
The
Generator

IN THIS ISSUE:

W e l c o m e  t o  t h e  2 n d  I s s u e  o f  t h e  G e n e r a t o r 1
S t a t e  o f  t h e  U n i c o n  P r o j e c t 2
M e m o i z a t i o n 3
F u n  W i t h  C o - e x p r e s s i o n s ,  p a r t  2 16
U n d e r d o c u m e n t e d  U n i c o n 25

“I KNOW WHAT I HAVE WITNESSED. NOW IT IS YOUR TURN.
PREPARE YOURSELF FOR A JOURNEY INTO A WORLD WHERE

EACH NEW STEP MAY GIVE YOU A BETTER UNDERSTANDING

OF YOUR OWN REALITY."

VOL 2. NO 1.

FEBRUARY MMVI.



STATEMENT OF PURPOSE

The Generator is an international, non-for-profit journal devoted to the use of the Unicon
programming language and its predecessor and subset, the Icon programming language.

The Generator can be freely redistributed in its complete and unchanged form.

PRINTING INSTRUCTIONS

The Generator is designed to be printed on the both sides of the paper. It is published in Letter
format; we hope our readers can manage to print it on A4 paper when needed, and welcome suggestions.

In some situations, the printing options Auto-rotate and Center and Fit to paper may be appropriate.

CALL FOR PAPERS

The Generator publishes a wide range of articles: papers, reviews, notes, reports etc. All articles
contain some amount of the previously unpublished material; an exception is material previously

published on less formal ways (preprints, mailing list and newsgroups posts etc.) 
No particular article style is preferred.

Code should follow Icon and Unicon Projects' standard formatting conventions.
All submitted articles are reviewed. 

The author permits unlimited publishing of the submitted article in The Generator, including any
printed/bound issues, reprints, and collections.

Copyright of the articles is not transferred to The Generator.

EDITORIAL BOARD

David Gamey, Toronto, Canada, <David Gamey at rogers com>. 
Clint Jeffery, Las Cruces, New Mexico, USA, <jeffery at cs nmsu edu>, editor. 

Frank J. Lhota, Waltham, Massachusetts, USA, <lhota adarose at verizon net>. 
Kazimir Majorinc, Zagreb, Croatia, <Kazimir at chem pmf hr >.
William H. Mitchell, Tucson, Arizona, USA, <whm at mse com>.

Steve Wampler, <sbw at tapestry tucson az us>.
 [E-mail addresses follow usual syntax.] 

TYPESETTING

Typesetting is done by authors, reviewers and the publisher of The Generator. 
The illustrations: Monsters of Stone, Omega Font Labs,

<http://www.moorstation.org/typoasis/designers/omega/omega.htm> and DBL Corners, House of
Lime, <http://www.houseoflime.com>.

The fonts: Weatherly Systems Inc. Ramona, Bitstream De Vinne and Pica10 and Corel
Frankenstein.

PUBLISHER

Clinton Jeffery, Las Cruces, New Mexico USA.



THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

WELCOME TO THE 2ND ISSUE OF THE GENERATOR

his  is  the  second  issue  of  The Generator,  a  journal  devoted  to  the  use  of  the  Unicon
programming language and its predecessor and subset, the Icon programming language.  The
Generator  was  founded  by  Kazimir  Majorinc  with  a  substantial  explicit  homage  to  a

predecessor  publication,  The Icon Analyst.  This  issue has a new editor,  and  while  we will  try to
maintain and improve the quality of the beautiful publication Kazimir established, we are sure it will
suffer the loss of his time and expertise. Kazimir has provided the graphic designs and fonts that made
The Generator Vol. 1 No. 1 so special, and contributes an article to this issue.

This issue has been a long time in coming, nevertheless it is numbered as Vol. 2 No. 1. The volume
will reflect the year of issue, only counting years in which an issue is published. The number of issues per
year will vary as needed based on the articles received and accepted for publication. The formatting of
this issue has been switched to OpenOffice. The new editor, being short on time and lacking artistic skill,
will likely not aspire to or attain the level of graphic beauty found in the previous issue. But, as the
flagship  periodical  of  the Unicon project,  issues  of  the Generator  may contain first-hand news and
technical information that is of value to the readership, and is a primary means of presenting your Icon
and Unicon-related work to our community.
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STATE OF THE UNICON PROJECT

nicon development  is  proceeding  at  a  healthy  clip.  In  2005,  students  performed  important
projects  in  the  areas  of:  a  SNOBOL-style  pattern  data  type  (Sudarshan  Gaikaiwari),  a
simplified C-calling interface (Udaykumar Batchu), a source level debugger called udb (Eric

Munson), performance improvements to the 3D graphics facilities (Omar El Khatib), a Voice-over-IP
interface  (Ziad  Al  Sharif),  and  a  Windows  PocketPC port  (David  Price).   These  projects'  level  of
completeness and stability varies. Most of them need further testing, a code review or a follow-on project
by another student or an Internet volunteer. Our ability to “deliver the goods” as working additions to
the Unicon distributions is limited by students' level of experience and the full-time teaching and other
obligations of the Project Lead. For some of you the most exciting project of all is the one that is still
“cooking”:  a major update  of  Unicon and  iconc under construction by Michael  Wilder that  enables
compilation of Unicon programs using iconc. At present the iconc update is substantially functional but
iconc's  compilation  model  limits  its  scalability.   Iconc  does  not  support  separate  compilation,  and
Unicon's class libraries are large enough that iconc's type inferencer brings even 64-bit workstations
with many gigabytes of main memory to their knees when compiling, say, a simple  IVIB-generated
program. Future work will cull unused classes and procedures prior to invoking the type inferencer in
order to make this process scale reasonably; this will benefit Icon programs, not just Unicon programs.

At present Unicon development is supported directly by the U.S. National Library of Medicine and
indirectly by the U.S. National Science Foundation. Currently this is paying for all the student labor we
can  recruit,  but  we  still  need  contributions  from the  user  community,  especially  in  areas  such  as
updating and maintaining ports on operating systems not used natively within the Unicon Project. New
Unicon-related collaborations, contracts, projects and proposals are also very welcome.
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Memoization
Kazimir Majorinc

umans are known for their extensive use of different kinds of memories to improve the efficiency
of their computations. For example, few people ever compute the square root of the number 2;
even those that do, only do so once or twice. Instead, people remember its approximate value

and use it whenever needed. On the other hand, computers are typically used in a heavily repetitive,
redundant fashion: the same square root is computed daily by many computers, sometimes possibly with
significant cost of the processor time.

