand of his closest friends, little realizing his
communiqué would change the galaxy forever.

Tux the Killer Penguin was friendly to Sapes (from Homo sapien)
and other bio life forms, but had a rare property: an insatiable
hunger for Microsaurs. Tux was a network aware, open system
artificial intelligence (an "Aint," as they are called). With the
assistance of Sape rebels, Tux spread like a virus through the
galactic network, paving the way for other open system software
on small machines across the galaxy. Eventually, the Microsaur
collective detected that it no longer held its 100 percent market
share, and once it identified Tux, it began the most radical binary
purge in galactic history, expecting little or no resistance. Thus
begins the epic war depicted in GW.

The Map
Each player gets a different view of the galaxy, reflecting both his
or her own focus of attention and the limited information available
to them. Their map is drawn on a window, and contains glyphs
(visual objects, or symbols) corresponding to a subset of the
objects in the galaxy. In general, several players may have different
glyph objects (with different location, size, or other attributes) that
refer to the same underlying galaxy object.

The User Interface
GW's user interface centers around a map of the galaxy that depicts
everything the player knows about the movements and activities of
friendly and hostile forces. With limited screen space, it is tempting
to show only one piece of information at a time to present it in
detail, say for example, one habitat (or other type of space object,
with its contents) at a time. The problem with this is that strategic
decisions about a group's activities requires more information than
that provided in a single habitat; strategy requires a global view.

Another way to state the problem with this type of "modal"
interface is that the player will be constantly switching modes and
reorienting themselves when the view changes. Instead of this,
GW's map uses a technique called a graphical fisheye view to show
multiple focus star systems in detail, while preserving a global

130

view of the system. Figure 12-1 shows a view of a galaxy. A light
(yellow) circle, orbited by one or more planets depicts each solar
system. Solar systems of interest are drawn in vastly more detail
than others, controlled by clicking the left (enlarge) and right
(shrink) mouse buttons on the different stars. The names of stars or
planets are drawn in varying font sizes, as long as sufficient space
is available. Planet details such as habitats, defenses, and loyalties
are depicted. The simple colors and textures used for stars and
planets are legible and easily learned, but these prototype-quality
graphics should be upgraded with more artistic or photo-like
images of astral bodies.

Figure 14-1:
The Graphical Fisheye View in GW

GW's other activities, such as giving orders, can generally be
performed using keyboard shortcuts, or using various dialogs that
present detail information. Figure 12-2 shows a dialog used for
assigning orders within a habitat. The units are depicted with
humorous mock-up images and various attribute details in the
upper area of the window. The bottom center contains a list of

131

orders these characters are eligible for in this habitat. The currently
selected order is described in detail in the lower right area of the
dialog. As play commences, players gain or lose characters and
military units, and separately, they gain or lose installed base and
"mind share" for their software's cause on each planet in the
galaxy. The player can define winning in terms of survival,
domination, or eradication of all opposition.

Figure 14-2:
Assigning Orders Dialog

Summary

Unicon is a fun language to use for writing many different kinds of
games. Games usually make use of graphics facilities and
increasingly, Internet facilities as well. Thanks to the high score
server from Chapter 11, any game that includes a point-scoring
system can easily provide global competition for players with
Internet access.

132

For complex games, designing the game may be as hard a job as
programming it. It helps to start from a complete prose description
of all game activities, to develop use cases, and then to describe the
kinds of objects and relationships between objects that will be
necessary for those game activities to occur. This chapter is able to
suggest that process, but to show it in detail would be the subject
of another entire book.

133

Index
case expression 101
Freedom in the Galaxy

127
games vi
keyboard 99, 101, 130

prototype vi, 130
random

number generator 100
reference 101
Rice, David 97

screen 1, 97, 102, 129
server 122
Star Wars 127
Tux 129

	Dedication
	Preface
	Introduction
	Chapter 1: Preliminaries
	Variables
	Reading from the keyboard
	Random Thoughts
	Deciding what to do next
	Repeating Yourself

	Chapter 2: Guessing Games
	Scrambler
	Hangman
	Thespian's Little Helper
	Play Files and the Gutenberg Repository
	Reading in a Play
	Giving the User their Queues
	Testing the Responses: How Perfect Must it Be?
	Exercises

	Chapter 3: Dice Games
	Scoring
	Complete Program
	Graphics
	Exercises

	Chapter 4: Tic Tac Toe
	The Tic Tac Toe Board
	Taking Turns
	Reading the Player's Move
	A Complete Two-Player Tic Tac Toe Program
	Graphical TTT
	Adding a Computer Player
	Making the Computer Smarter
	Exercises

	Chapter 5: Card Games
	Representing Cards
	The Deck
	Dealing
	Turns in War
	Graphics
	Exercises

	Chapter 6: Checkers
	Drawing the Checkers Board Textually
	Taking Turns
	Reading the Player's Move
	Checkers Graphics
	Moving Pieces Around
	Animation

	A Computer Checkers Player
	The Minimax Algorithm

	Exercises

	Chapter 7: Text Adventures
	Design
	CIA
	The Adventure Shell

	Chapter 8: Resource Simulation
	Hamurabi
	Taipan

	Chapter 9: Turn-based Role-Playing
	Pirate Duel

	Chapter 10: Paddle Games
	Ping
	Brickout
	Exercises

	Chapter 11: Sesrit
	The Gameplay of Falling Blocks

	Chapter 12: Blasteroids
	Creating Graphical User Interfaces with Ivib
	The Blasteroid Game Class
	Exercises

	Chapter 13: Network Games and Servers
	An Internet Scorecard Server
	The Scorecard Client Procedure
	The Scorecard Server Program

	Chapter 14: Galactic Network Upgrade War
	The Play's the Thing
	Background
	The Map
	The User Interface

	Index

