

ICON
PROGRAMMING

FOR

HUMANISTS

2nd Edition

ALAN D. CORRÉ

ii

Icon Programming
 for Humanists

Alan D. Corré

University of Wisconsin-Milwaukee

Goal-Directed Press, Moscow, Idaho

The first edition of this book was previously published by: Pearson Education Inc.
(Prentice-Hall).

Copyright © 2010 by Alan D. Corré. An individual is licensed to make copies of this document
for personal use. No changes may be made to the text of this document without the express
permission of the copyright holder. All rights reserved.

First printing, 9/3/2010. Send comments and errata to jeffery@cs.uidaho.edu.

This document was prepared using OpenOffice.org.

ii

mailto:jeffery@cs.uidaho.edu

For Nita

iii

iv

Rabbi Judah ben Idi said in the name of Rabbi Johanan: We know from references in
Scripture that the Shekina left Israel by ten stages: from the Ark-cover to the Cherub and
from the Cherub to the threshold of the Holy of Holies and from the threshold to the court
and from the court to the altar and from the altar to the roof of the Temple and from the
roof to the wall and from the wall to the city and from the city to the mountain and from
the mountain to the desert and from the desert it ascended and abode in its own place, as
it is said: “I will go and return to my place.” (Hosea 5.15)

Babylonian Talmud, Rosh Hashana, 31a.

And numbers too, I found them,
The key to sciences;
And letters in their synthesis---
Secret of all memory, sweet mother of the arts.

Aeschylus, Prometheus Bound

v

vi

Contents
Foreword to the Second Edition...ix
Preface..xi
1. Introduction..1

1.1 The Icon Programming Language...1
1.2 Basic Concepts...2
1.3 Mathematical Concepts..2

2. Distributions...7
2.1 Getting Started on a Program...7
2.2 Separating Data and Program..11
2.3 Distribution..12

3. Storing and Editing Programs in Files...17
3.1 Making Information that Lasts..17
3.2 The Emacs Editor...17
3.3 Running an Icon Program From a File..18

4. Graphs..21
4.1 Histograms...21
4.2 Reading Data From a File..23
4.3 Refining the Histogram..26

5. Measures of Central Tendency..31
5.1 The Mode...31
5.2 The Arithmetic Mean...37
5.3 The Median..38
5.4 Variants on the Program..39

6. Icon and Unicode...41
6.1 Introduction to Unicode...41
6.2 Working with Russian, Tamil, and Hebrew..42

6.2.1 Russian..43
6.2.2 Tamil...45
6.2.3 Hebrew..49

6.3 Further Study...50
6.4 Hex to Dec...51

7. Standard Deviation...53
7.1 Working with Sentences..53
7.2 Figuring the Standard Deviation..56
7.3 Word Frequency..59

8. Correlation...63
8.1 The Spearman Rank Correlation..63
8.2 Scattergrams...66

9. Pearson's Coefficient of Correlation..71
9.1 Planning the Program...71
9.2 Getting Information From the User...72
9.3 Figuring the Coefficient...73
9.4 Creating the Table—Pattern Matching..74
9.5 Matching Against a List of Words...74
9.6 More on Matching...77
9.7 Sets...80

10. Programming a Nursery Rhyme..83
10.1 Ten Green Bottles..83
10.2 The House that Jack Built..85

vii

10.3 Randomizing Jack..88
11. Creating a Data Base..91

11.1 A Grade Program...91
11.2 A Vocabulary Program..99

12 Icon and Markup Languages...103
12.1 A Brief History of Markup Languages..103
12.2 Manipulating texts encoded according to the TEI...104

12.2.1. The Input Text..105
12.2.2. The Program...106
12.2.3. The Output...107

12.3 Expanding the above Program...108
12.4 Stripping Tags and Character Entities from a Text...112

13. Conclusion...115
13.1 Word Processing..115
13.2 Other Icon Features..117
13.3 Co-Expressions..117
13.4 File Handling...118

Appendix A: Character Sets...119
Appendix B: Some Hints on Running Icon Programs...121

Icon for Apple OS X..121
Icon for Windows..122

Index..123

viii

Foreword to the Second Edition

Books on text processing are few and far between, even more so now than in past
decades. For a long time it has been almost impossible to obtain a copy of Alan Corré's
Icon Programming for Humanists. This edition solves that problem. The text was
scanned and run through an Optical Character Recognition program from a printed copy
of the first edition. Thereafter the text was scrutinized and revised by the author and
myself. Chapters 6 and 12 are entirely new, introducing important topics in character sets
and text encoding, respectively.

The radical change about this edition is that the author generously placed the text under a
free electronic download license. Among other things, going online will make it easy to
correct remaining OCR and other errors as they are found.