Donald Michie1 from Edinburgh was perhaps the first who described2 attempts for reduction of such
redundancies in the late sixties, using the metaphor of a memo, a short note written as a reminder. D.
Michie proposed that most recently used results of some computation are stored on the top of the stack.
When similar computation is needed again, program can search through stack for a previously computed
result before it attempts to actually compute it. Later, hash tables with their logarithmic access time
were recognized as the most useful data structure for memoization of large amounts of the data. The
main idea and implementation of memoization is simple enough that it is probably widely used ad hoc,
without  reflection.  However,  support  for  memoization  has  been  relatively  recently  introduced  in
programming languages.  For example,  Marty Hall  developed libraries  for  memoization in Common
Lisp3,4 and 5 in the early 1990's and together with Paul McNamee for C++6 in late 1990's. Mark Jason
Dominus7 from Philadelphia implemented a memoization module for Perl in the late  1990's and early
2000s. Recently, memoization seems to be discussed in contexts of many other programming languages,
including Java and Python. Particularly radical step is undertaken by Jeff Kingston from Sidney. In

1  http://www.aiai.ed.ac.uk/~dm/dm.html

2  Donald Michie, Memo functions and machine learning NATURE, vol. 218, April 6, 1968. pp. 19-22.

3  http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/ext/memoize/announce.txt

4  Marty Hall, J.  Paul McNamee, Improving the  Performance  of  AI Software: Payoffs and Pitfalls in Using
Automatic Memoization,  Proceedings of Sixth International Symposium on Artificial Intelligence, Monterrey,
Mexico,  September  1993.,  also  available  on  http://www.gia.ist.utl.pt/cadeiras/tp/aulas/Monterrey-
Memoization.pdf 

5  James Mayfeld, Tim Finin, Marty Hall,  Using Automatic Memoization as a Software Enginering Tool in
Real-World AI Systems, Proceedings of 11th Conference on Artificial Intelligence for Applications, February 20 -
22, 1995, Los Angeles, also available on http://www.cs.umbc.edu/~mayfield/pubs/caia95-memoization.ps 

6  Marty Hall, J. Paul McNamee, Developing a Tool for Memoizing Functions in C++, ACM SIGPLAN Notices,
August  1998,  pp.  17-22.  Also  available  on  http://apl.jhu.edu/~paulmac/publications/c++-toolbox-
memoization.ps .

7  Mark Jason Dominus maintains web site at http://perl.plover.com/ .His article  Bricolage: Memoization,  THE

PERL JOURNAL, Issue  #13  Vol.  4  No.  1  (Spring  1999)  is  available  also  on  his  site  at
http://perl.plover.com/Memoize/ . The article is reprinted in the book Jon Orwant (ed.), Computer Science and
Perl Programming, O'Reilley, 2003, available at http://www.oreilly.com/catalog/tpj1/chapter/ch20.pdf .
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his programming language Nonpareil1 all functions are memoized by default. If memoization of some
function is not wanted, it has to be explicitly turned off. 

The  most  frequently  used  example  for  memoization  is  the  function  that  computes  Fibonacci
numbers2. That function appears to be the most naturally implemented as a recursive procedure.

procedure r_fib(n)
   return if n<=2 then 1 else r_fib(n-1)+r_fib(n-2)
end

Unfortunately,  simple  test  as  every write(r_fib(1  to 40))  suffices  to  demonstrate  that  this
implementation is as inefficient as it is simple and elegant. Although recursive procedures are generally
slow,  it  is  not  the  main  reason  for  inefficiency  of r_fib:  another  standard  example  for  recursive
procedure,  factorials,  works  much  faster.  Instead,  the  problem  is  in  not  so  obvious  redundant
computations. For some n, r_fib (n) calls r_fib (n-1) and r_fib (n-2), where r_fib (n-1) again calls r_fib
(n-2) and r_fib (n-3). Two calls of r_fib (n-2) are computed independently, hence, computation of r_fib
(n) requires roughly two to three times more time than computation of r_fib (n-2). Hence, time required
for a computation of r_fib exponentially depends on its argument. More exactly, but not of importance
on this place, it can be demonstrated by induction that running time of the procedure call  r_fib (n)
linearly depends of the value of r_fib (n) itself. 

Non-recursive implementation of same function can eliminate some redundancy. 

procedure nr_fib(n)
   a:=b:=1
   every 3 to n do  ( a+:=b ):=:b
   return b
end

However, even here, some increase of the complexity can be observed. Note that this implementation
requires time that linearly depends on n, i.e. it still consumes relatively a lot of processing time. Hence,
there are enough motives to investigate whether memoization can be an acceptable alternative. 

It is frequently hard to predict whether computation of some function can benefit from memoization.
It  depends on many factors,  including, but not limited to the efficiency of the implementation of a
memoization, time required for the computation of the function without memoization, probability that
function is  already  called  with same arguments,  size  and type  of  the  memoized data  and  expected
running time of the whole program. For some functions, like addition, the computation can be faster
than search for  a previous result  or  an excessive  amount of  memory might  be needed for  effective
memoization. On the other hand, for very slow functions, there is no upper limit on the possible speed-up
that can be achieved. 

1  http://www.it.usyd.edu.au/~jeff/nonpareil/

2  The term function in Icon literature is sometimes used as synonymous for the built in procedure. This text
cannot be consistent with that tradition, since mathematical notion of the function is needed. It is assumed that
procedure or operator is a function if its result depends only on submitted arguments and it does not produce
side effects.
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Memoized  functions  are  initially,  when  most  of  the  function  calls (in  this  context:  function and
submitted arguments) were not computed already, slower than non-memoized versions: time is spent on
unsuccessful search, computation of the results like in the non-memoized version and storing of the
results  in  some data  structure  for  further  use.  However,  as  the  probability  that  the  result  of  the
procedure call for some argument is already computed increases, the memoized version becomes faster.
The following graph roughly depicts the relation between speed of the memoized function and running
time of the program for a very simple memoization task, when both time required for computation of the
function without memoization and time required for access to previously stored results are constant and
arguments of the function are randomly chosen. 

time

Number of
computation per time
unit.
Memoized
computations.