This edition adopts the code format standards of the other Icon books. Modernization
includes the deletion or replacement of DOS-era references with terminology and tools
more appropriate to Linux, OS X, and Windows Vista. I have not taken the code
examples and turned them into Unicon programs, despite my personal bias towards this
modern successor for Icon.

The text of the second edition has benefited from comments and suggestions by Phillip
Thomas and Alan Saichek. We are grateful to these individuals for their contributions.

Clinton L. Jeffery

ix

x

Preface

In 1958 the Science Education Newsletter confidently declared: “Computers are here to
stay.” Just about the same time, a professional journal wrote that the IBM 702 computer
“has a large internal storage capacity,” which turns out to be the equivalent of 125
punched cards. The Newsletter was right of course, but the most enthusiastic futurist at
that time could not have imagined the situation just fifty years later. Now a vast number
of desks carry a small computer with many, many times the computing power of that
free-standing IBM machine, and at a fraction of the price. And airplanes routinely carry
almost as many laptops as passengers.

Icon Programming for Humanists was first published by Prentice-Hall (now Pearson
Education Inc.) in 1990 with the intent of providing a task-oriented introduction to a
computer language especially suited to those whose main concern is the written word.
Since that time the pace of change has quickened in the world of communication. Public
phone booths and corner mail boxes disappear as cellular phones and email usurp the
functions they formerly served. Pens and pencils are replaced by word processors even
for small tasks.

But some things do not change. The texts of the Hebrew Bible, the New Testament and
the Koran are essentially the same as they were a thousand years ago, and are an essential
ingredient of many of the hopes, fears, and conflicts of the world as we know it today.
These are simple examples of the written word, which encapsulates a great deal of human
culture over a great stretch of time. Many texts are becoming available in machine-
readable form; a new chapter in this edition deals with the initiative to standardize such
texts. The Icon Programming Language, now in its ninth incarnation, is still ready to
lighten the tasks of the student of the Humanities.

Icon is a very “high” language, which means that it has many remarkable features and
capabilities built in, which take it far from the primitive language of zeros and ones that
the computer utilizes, and makes it approach being an application. But it nevertheless
retains its status as a computer language, because it possesses the characteristic of
universality. Humanists, using this language to further their researches, can do so in ways
never previously envisaged. It can do most things that other languages can do, and often
much more compactly.

This book teaches the principles of Icon in a very task-oriented fashion. Someone
commented that if you say “Pass the salt” in correct French in an American university
you get an A. If you do the same thing in France you get the salt. There is an attempt to
apply this thinking here. The emphasis is on projects which might interest the student of
texts and language, and Icon features are instilled incidentally to this. Actual programs
are exemplified and analyzed, since by imitation students can come to devise their own
projects and programs to fulfill them. A number of the illustrations come naturally
enough from the field of Stylistics which is particularly apt for computerized approaches.
This book assumes an acquaintance with the concepts of elementary statistics appropriate
for such work, and the reader unfamiliar with these may wish to become familiar with
them first. Kenny's book referred to in the first chapter gives a clear description of these
principles and may be used with profit.

xi

I am gratified that Professor Clint Jeffery, who has made so many valuable contributions
to the development of computer science, suggested an updated reissue of this book, which
has been out of print for some years. It is my hope that it will continue to be of use in
furthering the knowledge and utilization of the Icon Programming Language in its classic
form. Like the first edition, this book is dedicated to Nita, my wife of fifty years.

Alan D. Corré

xii

1

1. Introduction

1.1 The Icon Programming Language
Why Icon? Icon is one programming language among hundreds, but is probably the best for tasks
which involve the study or manipulation of natural language. Programming languages form a bridge
between human beings and computers, enabling man to convey instructions to machine. Two of the
earliest languages, FORTRAN and LISP, continue to be used for mathematical and artificial
intelligence applications, and the great difference in character of these two languages indicated early on
that there were many ways in which this man-machine communication could be carried on. In the late
sixties the SNOBOL-4 language, which was deliberately designed to be different from its predecessors,
appeared. Computers were originally intended to perform mathematical calculations but it became
apparent that by encoding the letters of the alphabet, natural language texts could also be manipulated.
SNOBOL-4 dealt primarily with strings of characters rather than numbers, and along with other
original features this gave it special power in dealing with natural language. It also had the advantage of
a particularly fine manual, both in content and appearance, perhaps the best computer manual ever
produced[1]. Two things have happened since SNOBOL-4 appeared, one of a theoretical, one of a
practical nature. First, there has been an emphasis on writing programs which are divided into smaller
units systematically connected into a unified whole. This makes programs much easier to grasp for the
human reader, and easier to modify subsequently. A long program which is not “structured” becomes a
tangled web of which it is dangerous to interfere with any strand. The popularity of the Pascal language
which emphasized this approach and in fact imposed it upon its users, attests to the manner in which
this notion has become accepted in the programming community. The “C” language, and its successor
C++, used by professional programmers, both adhere to principles of structured programming.

Secondly, interactive computing, in which the user engages in dialog with the machine, rather than
furnishing it with a batch of data, has become the norm. Originally computer time and computer
memory were both at a great premium. This is now true only on the smallest of embedded systems;
affordable computing is within the reach of all. The design of SNOBOL-4 preceded these changes, and
although it has been updated to take account of them, the need was felt for a language which would
have features similar to SNOBOL-4, but would have a character similar to other modern, structured
languages. The Icon language was evolved by Ralph Griswold and others to achieve this end.
Government support was given to its development, and hence the language has the additional
advantage of being in the public domain. It is available free, and runs on most modern computing
platforms.

This book aims to show how Icon can be used fruitfully in literary computing, and hence does not
duplicate the standard reference on the language[2] which is an indispensable guide to using Icon. We
emphasize the writing of programs which manipulate or study texts, and follow largely the kind of
procedures which are mapped out for manual use in Kenny's excellent introduction to statistics for
students of literature and the humanities.[3] Many of the programs developed here are in fact
automations of procedures suggested by Kenny.

It is not necessary to have any previous knowledge of computer programming in order to be able to use
this book, but you need to have available the programs which convert the source code you will write
into a form which the computer will “understand” and execute. The appropriate implementation of Icon
for your platform can be downloaded from http://www.cs.arizona.edu/icon. Programs should be saved
as “text only.” If you are using the Macintosh OS X, you should use the terminal, for which at least a

http://www.cs.arizona.edu/icon

2

modest understanding of Unix is needed. Apple provides a pre-built Emacs editor which is fine for
creating Icon programs. It is suggested that you use this text in front of your keyboard, and try out the
various programs that are suggested. You may experiment by making modifications and seeing what
happens. This will provide a discovery procedure in learning; if you learn nothing else you will
probably discover that you do not think as logically as you thought you did. To have a dialog with the
computer can be a humbling experience. Except in the rare instances where there is some hardware
problem, or you encounter a bug in the software, the computer is excruciatingly logical.

1.2 Basic Concepts
Before we can use computers to aid us in our task we need to understand a few basic concepts. These
may be divided into two sets: concepts familiar from daily life and concepts of a mathematical
character. The concepts familiar from daily life are:

1. Sequence

2. Condition

3. Repetition

Let us illustrate these by reference to a cooking recipe (which is genuine but not guaranteed):

Peel vegetables.

If the beef is frozen, defrost at power 3.

Form into patties.

Layer half of patties and half of vegetables, repeat.

Microwave until vegetables are tender.

“Peel vegetables” and “Form into patties” are instructions to be carried out as they occur in the
sequence of the directions. The instruction to defrost, by contrast, is dependent on the beef being
frozen. If it is not, there is no need to obey the instruction, since no alternative action is specified. This
illustrates the second concept, condition or choice, and it is this capacity to choose which gives the
computer its great power, since it can act differently according to conditions. The last two instructions
contain repetitions, often called “iteration” or “a loop.” In the first case, the repetition is determined
numerically; it must be done two (and not three or ten) times. The loop also contains a type of
condition. After performing the action, if the action has been done less than twice it is repeated. If it has
been done twice the repetitive act ceases. In the last action a particular condition is constantly checked.
Are the vegetables tender?—no, cook some more; yes—stop cooking.

These three concepts——sequence, condition, and repetition——are all that is needed for structuring a
program. The most complex operations depend on these simple ideas.

1.3 Mathematical Concepts
The two concepts which are borrowed from mathematics may be a little more difficult to grasp. Let us
first consider the following two statements:

John has four children.
John has four letters.

3

Both statements may be true, but in the first John represents a flesh-and-blood real person, whereas in
the second we are speaking of the string of marks on paper or the screen. The second John would often
be written in this context surrounded by double quote marks, and Icon uses the double quotes to
surround literal strings of this kind. The first John is a variable which stands for its value, in this case a
particular individual whose name happens to be John. In Icon any word that begins with an alphabetic
letter or underscore and continues with any amount of letters, numbers, or underscores, can be a
variable, provided it is not one of a small number of words which have been appropriated by Icon for
special purposes. The underscore is used rather than the dash to avoid confusion with the use of the
latter for subtraction and negative numbers. Thus

year := 2009

associates (by means of the := operator, called the assignment operator) the value 2009 to the variable
year, the colon followed immediately by the equals sign being the symbol which assigns the value of
what is on the right to the variable on the left. Note that this book uses a sans serif font to represent
Icon code. So

last_year := year - 1

would assign the value 2008 to the variable last_year, which it would retain until it is specifically
altered by a new assignment. When it gets this new value, the old value is lost. It is perhaps best to
regard the variable as a kind of box or container into which a value can be poured. This image is not so
far from the truth, since the variable represents a location in the memory of the computer which we can
more readily handle by giving it a name which we can easily remember.