Many successful practical applications of memoization have been reported. For example, D. Michie
wrote that his colleague from Edinburgh, Robin Popplestone1 increased the speed of his programs by a
factor of 10-20. Our program Finder2 is 2-3 times faster if some of the performed computations are
memoized. Marty Hall3 and J. Paul McNamee4 reported5 speed up of a few Lisp programs between 15
and 600 times.  Perhaps the most  impressive  speed up is  reported by Belgian physicist  Peter  Van
Eynde6 in his ASK UNCLE PETER7 column: he reduced the running time of the quantum mechanics Lisp
program from a few millions of years to five minutes. 

1  http://www-robotics.cs.umass.edu/~pop/

2  http: //chem.pmf.hr/~kazimir/Finder.html

3  http: //apl.jhu.edu/~hall/

4  http: //apl.jhu.edu/~paulmac/

5  Marty Hall, J.  and  Paul McNamee Improving Software  Performance with Automatic Memoization,
JOHNS HOPKINS APPLIED PHYSICS LABORATORY TECHNICAL DIGEST, Volume 18, Number 2 (1997),

6  http://people.debian.org/~pvaneynd/

7  http://www.cliki.net/Ask Uncle Peter
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Ad hoc implementation and use of memoization is surprisingly simple, especially in sufficiently high
level programming languages like Unicon or Icon, with good support for the hash tables. Arguments of
the memoized function calls can be used as keys, and results as values.

procedure im_fib (n)
   static T
   initial { T:=table(); T[1]:=(T[2]:=1) }
   return  \T[n] | (T[n]:= im_fib (n-1)+ im_fib (n-2) ) 
end  

Achieved speed-up is significant,  even impressive.  The reader can compare running times of the
r_fib(35) and im_fib(35). For simplicity, let us suppose that the time required for access to T[i] does
not increase significantly when the size of T increases. As already noted, the running time of im_fib (n)
is linearly related with n, just like nr_fib(n) is. However, after the first execution of im_fib (n), results of
im_fib (1), ...,  im_fib (n) are memoized and in further calls, running time of im_fib(m) is constant for
m ≤ n and it linearly depends on m-n, if m > n. Hence, it can be expected that im_fib has in practice
significantly better running time than nr_fib(n) and especially r_fib(n).

Adding memoization to a procedure seems to be largely routine work. Hence, it can be isolated and
centralized in the program. One table might be enough to store information on all function calls in the
programs as keys and results of the respective calls as values. The keys of the table should be uniquely
determined by function call: for example, concatenation of the name of the function and values of the
arguments can be used. If arguments are not simple values, i.e. strings or numbers, they can be encoded
into  strings;  using,  for  example,  Robert  J.  Alexander's procedures  ximage or  xencode  or  Ralph
Griswold's procedure encode from Icon Program Library. Such encoding is slow, so it can be optional. 

Procedures and methods in Unicon and Icon are more general than functions in a majority of other
programming languages:  some of  them,  for  some combinations  of  arguments,  generate  many,  even
potentially infinite number of results. For a particular function call, generated results can be stored in
the list that grows as needed. Furthermore, a function can fail  to generate a result.  Unfortunately,
failure itself is not a first class value, hence some encoding is necessary to memoize that information.
For example,  [1,x]  and  [0,&null]  can  code  the  information that  function  call  returned  x  or  failed,
respectively. For more efficient use of memory, records can be used instead of list. 

There is another problem with memoization which can be, perhaps, best described by example. Let us
suppose that the first time a function is called with a given combination of arguments, it generates 100
results  and all  of  them are memoized.  These results  can be used whenever 100 or less  results  are
requested from the same function called with the same arguments. However, if some expression requests
a 101st result, the memoized function needs to be called again to generate the first 100 results and only
after that the 101st result can be generated, memoized for a further use and returned to the caller. This
behavior spends all time that is potentially spared by memoization of the first 100 results, plus it costs
some time on its own. Fortunately, it can be solved using coexpressions. For each function call a special
coexpression is created, used to generate the results, and stored in the table together with all results it
generated. If additional results are required, the coexpression is re-activated to produce new results. If
the coexpression fails, the list of the results is complete and coexpression can be safely deleted. 

All collected data on function calls  can be saved on a hard disk and loaded again in subsequent
program executions, allowing initially slow programs to run faster in each subsequent execution. Again,
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R. Griswold's procedures  encode and  decode or  R. Alexander's  xencode and  xdecode from IPL can be
used for encoding of the memo table members into strings. The interested reader can find extensive
discussion on xencode and xdecode procedures in The Icon Analyst column From the Library1. Saving
and loading of such data is relatively slow, but it typically needs to be done only on the beginning and
possibly  end  of  the  program  execution.  Table  that  contains  memoized  data  can  be  easily  deleted.
However, special procedure for that purpose can still provide some convenience. 

Unfortunately, coexpressions cannot be saved into files, which results in performance penalties. If
memoized data are loaded from file, and more results are required from memoized function than there
are memoized results,  coexpression need to be reconstructed and re-activated until  it  produces first
result not memoized before.

link codeobj
global memo_table, memo_encode
record memo_type(succeeded, result)
record memo3_type( L, c, is_coexpression_updated )
procedure memo3(p, rest[ ])
   /memo_table:=table() 
   /memo_encode:=encode  
  
   procedure_name := if type(p)=="string" then p 
                                        else { s1:=image(p);  s1[find(" ",s1)+1:0] }

   code_of_procedure_call:=procedure_name     
   every code_of_procedure_call||:=(";" || memo_encode( !rest ))

   if /(result:=memo_table[code_of_procedure_call] ) then {
      c:=create( procedure_name ! rest )
      result:=memo3_type( [], c, 1 )
      memo_table[code_of_procedure_call]:=result
      }
  
   #Following part suspends results stored in previous executions. 

   every x:=!(result.L) do {
      if x.succeeded=0  then {
         # Memo3 fails from table.
         fail
         } 
      else  { #write("Memo3 suspends ",x.result, "  from table."); 
         suspend x.result 
         }
      }
  
   #Following part updates coexpressions if it lags behind list 
   #of the results. It can be very time consuming - but it is typically performed

1  Icon Analyst 34, February 1996, pp. 9-12, http://www.cs.arizona.edu/icon/analyst/backiss/IA34.pdf 
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   # only once in the program, if memo table is loaded from file, but additional
   # results are required.
  
   if result.is_coexpression_updated=0 then {
      #write("It is found that there is not enough elements in memo-table. ")
      #write( "Coexpression need to be updated, i.e. activated ",*result.L," times.")