We mentioned that the ability of the computer to handle conditions is one of the things which gives it
its great power. The ability to use variables similarly gives great power to the computer, since it makes
it possible for programs to apply to a great deal of different data simply by feeding this data to a
variable as appropriate. Programming at its best results in a general program which processes specific
data.

The other mathematical concept widely used in programming is that of the function. In mathematics the
function establishes a connection between one set of numbers and another set. Thus the function which
we call square associates the numbers

1, 2, 3, 4, 5...

with the numbers

1, 4, 9, 16, 25...

The function square applied to 2, for example, gives ("returns," "produces") 4, and 4 is the value of the
function. In a similar manner, the Icon function reverse() associates the strings

"cram", "did", "trap", "number2"...

with the strings

"marc", "did", "part", "2rebmun"...

So the value of

reverse("cram")

is "marc". The function is followed by parentheses which enclose the argument which is to be
processed by the function. This argument may be a variable; for example

word := "cram"
reverse(word)

4

gives the same result. In addition to giving values, functions often have (side-)effects. It is most
important to understand this distinction. For example, the value of

write("cram")

is "cram"—but in addition this function writes the word "cram" on the screen, and directs subsequent
writing to be on the next line, or, in other words, it issues a carriage return. In this instance the effect is
normally much more significant than the value, but we shall find that the value can be used too.

A function need not always produce a result. Sometimes it does not produce anything, or to put it
another way, it fails. As an example, the function integer() produces a whole number from its argument
—if it can. The value of integer(1.5) is 1. If there is a decimal, it is simply truncated, or cut off. But
integer("a") does not produce anything—it fails. There is just no way the character a can be made into a
whole number. This is important, because failure is, so to say, infectious. If the result of a function that
fails is passed to another function as an argument, that function fails too, and any effects it may have do
not occur. So if we write

write(integer("a"))

the integer() function fails, and so write() fails too, and nothing at all happens. On the other hand

write("")

does write a zero-length string, which is indeed nothing to speak of, but write() has succeeded, and so
the effect of the carriage return will be seen in the fact that the cursor—that moving block or underline
that you see on the screen—will move down. This difference between "writing nothing" (succeeding)
and "not writing anything" (failing) may seem arcane or cabalistic, but it has significant results. It is
one of the things that makes Icon tick. We may note in passing that write(integer("a")) is an example of
a nested function: whatever is produced by integer() is immediately passed to write().

Since we are here talking about nothing, it will be useful to refer here to some other manifestations of
this strange entity, which, let us recall, is not the same as not anything. Before so doing, we may like to
consider an example from English grammar which will help to explain what we are talking about. In
English the plural of "horse" is "horses" and the plural of "ox" is "oxen." We can then say that to form
the plural in English, we add -s and in a few cases which can be specified -en. What about "sheep"? We
can say that the plural is the same as the singular. But we can regularize the situation by saying that
"sheep" adds -0 which is "nothing" or, more technically, a "zero morpheme." This legal fiction is often
very useful, because now all words add a morpheme to form the plural, and not just some, and it makes
exceptional circumstances less awkward to handle. This is one of the "uses of nothing" as one linguist
put it. Now we noted before that "John" is a string of four characters. We can subtract four characters
from it and be left with the string of zero length which we just referred to. A function which produces a
zero-length string succeeds, even though it may not seem to produce anything of great significance.
This empty string is often useful however as a kind of starter to which other pieces ("substrings") may
be added. The empty string is different from the blank or space, which is a real character and has a
length of one. Blanks are obvious when they are in between words, but is there a blank at the end of a
line on the screen or a piece of paper? The computer may sometimes want to know the answer to that
question, but we can delay the answer for now. It is an historical accident that the blank is used as a
word divider; some ancient scripts used a bar or some other marker that looks more like a "real"
character. In addition Icon has an entity called null. This represents the initial value of a variable (year
for example) before some value (such as 2009) is assigned to it. A function which produces null is in
fact succeeding, even though there is not much you can do with null. The whole point of null is that it
cannot be used in computations—whether numbers, strings of characters, or anything else is involved
—since thereby if we inadvertently try to use something having that value in a computation while we

5

are developing a program, Icon will pick it up and let us know about it by flashing an appropriate
message on the screen. The notation for the null value is &null. The ampersand at the beginning
indicates that &null is a keyword, one of several useful values which Icon specifies for us. &null may be
used in assignments; thus if the value of the variable year is 1987, the command

year := &null

restores it to its initial null value. We shall find later that alternating between a null value and some
other value can have distinct uses. To sum up, we must learn to distinguish nothing at all (which is
what functions which fail produce) from a skinny motley crew consisting of the empty string, the blank
(or blanks), and the null value which may be lightweights but at least they are not failures.