      (result.c):=create( procedure_name ! rest )
      every !result.L do {
         @(result.c)
         #write("Coexpression activated.") 
         }
      result.is_coexpression_updated:=1
      }
  
   #activate coexpression, store results for future use and susped them
   while y:=@(result.c) do {
      put(result.L, memo_type(1,y))
      #write("Memo3 computes, stores into memo-table and suspends ",y,".")
      suspend y 
      }
  
   # Coexpression failed. Information on failure is memoized.
   # Coexpression can be deleted.
  
   put(result.L, memo_type(0, ))
   result.c:=&null
  #write("Memo3 cannot suspend anything, it stores information on that and fails.")
end

procedure memo_save(s)
   /memo_table:=table()
   #write("\n====memo_save(",s,")")
   if not (f := open(s, "w")) then fail
   every x:=key(memo_table)  do {
      write(f, x); 
      write(f, encode(memo_table[x]) )
      #write("-----------")
      #write("memo_table[\"",x,"\"]=",ximage(memo_table[x]), " saved.")
      }
   close(f)
   return 1
end
    
procedure memo_load(s)
   #write("\n====memo_load(",s,")")
   memo_table:=table()
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   if not (f:=open(s, "r")) then fail
   while x:=read(f) do {
      y:=decode(read(f)) 
      if type(y)=="memo3_type" then y.is_coexpression_updated:=0
      #write("-----------")
      #write("memo_table[\"",x,"\"]=",ximage(y)," loaded.")
      memo_table[x]:=y
      }
   close(f)
   return 1
end
    
procedure memo_delete()
   memo_table:=&null
   return 1
end

Some lines of the code used for inspection of the procedure are only commented out, not deleted. The
reader can easily introduce them back, if such inspection is of his interest. 

The procedure call  f(expr1,...,exprn) can be replaced with  memo3("f", expr1,...,exprn) or  memo3(f,
expr1,...,exprn) if  f  is a function i.e. its result depends only on its arguments, and it does not produce
side effects. If the memoized procedure is recursive, as for example r_fib is, such a replacement should
be done inside the procedure code as well. 

procedure m_fib(n)
   return if n<=2 then 1 else memo3(m_fib,n-1)+memo3(m_fib,n-2)
end  

One can note that the procedure for support of the memoization is named memo3. Really, two other
procedures  for  the same purpose are  made;  they are  less general but also less  resource demanding
versions of memo3. The procedure memo does not memoize generators, while memo2 does, but it does not
use the described coexpression trick. All three memo procedures can be used in the same program, and
results can be stored in the single memo_table, as long as the same memo procedure is used consistently
for each procedure call.

procedure memo(p, rest[ ])
   /memo_table:=table() 
   /memo_encode:=encode  

   procedure_name := if type(p)=="string" then p 
                                        else { s1:=image(p); s1[find(" ",s1)+1:0] }

   code_of_procedure_call:=procedure_name     
   every code_of_procedure_call||:=(";" || memo_encode( !rest ))
  
   if \(x:=memo_table[code_of_procedure_call]) then {
      if x.succeeded=0 then fail else return x.result
      }
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   if x :=( procedure_name ! rest ) 
      then { memo_table[code_of_procedure_call]:=memo_type(1, x ); return x } 
      else { memo_table[code_of_procedure_call]:=memo_type(0, ); fail }
end
 
procedure memo2(p, rest[ ])
   /memo_table:=table() 
   /memo_encode:=encode  
  
   procedure_name := if type(p)=="string" then p 
                                        else { s1:=image(p); s1[find(" ",s1)+1:0] }
  
   code_of_procedure_call:=procedure_name     
   every code_of_procedure_call||:=(";" || memo_encode( !rest ))
  
   /memo_table[code_of_procedure_call]:=[]
   L:=memo_table[code_of_procedure_call] 
   cardL:=*L

   every x:=!L do { if x.succeeded=0 then fail else suspend x.result }
   i :=0
   every y:=( procedure_name! rest ) do 
      if ( i+:=1) >cardL then { put(L,memo_type(1,y)); suspend y }

   put(L,memo_type(0, ))
end

The procedures above are tested to some extent. One of the tests is provided here, as an example of
different possibilities for memoization. 

procedure m_fib(n)
   return if n<=2 then 1 else memo(m_fib,n-1)+memo(m_fib,n-2)
end  
 
procedure m2_fib(n)
   return if n<=2 then 1 else memo2(m2_fib,n-1)+memo2(m2_fib,n-2)
end   
 
procedure m3_fib(n)
   return if n<=2 then 1 else memo3(m3_fib,n-1)+memo3(m3_fib,n-2)
end  
 
procedure g_fib() # suspend first n Fibonacci numbers, non-recursive
   suspend (a:=1)|(b:=1)
   repeat {( a+:=b ):=:b; suspend b } 
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end
 
procedure demo1()
   write("\n-------------- Test of the correctness: fib(20) should be  6765. --------------\n")

   j := 20
   write("Recursive, not memoized implementation: ",r_fib(j))
   write("Non-recursive, not memoized implementation: ",nr_fib(j))
   write("Recursive implementation with integrated memoization: ",im_fib(j))
   write("Generator without memoization: ",(every x:=g_fib()\j) | x)
  
   every memo_encode:=![1, encode] & tested_case:=!["",2,3] do {
      write(repl("•",40))

      comment:="Memo"||tested_case||"-ized"
      tested_procedure:=proc("m"||tested_case||"_fib")
      file_name:="memofile"||tested_case||".txt"

      memo_delete() & collect()
      write(comment, " recursive implementation (encode: ", image(memo_encode),
                "): ",tested_procedure(j))
      memo_save(file_name)
     
      memo_delete() & collect()
      memo_load(file_name)
      write(comment, " populated recursive implementation (encode: ",  image(memo_encode),
                "): ",tested_procedure(j))
      memo_save(file_name)

      tested_procedure:=proc("memo"||tested_case)
    
      memo_delete() & collect()
      write(comment,"  generator (encode: ", image(memo_encode),"): ",
               (every x:=tested_procedure(g_fib)\j) | x)
      memo_save(file_name)
      #
       memo_delete() & collect()
      memo_load(file_name)
      write(comment," populated generator (encode: ", image(memo_encode),"): ",
                (every x:=tested_procedure(g_fib)\j) | x)
      }
end
  
procedure demo2()
  
   write("\n-------------- Test of the speed/ms. --------------\n")
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   m:=1000
  
   write("Recursive, not memoized implementation is too slow to be compared with others.")
   t:=&time;  every k:=1 to m do nr_fib(?k); 
   write("Non-recursive, not memoized implementation: ",&time-t)
   t:=&time; every k:=1 to m do im_fib(?k); 
   write("Recursive implementation with integrated memoization: ",&time-t)
   t:=&time; every k:=1 to m do (every x:=g_fib()\?k)|x; 
   write("Generator: ", &time-t)
  
   every memo_encode:=! [1, encode] & tested_case:=!["",2,3] do {
      write(repl("•",40) )
      comment:="Memo"||tested_case||"-ized"
      tested_procedure:=proc("m"||tested_case||"_fib")
      file_name:="memofile"||tested_case||".txt"
      
      memo_delete() &  collect()
      t := &time
      every k:=1 to m do tested_procedure(?k); 
      write(comment, " recursive implementation (encode: ", image(memo_encode),"): ", &time-t)
      tested_procedure(m)
      memo_save(file_name)

      memo_delete() &  collect()
      memo_load(file_name) 
      t := &time
      every k:=1 to   m do tested_procedure(?k)
      write(comment, " populated recursive implementation (encode: ", image(memo_encode),
                "): ", &time-t)

      tested_procedure:=proc("memo"||tested_case) 

      memo_delete() & collect()
      t := &time 
      every k:=1 to  m do every tested_procedure(g_fib)\?k; 
      write(comment, " generator (encode: ", image(memo_encode),"): ", &time-t)
      memo_save(file_name)
     
      memo_delete() &  collect()
      memo_load(file_name)
      t := &time 
      every k:=1 to   m do every tested_procedure(g_fib)\?k; 
      write(comment, " populated generator (encode: ", image(memo_encode),"): ", &time-t)
      memo_save(file_name)
      }
end 
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procedure main()
   demo1()
   demo2()
end

The test is performed on PC computer with PIII processor working at the rate of 2 GHz, under
Unicon 10 and Microsoft  Windows.  All  tests,  except  attempt of  application of  procedure memo for
memoization of generators gave correct results. Running times vary; however, all memoized versions are
faster than recursive-non memoized version r_fib, and some of the memoized versions were significantly
faster than non-recursive non-memoized function nr_fib. 

It should be noted that the presented test is by no means representative. Even a slight change of the
tested code can cause significantly different and hardly predictable results. For example, the reader can
try to replace every occurrence of "?k"  in demo2 with simple "k" and execute the program again. 

-------------- Test of the correctness: fib(20) should be  6765. --------------

Recursive, not memoized implementation: 6765
Non-recursive, not memoized implementation: 6765
Recursive implementation with integrated memoization: 6765
Generator without memoization: 6765
••••••••••••••••••••••••••••••••••••••••
Memo-ized recursive implementation (encode: 1): 6765
Memo-ized populated recursive implementation (encode: 1): 6765
Memo-ized  generator (encode: 1): 1
Memo-ized populated generator (encode: 1): 1
••••••••••••••••••••••••••••••••••••••••
Memo2-ized recursive implementation (encode: 1): 6765
Memo2-ized populated recursive implementation (encode: 1): 6765
Memo2-ized  generator (encode: 1): 6765
Memo2-ized populated generator (encode: 1): 6765
••••••••••••••••••••••••••••••••••••••••
Memo3-ized recursive implementation (encode: 1): 6765
Memo3-ized populated recursive implementation (encode: 1): 6765
Memo3-ized  generator (encode: 1): 6765
Memo3-ized populated generator (encode: 1): 6765
••••••••••••••••••••••••••••••••••••••••
Memo-ized recursive implementation (encode: procedure encode): 6765
Memo-ized populated recursive implementation (encode: procedure encode): 6765
Memo-ized  generator (encode: procedure encode): 1
Memo-ized populated generator (encode: procedure encode): 1
••••••••••••••••••••••••••••••••••••••••
Memo2-ized recursive implementation (encode: procedure encode): 6765
Memo2-ized populated recursive implementation (encode: procedure encode): 6765
Memo2-ized  generator (encode: procedure encode): 6765
Memo2-ized populated generator (encode: procedure encode): 6765
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••••••••••••••••••••••••••••••••••••••••
Memo3-ized recursive implementation (encode: procedure encode): 6765
Memo3-ized populated recursive implementation (encode: procedure encode): 6765
Memo3-ized  generator (encode: procedure encode): 6765
Memo3-ized populated generator (encode: procedure encode): 6765

-------------- Test of the speed/ms. --------------

Recursive, not memoized implementation is too slow to be compared with others.
Non-recursive, not memoized implementation: 341
Recursive implementation with integrated memoization: 0
Generator: 431
••••••••••••••••••••••••••••••••••••••••
Memo-ized recursive implementation (encode: 1): 60
Memo-ized populated recursive implementation (encode: 1): 20
Memo-ized generator (encode: 1): 10
Memo-ized populated generator (encode: 1): 10
••••••••••••••••••••••••••••••••••••••••
Memo2-ized recursive implementation (encode: 1): 80
Memo2-ized populated recursive implementation (encode: 1): 30
Memo2-ized generator (encode: 1): 401
Memo2-ized populated generator (encode: 1): 340
••••••••••••••••••••••••••••••••••••••••
Memo3-ized recursive implementation (encode: 1): 802
Memo3-ized populated recursive implementation (encode: 1): 30
Memo3-ized generator (encode: 1): 361
Memo3-ized populated generator (encode: 1): 351
••••••••••••••••••••••••••••••••••••••••
Memo-ized recursive implementation (encode: procedure encode): 150
Memo-ized populated recursive implementation (encode: procedure encode): 61
Memo-ized generator (encode: procedure encode): 10
Memo-ized populated generator (encode: procedure encode): 10
••••••••••••••••••••••••••••••••••••••••
Memo2-ized recursive implementation (encode: procedure encode): 250
Memo2-ized populated recursive implementation (encode: procedure encode): 100
Memo2-ized generator (encode: procedure encode): 421
Memo2-ized populated generator (encode: procedure encode): 340
••••••••••••••••••••••••••••••••••••••••
Memo3-ized recursive implementation (encode: procedure encode): 942
Memo3-ized populated recursive implementation (encode: procedure encode): 120
Memo3-ized generator (encode: procedure encode): 361
Memo3-ized populated generator (encode: procedure encode): 350