Notes

1 R.E. Griswold, J.F. Poage, and I.P. Polonsky, The SNOBOL-4 Programming Language (Englewood
Cliffs, N.J.: Prentice Hall, 1971).

2 Ralph E. Griswold and Madge T. Griswold, The Icon Programming Language, Third Edition. Peer to
Peer Communications, San Jose, 1997. http://www.cs.arizona.edu/icon/lb3.htm

3 Anthony Kenny, The Computation of Style (Oxford, 1982)

6

7

2. Distributions

2.1 Getting Started on a Program
This chapter will consider how Icon can be used to quantify aspects of a text. We shall do this by a
simple study of word length, taking first a very brief text:

One went and came. W.B. Yeats

We shall then show how to expand these principles for long texts. Our task is

1. To isolate individual words.

2. To count the number of letters each has.

3. To display the numbers on the screen.

Icon possesses a scanning facility which is able to go through a string such as a line of text that was
read in from a file and process it. A string is defined as a linear sequence of characters treated as a unit.
We invoke this facility by following our brief text with a space and a question mark thus:

“One went and came.” ?

The string must be between double quotes in the program because otherwise Icon would understand the
words as variables. Now let us imagine that there is a pointer positioned initially at the beginning of the
line immediately before the upper case O. This pointer indicates the point at which we are working and
will gradually move through the string until our task is complete.

Icon has a function upto() which will locate the position in our string immediately before any of the
characters in its argument. Thus if we write

"One went and came." ? upto(' .')

upto() will locate the first occurrence of a blank or a period in our string. The characters concerned,
blank and period, are delineated by single quote marks. In general in Icon, the double quotes enclose a
string—where the order of letters is significant—while single quotes enclose a set of characters or cset
—where the order is irrelevant. (A set is a collection of items which is considered as a unity. Each item
occurs once only.) At this point, the value of upto(' .') is 4, which is the position immediately before the
blank. Check this by counting from position 1, which is at the beginning of the string, right before the
first character ("O"). Remember that the blank or space is a character in its own right. We shall now use
the Icon function tab(), the effect of which is to move up that imaginary pointer to the position of its
argument and the value of which is the characters (in this case the first word) in between the old and
new positions.

(Positions 2 and 3 are on either side of the n in One.)

8

This gives us:

"One went and came." ? tab(upto(' .'))

Since tab() has been used, the imaginary pointer has been moved up to position 4 and we shall proceed
from there. At this point the value of the expression tab(upto(' .')) is the string "One"—and we wish to
know its length. The length of a string can be obtained in Icon simply by prefixing an asterisk:

"One went and came.” ? *tab(upto(' .'))

To check the evaluation of what follows the question mark, we must move from the innermost
parentheses out. The value of upto() which is 4 is passed to tab(), the value of which is "One" and the
length of this is reported by the asterisk. Note that so far all this activity is purely internal to the
computer; we would not be aware of what has been going on. To find out, we use the function write()
which prints out the result on the screen:

"One went and came." ? write(*tab(upto(' .'))

Let us review what this means. We have first the string we are processing between double quotes. Then
comes the question mark which means that the string will be scanned and processed by what follows.
We understand what follows by considering the innermost function first. The function upto() returns a
position in the line (of little interest to us) which is immediately fed to tab() which moves the pointer
(its effect) and produces the first word (its value). Observe that tab() has both an effect and a value.
This word is turned over to the asterisk which produces its length, and finally this length is printed on
the screen.

It is true that this is a lot of work to count three letters, but its power is that it can be applied generally
and perform the tedious job of counting words by the millions. Before we do that, however, let us run
this program which can tell us the length of a single word.

In Icon, programs are arranged in procedures which perform separate jobs and collectively make up the
program. There is no absolute rule as to what should be included in a particular procedure, but
arranging programs in this modular fashion greatly facilitates understanding and modification of the
program at a later date. So we arrange the material we have prepared so far as follows:

procedure word_length()
 “One went and came.” ? write(*tab(upto(' .')))
 return
end

Each procedure begins with the word procedure and is given a name we choose which must begin with
a letter or underscore followed by any number of letters, numerals or underscores. It is best to give
simple, descriptive names. The name is followed by the parentheses () which will be used later on to
pass information to the procedure, by including between them as many variables (called arguments) as
are needed to pass that information. The procedure ends with the word end. The indentations simply
help to set off the body of the procedure from the title and the end marker, and aid visually to see the
structure of the program. Later, as the procedures become more complex, further indentation will be
used, rendering it always possible to see which statements belong together since they will be written at
the same level of indentation. The word return will be followed by the final value of the procedure if it
has one, and indicates that the procedure has concluded successfully, and the program flow is to return
from whence it came.