The  procedures  for  support  of  memoization presented  here  have  obvious  limitations.  As  already
noted, because coexpressions cannot be saved, we did not succeed to eliminate redundancy completely, if
generators  are  memoized  across  the  program  execution  sessions.  Furthermore,  due  to  multi-
paradigmatic, "postmodern" nature of the Icon and even more, Unicon, there are many special cases that
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require  additional  attention  to  be  successfully  memoized.  For  example,  important  string  scanning
procedures  depend on values  of  &subject and  &pos. In object oriented programming,  results of the
procedure members typically depend not only on the supplied arguments, but also on the values of data
members. There are other special cases, as well. 

Theoretically1,  performances of the tables can be improved if  expressions like  member(T,  x) and
insert(T,  x,  y) are used instead of \T[x] and T[x]:=y respectively. Our experience, although far from
extensive, however, does not suggest that improvement is significant in this context. 

Also, improvements of the memoization technique unrelated to the programming language used are
possible. As already noted, some function can not be effectively memoized because there are too many
possible combinations of the arguments, especially functions accepting real numbers as arguments. D.
Mitchie proposed that in such cases, result of the procedure call might be approximated using memoized
data on similar procedure calls; it can be achieved through redefinition of the relation "equal to". Similar
ideas  seem  to  be  recently  researched  by  Ron  Perry2 from  Cambridge,  USA,  under  the  name  of
continuous memoization. For more ambitious memoization projects, essentially limited space might allow
only  selective memoization, similar to the human approach. A good starting point for further reading
appears to be a web site of Umat A. Acar3 from Pittsburg.

1  Programming tips, The Icon Analyst, Vol 1 No 1, August 1991, p. 6, 

2  http://www.merl.com/projects/memoization/

3  http://www-2.cs.cmu.edu/~umut/
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FUN WITH CO-EXPRESSIONS, PART TWO

STEVE WAMPLER

The first  paper in this  series looked at the ability to  capture result sequences  in co-expressions.
There is a second, unrelated role that co-expressions play - the ability to function as coroutines.

Each coroutine maintains its own execution environment and resumes execution from the point at
which  execution last  left  it.   While  this  sounds  a  lot  like  how  Icon/Unicon generators  behave,  the
fundamental difference is that the resumption of execution can come from any other coroutine - it need
not follow the hierarchical flow inherent in both backtracking and expression evaluation in traditional
languages.   In essence, coroutines allow the thread of control in a program to follow non-hierarchical
patterns:

An example of a non-hierarchical execution flow pattern that is found in a number of languages is the
handling of exceptional conditions.  Examples of this flow pattern range from the primitive long-jump
feature in C to the try-throw-catch clause of Java.  Programmers in Icon/Unicon have not had access to
a built-in language feature with similar capability -  the innate flexibility of goal-directed evaluation,
coupled with success-failure semantics of expression evaluation greatly reduces the need for exception
handling. This is especially true with the small size of many Icon programs.

With the introduction of classes and objects in Unicon, however, it has become easier to build larger
programs.   And  object-oriented  programming  seems  to  lend  itself  to  complex  control  flows  with
execution weaving in and out of many objects.  An exception mechanism may well have its uses in this
new class of Unicon programs.

It turns out that it is possible to implement an exception handling mechanism in Unicon by taking
advantage  of  the  coroutine  aspect  of  co-expressions.   By  coupling  co-expressions  with  objects  a
remarkably simple implementation can be provided.

Generally speaking, two things are needed to implement exception handling:
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• a representation of an exception

• a mechanism for throwing and then catching these exceptions

For convenience both of these aspects are implemented in an Exceptions package.

Representing an exception is easy - a record would suffice but a more natural representation is an
object that encapsulates actions associated with the exception.  Using a class to implement an exception
also allows new types of exceptions to be built quickly and easily through subclassing.

Traditionally, exceptions include a message to associate detailed information about the nature of the
exception. It is also common to provide each exception with a stack-trace to help locate the source of the
exception and at least some portion of the execution flow that lead to that source.  Other fields are, of
course, possible.

The following is an initial implementation of an exception. More functionality will be added later:

    import Utils
    class Exception : Class (message, location)
        initially()
            location := Utils::buildStackTrace(2)
    end

This  implementation  extends  the  Class class  found  in  the  unilib library  at
http://tapestry.tucson.az.us/unicon.   The  Class class  provides  some  useful  operations  for  all
subclasses, but the implementation of Exception could be done without subclassing Class. (It just
might be a bit  more work.).   Similarly,  the  Utils package from the same site is  used to provide
support, such as the procedure buildStackTrace() used to construct a stack trace from the point of
Exception creation.

Traditionally,  getter and setter methods are used to provide controlled access to class fields (for
example, a null field can be managed within a getter).  The following getters are added here:

        method getMessage()
            return "Exception: " || (\message | "no message")
        end

        method getLocation()
            return (\location | "no stack trace")
        end

That is certainly easy enough, though there is more code that could be added to make an Exception
easier to work with.

Subclassing Exception is easy.  Probably the most that might be done is to redefine getMessage:

    class NumException : Exception()
        method getMessage()
            return "NumException: " || (\message | "no message")
        end
    end
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In many cases all that would be needed is to obtain a new name through subclassing:

    class IOException : Exception()
    end

The bulk of the work is in throwing and catching exceptions. This is where co-expressions can help.

The awkward part of implementing the throwing of an exception is that you don't want to do so by
unwinding the call stack from the point at which the exception is thrown to the point at which it is
caught and handled.  Besides being slow, this would also require all the intervening code to be involved
in this unwinding, much as it must be to unwind a deeply nested expression failure.  It would be much
better (and in fact, a requirement for effective use of exceptions) to transfer control directly to the point
at which the handling of the exception is performed.

If the point of handling the expression was in a different co-expression from the code throwing the
exception, then this could be done by transferring control between the two co-expressions.  All that's
needed is a standard, uniform method of managing the interaction between these two co-expressions.
Ideally, this method would hide the role played by co-expressions from the programmer.  After all, their
interest is in using exceptions, not co-expressions.

The approach given here loosely follows the general structure of Java's exception handling:

1. the code that may end up throwing an exception is encapsulated in a try-clause
2. somewhere in that code an exception may be thrown, possibly from deeply nested in

the evaluation
3. the code following the try-clause may choose to catch the exception

Of course, there are some significant differences as well:

1. there is no compile-time checking of the try-throw-catch structure
2. because the entire implementation is done using existing Unicon language features,

programmers have more flexibility in how they handle the catching of exceptions.
3. the try-clause produces either the thrown exception (if any) or the standard outcome

of evaluating the try-clause code
4. finally, the implementation given here allows exceptions to throw themselves, more

in keeping with some object-oriented philosophies

The class Try implements the exception handling mechanism.  Its outer layer is:

    class Try : Class (sources, exceptions, lastException)
        ...
        initially()
            sources := []    # stack of 'try' clauses
            exceptions := [] # stack of thrown exceptions
            Try := aTry
            return aTry(self)
    end

    procedure aTry(c)
        static ego := if Try == aTry then c else Try()
        return ego
    end
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The procedure  aTry, coupled with the  initially clause in  Try, imposes the singleton design
pattern onto Try.  At most one instance of the Try object exists, no matter how often the programmer
thinks they are calling the constructor.  The lastException field is used internally to 'capture' the
last thrown exception and make it available to testing when catching the exception later.

The  three  aspects  of  the  exception  handling  structure  are  implemented  by  three  methods
appropriately  named:  call(coexpression),  throw(exception),  and  catch(exceptionName).  Each  is
discussed in turn.

The call method is responsible for establishing the environment in which code that may throw an
exception is executed.  It creates a new co-expression for evaluating this code and pushes onto a stack
the current co-expression.  It also pushes a place holder for the thrown exception.  The use of this place
holder  makes  it  simpler  to  perform  clean  up  actions  since  control  may  return  to  the  current  co-
expression by either throwing an exception or by normal expression evaluation if no exception ends up
being thrown. The new co-expression is then evaluated and execution in the old co-expression (where this
code is) waits for a result.  This result may be an exception or the normal outcome (a result or failure).
It doesn't matter what the result is - some simple clean up is all that's needed in any case.

The call method is implemented as a PDCO (programmer-defined control operation) which simply
means that any expression used as an argument at the point of call is automatically converted into a co-
expression.  PDCOs are covered in more detail in both the Icon and Unicon books.

    method call(L)      # L is a list of co-expressions,
                        #    only the first matters.
        local result

        push(sources, &current)     # remember this try clause
        push(exceptions, &null)     # push an exception place holder

        if result := @L[1] then {   # evaluates the try-clause code
            pop(sources)            # clean up on return
            lastException := pop(exceptions) | &null
            return result
            }
        else {                      # try-clause failed
            pop(sources)            # clean up on failure
            lastException := pop(exceptions) | &null
            fail
            }

    end

The throw method simply remembers the exception and passes it to the top co-expression on the
sources stack.  Additional code terminates the program if an exception is thrown outside of a try-clause.

    method throw(exception)
        if *sources = 0 then {  # no try-clause!
            stop("Exception thrown outside of Try call: ",
                 exception.getMessage(),":\n",exception.getLocation())
            }
        exceptions[1] := exception  # replace place holder
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        exception @ sources[1]
    end

The catch method is particularly straightforward, it simply checks the name of the last exception
against its argument. As a convenience, a missing argument defaults to the name of the Exception
class above.  An existing package Utils found on the unilib site given earlier makes this easy:

    method catch(exceptionName)
        /exceptionName := "Exceptions::Exception"
        return isException(lastException, exceptionName)
    end

    method isException(x, exceptionName)
        /exceptionName := "Exceptions::Exception"
        return Utils::instanceof(x, exceptionName)
    end

These methods fail if no exception was thrown (lastException will then be null) or if the last
exception is not a subclass of the named exception.  Otherwise they return the exception.

There  is  one  final  implementation point.   The  design  called  for  exceptions  to  be  able  to  throw
themselves, so a throw method is added to the Exception class.  Code to compute the stack trace is
also added to this throw method since the location of the throw is more informative than the location of
the creation of the Exception object:

    method throw(aMessage)
        message := \aMessage
        location := Utils::buildStackTrace(2)
        Try().throw(self)
    end

Now that there is an implementation of an exception handling mechanism, how might it be used?
The following toy program gives a simple example.  The program takes each of its arguments in turn
and performs a simple  action on it.   Somewhere  during the  evaluation of  this  action,  however,  an
exception  may  be  thrown  (there  are  two  different  types  of  the  exceptions  possible:  the  'standard'
Exception and an exception of type 'NumException'.  The main procedure catches both types of
exceptions separately in case different actions need to be taken.  In this simple example, the same action
is performed on each type.

    import Exceptions

    class NumException : Exception()
        method getMessage()
            return "NumException: " || (\message | "no message")
        end
    end

    procedure main(args)

        every i := !args do {
            case Try().call{ f(i) } of {  # Note use of PDCO!

                Try().catch("NumException"): {
                        x := Try().getException()
                        write(x.getMessage(), ":\n", x.getLocation())
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                        }

                Try().catch(): {
                        x := Try().getException()
                        write(x.getMessage(), "\n", x.getLocation())
                        }

                }
            }
    end

    procedure f(i)
        write("x is '",g(i),"'.")
    end

    procedure g(i)
        if not numeric(i) then {
            NumException().throw("'"||i||"'")
            }
        if i = 3 then {
            Exception().throw("bad value of "||i)
            }
        return i
    end

When run with the arguments  1 2 3 a 5, the following output results (note: The lack of line
numbers and file names in the stack traces is  a known deficiency in the current implementation of
Utils::buildStackTrace):

    x is '1'.
    x is '2'.
    Exception: bad value of 3:
        procedure g
        procedure f
        procedure main

    NumException: 'a':
        procedure g
        procedure f
        procedure main

    x is '5'.