One thing is left to do. Every Icon program has a main procedure which acts like a traffic cop. By
looking at it we can see the skeleton structure of the program, since each procedure mentioned or
"called" in the main procedure is invoked in turn. No real business should be done in the main

9

procedure; it should simply control the flow of traffic. Since our program is quite simple, the main
procedure will invoke only one other procedure to help. The entire program now looks like this:

procedure main()
 word_length()
end
procedure word_length()
 “One went and came.” ? write(*tab(upto(' .')))
 return
end

Procedures do not need to be written in any particular order, but it is usual to place the main procedure
first, since it gives a conspectus of the program to the reader. When the program is executed, it always
begins with the main procedure and follows the pattern laid out there.

Let us now try to run this little program. See Appendix B for help if Icon is not yet installed on your
computer.

When you are sure that the Icon system is available on your computer, enter:

icont - -x

icont is a command to the operating system of your computer which invokes the Icon translator. This
translates the program written in Icon into language (“machine code”) which the computer can use. The
first hyphen tells Icon to take the input from the keyboard, as you are going to type in the program. Be
sure to leave a space after it. The -x gives an instruction to execute the program as soon as it is
translated, to put it into effect immediately. Press return, and in a few moments you will see the
message Translating: which means that Icon is ready to translate your program to a form which it can
understand and run. You will then see the message STDIN: which is the name that Icon gives to a
translation of the program which it creates on disk in a form that the computer can understand. (The
abbreviation stands for "standard input" which is usually the keyboard. The colon is not part of the
name. The word may be in small letters.)

Copy in the entire preceding program. After each procedure, Icon will tell you if you have made an
error. If all is well, it will repeat the name of the procedure possibly along with its size. If you do make
a mistake, it is probably better to start over. Press control-C (hold down the ctrl key and press c and try
again. After you have finished you must type in a character to tell the system that you are finished. This
depends on the system you are using. It may be a control-D (hold down the ctrl key and press d) or
control-z (which is the F6 key on some terminals, or you may hold down the ctrl key and press z.) You
may need to press the Return key also. This should ultimately result in the answer: 3. Since Icon has
recorded on disk the copy of the program that the computer can read under the name STDIN, you can
later repeat the program by typing in that word (stdin) at your command line prompt. (On some
computers you may have to precede it by the word iconx.)

Let us now proceed to process the rest of the line. You will remember that the imaginary pointer was
positioned right after the last letter of the first word. We now have to move it over the intervening
blank. Note that the blank counts as a character. The function upto(), which we have already used,
gives the position immediately before any member of its argument that it finds in the string. The
function many() is the converse of this; it gives the position it finds immediately after all members of
its argument that occur consecutively after the pointer. So

many('. ')

10

will skip over any periods or spaces which it finds immediately after the pointer and stop right after the
last one. In this case the value of many('. ') is 5, which is the position after the space. If we feed this
result to tab():

tab(many('. '))

tab() will move the pointer to the point immediately after the first blank. Its value is itself a space, but
this is of no interest to us and we do not use it. Since the value is not assigned to any variable, or used
as the argument to any function, it is in effect discarded. tab() is used for its effect of moving up the
pointer. However, we wish to repeat this process until the end of the line. We achieve this by inserting
while in front of the write() in our program and do at the end of the line:

 procedure main()
 word_length()
 end
 procedure word_length()
 "One went and came." ? while write(*tab(upto('. '))) do tab(many('. '))
 end

This means: while (or as long as) the instruction to write out a length can be carried out (or succeeds),
do what follows. Let us trace this step by step. Before we introduced this "while-loop" our pointer was
positioned as follows:

Icon now repeats its initial activity. It finds the next blank, gives the value 9 to tab(), moves the pointer
to just before the next blank:

and produces the word "went". The asterisk figures its length at 4 and write() writes it to the screen. This
process continues until the pointer reaches a point before the period:

The function many() then produces 19 after detecting the period, and this 19 is fed to tab(). Now the
pointer is at the end. When the next attempt to "write" occurs, the innermost function upto() fails
because upto() is unable to detect a blank or a period which constitute the argument of upto(). The
failure is "inherited" by all the functions in a chain leading to write(), and none of the failed commands
is carried out. At this point the repetitive action ceases; since the expression between while and do has
failed, and since there are no more commands, the program ends. The length of each word of the
sentence should now be on your screen.

11

2.2 Separating Data and Program
Data may be defined as information presented in a form suitable for processing by your computer. So
far we have been working on an extremely small text in which the text was written right into the
program. While this was a useful way to get started, in general it is not a good idea to do this. It is
better for programs to be of general application, and to achieve this we need to leave the data outside of
the program which processes the data. One way to do this is to input the information from the
keyboard, and this type of interactive computing where the machine responds instantly is very popular
nowadays. Before we do so we have to handle one problem. We have used upto() to detect the presence
of a blank or a period. That was fine in the sentence "One went and came." because each word was
marked off by one or the other. But in a continuous text many lines do not end in any particular marker,
so the last word in the line would not be noticed unless it happened to end in a period, or someone had
inadvertently typed in a space after it, which would not of course be visible on the screen. We can
easily solve this by replacing upto() by many() and using many() to span all the alphabetic letters of
which a word may consist. This would necessitate writing an argument with at least 52 characters in it,
but there is a simpler way. The keyword &ucase stands for a set of all the uppercase (capital) letters and
&lcase represents all the lowercase (small) letters. You can use &letters for the union of these two sets.
We can combine any two csets using a double plus sign (++) which is used for adding sets to each
other. The single plus sign is reserved for arithmetic addition. Using distinct operators helps avoid
programming errors. Note that elements only occur once in a set, so if you add together two sets which
share certain items, the resulting set will have these items once only. Also, you can only add sets to
sets; an element that you wish to add in must be in a set itself, even if that set has only one member. So

 &lcase ++ 'Z'

would give you the set of the lowercase letters and uppercase Z. When we come to learn about sets of
items other than single characters, we shall find that there is a function which can insert an item into a
set. Let us now look at the modified program and consider what the differences are.

procedure main()
 while word_length(read())
end
procedure word_length(line)
 line ? while write(*tab(many(&letters))) do
 tab(many('., ;:'))
 return
end

The effect of the function read() is to get one line of input from the keyboard, and the value returned by
read() is the string which was typed at the keyboard. This is passed to the procedure word_length(). As
you see, this modified procedure now has a variable (line) in its title. This variable will assume the
value of the argument of word_length and can be used in the program. We have here an example of a
perpetual loop. So long as the user inputs a line, the program will process it. In this loop the do is not
necessary since no action takes place in the loop; it simply serves to keep on calling procedure
word_length(). To break out of such a loop you have to enter a character provided by the operating
system to terminate programs. Try control-C (hold down the ctrl key and press c.) When you use these
so-called control characters, it is not necessary to press the shift key also.

There is a more elegant way to end this program. As the first line of the second procedure include:

if line == "." then stop("Bye")

12

The double equals sign checks for string identity, so if the string brought in consists of only a period, it
invokes the function stop() which concludes the program immediately, and writes the message which is
its argument.

2.3 Distribution
So far we have simply been listing word lengths. Now we should like to do the same as before, but we
shall calculate and state how many words the text has which contain one, two, three, and more letters.
For this we need variables in which to store these values as we go along. It would be possible to have,
let us say, ten variables, one each for one-letter words, two-letter words and so on. It is easier however
to use the list which is a collection of variables which all have the same name, distinguished by a
number called an index enclosed in square brackets. If we call the variable letters, then the number of
one-letter words will be stored in letters[1], the number of two-letter words in letters[2] and so on. We
can set up such a variable by entering

letters := list(10,0)

The word list may only be used for this purpose in Icon. It is a function that creates and returns a list
with as many variables as are stated in the first argument, and each has the initial value stated in the
second argument. This list is assigned to a variable which you choose. So in this case, letters has a list
assigned to it with ten values (from [1] to [10]), each of which is initially 0. The arguments are divided
by commas. We chose ten because we are assuming that there will be no words of more than ten letters.
If we assume the number will be higher then we must have a higher number, otherwise the longer
numbers will be unaccounted for. How can we store the desired information in this list?

Previously, we did not store the length of any individual word since we wrote it out immediately. Let
us use the variable length to store this value which we can obtain from the value of the write()
command. At this point the program looks like this:

procedure main()
 while word_length(read())
end
procedure word_length(line)
 letters := list(10,0)
 line ? while length := write(*tab(many(&letters))) do
 tab(many(' .,;:!'))
 return
end

We could have written the second procedure differently. This way is less desirable, but it illustrates an
important point:

procedure word_length(line)
 letters := list(10,0)
 line ? while length := (write(*tab(many(&ucase ++
 &lcase)))) do
 tab(many(' .,;:!'))
 return
end

The third line of the procedure became long, so we broke it into two. Since it is clearly incomplete (++
expects something to follow) Icon will look for the completion on the next line. Icon considers a line to
be a complete statement unless it is clearly incomplete, such as a line which ends in a "+" or similar