There are a few interesting points about the above code, particularly for programmers familiar with
exception handling in Java.

First,  it  is  important to note  that  the use of  a PDCO encapsulates the expression given as  the
argument to  Try().call in a co-expression.  This has the effect of constraining side effects that
result from the evaluation of that expression.  In particular, changes to local variables made within that
expression are not visible upon completion of the Try().call method invocation.   However, the fact
that the outcome of the try clause is either an expression or the outcome of evaluating the encapsulated
expression  means  that  it  is  possible  to  migrate  information  from the  try  clause  back  to  the  local
environment.
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A Unicon  case statement is used to handle the different catch-clauses. This is not necessary but
provides  a convenient syntax.   The above code would work equally well  if  the  case expression were
replaced with:

    if Try().call{ f(i) } then {
        if Try().catch("NumException") then {
            ...
            }
        else if Try().catch() then {
            ...
            }
        }

Since the outcome of invoking the Try.call method can be either an exception or the outcome of
the  encapsulated  expression,  it  is  possible  to  defer  the  catch-clause  handling  until  later,  possibly
performing some clean-up actions in the interim:

    if r := Try().call{ f(1) } then {
        ... # perform some cleanup
        if Try().isException(r, "NumException") then {
            ...
            }
        else if Try().isException(r, "Exception") then {
            ...
            }
        }

Here, isException is used in place of catch because the cleanup code may contain an embedded
try-clause of its own.

Finally, although the invocation of the call PDCO shown above embeds a function call, any Unicon
expression may appear as the argument to call, including a compound expression:

            case Try().call{{ # inner braces form compound expr.
                    k:= f(i)
                    x := process(k+i)
                    write(“Result is: “, x)
                    }} of {

                Try().catch("NumException"): {
                    x := Try().getException()
                    write(x.getMessage(), ": ", x.getLocation())
                    }

                Try().catch(): {
                    x := Try().getException()
                    write(x.getMessage(), ": ", x.getLocation())
                    }
                }

The latest version of the Exceptions package can be found at http://tapestry.tucson.az.us/unicon in
the file Exceptions.icn.  Similarly, a sample program using Exceptions can be found at the same site in
the file ExceptionTest.icn.

Of course,  this isn’t  the only possible  implementation of an exception mechanism and,  since the
implementation in entirely written in Unicon, it  is  easy to experiment with other possibilities.   For
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example, a simple change would be to have the Try().call PDCO accept a second argument that is a
list of the types of exceptions to be caught at this point in the code.  Then Try().throw could consult
these lists for each available catch point and jump directly to the proper one:

A more  ambitious  implementation might  route  all  exceptions  to  a  special  ‘diagnosis  and  repair’
module that would attempt to repair the problem.  If successful, this module could return control back to
the point of the exception throw!

Lurking  beneath the  exception handling  example  is  another  interesting  use  of  co-expressions  as
coroutines.  The Try class mechanism is actually a general-purpose call-throw-catch mechanism that has
been modified to support exceptions. It would not take much to turn it back into the general case.

What makes this interesting is that  suddenly there is  an entirely different expression evaluation
mechanism available than the traditional hierarchical call/return sequence.  While the exception handling
support was layered on top of a traditional hierarchical system, a general call-throw-catch system can be
used to implement a pipeline processing system.  In a pipeline system each component takes input from
the preceding component, manipulates this input in some fashion and then passes it on to the next
component.  There is no need for a component to wait for a result and propagate it back up a calling
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sequence. Instead, the final component in the pipeline can directly return the result to the top of the tree
using a throw.

There  are  many  situations  that  lend  themselves  naturally  to  a  pipeline  system:  a  sequence  of
graphical  data  transformations  is  a  common one,  particularly  when non-affine  transformations  are
involved.  The pipelines available typical Unix shells are the prototypical example – a pipeline system
that is routinely used for many complex tasks.  Tasks in a pipeline system implemented in Unicon using
the approach outlined here may be procedures, co-expressions, or even separate pipeline systems.
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UNDERDOCUMENTED UNICON

This is the first of a regular column providing juicy details on features of general interest that have
been added to the Unicon language, but have so far slipped through the cracks of documentation. Often
a feature familiar to Icon programmers has been extended in Unicon, but the extension may be under
documented. In its broadest interpretation, this column is about differences between Icon and Unicon
which may be of general interest, as opposed to extensions that are specific to particular application
domains such as graphics. A rich source for such material is to examine the CVS logs of the Unicon
project, and simply look for interesting log messages.

The first subject of this column is the tried and true function delete(X,x). In Icon, this important
function deletes set element or table key x from set or table X. In Unicon, it takes an arbitrary number
of arguments, so you can delete as many elements or keys as you wish.  The call delete(L,x1,...,xn) deletes
elements at subscripts x1...,xn from list L, by analogy to tables. The current implementation is not as
clever as you would like for frequent deletes on very large lists; each call to delete(L) is proportional to
the size of L...but much faster than if you write your own procedure to do the job.  It is much faster to
call delete(L) once with many arguments, than it is to call delete(L,x) many times. If you have a list of
subscripts to delete stored in variable Lsubs, you might try

delete ! [L] ||| Lsubs

instead of

every i := 1 to *Lsubs do delete(L, Lsubs[i] – (i-1))

By the way, why is this code subtracting (i-1) from the subscript?

For both delete(T) and delete(L), one other disturbing question is: how does one delete elements by
their value, rather than their key or index? The answer, unfortunately, is that it is easy but painfully
slow, with techniques such as

while T[k := key(T)]===v do delete(T, k)

or for some set S of values to delete:

len := *L; every i := 1 to *L do if not member(S, (x := pop(L))) then put(L, x)

Recently a code review of an application turned up a circumstance where this operation needed to be
performed on a list of 6,000 to 10,000+ elements as fast as possible (under 1/30th of a second would be
nice).  Watch  Unicon  CVS  logs  and  see  if  delete(L,  S)  is  a  built-in  yet.  Unfortunately  it  is  not
straightforward to extend delete(T) in this way, as delete(T,S) is in principle already defined. If you
have to delete elements by value from a table fast, try a second table which contains for every value, the
list or set of keys that map to it. You probably want to encapsulate this with a class so you control access
to T and keep the 2nd table in sync. If you have another good solution, please share it!
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