13

operator, or a word like else which we shall find in conditional statements. All of these imply that the
next line is also part of the statement. For example, the statement

 n := 2 + 1

would assign the value 3 to n. If we wish to split the line, then

 n := 2 +
 1

would have exactly the same effect. However,

 n := 2
 + 1

would assign 2 and not 3 to n. Since the second line is a syntactically correct statement even though
useless, it will not cause an error, but the result is not what the programmer intended, since the first line
is understood by Icon as a complete statement. We now have a list called letters, and we have recorded
the length of a word in length. In order to store length in letters we can write

 letters[length] +:= 1

The symbols +:= written together mean that what is on the left is increased by the number on the right,
or incremented by that number. Now let us say the word is "a". The variable length will have the value
1 and so the first variable in letters will be incremented. If the word is "please", then the sixth variable
of letters, i.e. letters[6], will be incremented. Now this needs to be done each time we get a new word.
However it is always assumed that the word do is followed by one and only one statement. This is
covered by placing the compound statement inside curly brackets thus:

procedure main()
 while word_length(read())
end
procedure word_length(line)
 letters := list(10,0)
 line ? while length := write(*tab(many(&letters))) do {
 tab(many(' .,;:!'))
 letters[length] +:= 1
 }
 return
end

At this point letters has all the information stored, but no use is being made of it. Now we wish to print
out a table of the length of the letters in our text. It would be a good idea to put this in a separate
procedure since it is conceptually a separate item. But we have a problem. When procedures finish, all
the variables they use are destroyed. This is done largely to save memory. We might fill up the memory
of the computer with variables which we are not currently using. With the increase in the size of
computer memory this is less of a problem than it used to be, but wasting memory is still worth
avoiding. We can solve this by making letters a global variable, one that can be used by all procedures
in the program and does not disappear when the procedure finishes for the time being. We do this right
at the beginning by prefixing the word global. However there is an additional problem which is a little
subtle. Each time the procedure word_length() is called, the assignment of the list to letters will be done
again, with the result that the old list will be destroyed. This could be handled by making this the first
statement in procedure main(), but a better solution is simply to place the word initial before it which
means it will only be done the first time the procedure is called and not subsequently:

global letters
procedure main()

14

 while word_length(read())
end
procedure word_length(line)
 initial letters := list(10,0)
 line? while length := (write(*tab(many(&letters)))) do {
 tab(many(' .,;:!'))
 letters[length] +:= 1
 }
 return
end

It now remains to write a procedure to write out the table, include this procedure in the "traffic cop"
main procedure and our task will be complete. Here it is:

global letters
procedure main()
 while word_length(read())
 printout()
end
procedure word_length(line)
initial letters := list(10,0)
 line ? while length := (write(*tab(many(&letters)))) do {
 tab(many(' .,;:!'))
 letters[length] +:= 1
 }
 return
end
procedure printout()
 every n:= 1 to 10 do
 write("There are ",letters[n]," ",n,"-letter words.")
 return
end

The explanation of printout() is as follows. You will recall that a while-loop executes repeatedly so long
as the expression following the while succeeds. An every-loop by contrast functions so long as the
expression following it produces a result. every-loops are used with Icon expressions called generators
which can produce a group of results rather than only one. The expression 1 to 10 is such a generator,
producing the whole numbers from 1 to 10, one at a time. Here n gets the values 1 to 10 in sequence.
The command write() can take any number of arguments which are separated by commas, and will be
written out one after the other. So the following pattern will be written ten times:

There are [the number of words of a specific length] [the specific length] -letter words.

For example:

 There are 4 5-letter words.

SUMMARY OF ICON FEATURES INCLUDED IN THIS CHAPTER

1. ? invokes the line-scanning facility.

15

2. upto()
value the position in the string after the first letter found in its argument.

3. tab()
value the string between the old and new positions of the pointer.
effect moves up the pointer to the position in its argument.

4. The asterisk returns the length of the following string.

5. Each program has a main procedure which executes when the program is run.

6. icont - -x invokes the Icon translator, expects input from the keyboard, and has the program
immediately executed.

7. many()
value the position in the string after all letters in its argument.

8. write()
value its last argument.
effect writes its arguments to the screen.

9. &ucase and &lcase are sets of the upper- and lowercase characters respectively. &letters is the
union of these two sets

10. read()
value a string read in from the keyboard.
effect reads in a string from the keyboard.

11. A list is a collection of variables that share a name and are differentiated by an integer index
that begins with 1, for example, letters[7] .

12. The successful conclusion of a procedure is indicated by return, which is followed by the value
of the whole procedure if it has one. Note that here return refers to a word written into a
program, and not the key of that name on the keyboard.

13. A global variable is accessible to all procedures. It must be declared at the beginning of the
program.

14. A generator is an expression or a function which may produce a group of results rather than one
result.

15. A while-loop continues so long as its control statement succeeds. An every-loop is used with
generators, and continues so long as the generator produces a result.

16. A command preceded by the word initial is done only the first time the procedure in which it
occurs is used. Such commands should come at the beginning of the procedure.

16

17

3. Storing and Editing Programs in Files

3.1 Making Information that Lasts
So far we have typed in programs from the terminal, and when data had to be input, we have typed that
in too. This is satisfactory only for small programs and small amounts of data. There are two
disadvantages. First, it is difficult to correct errors, either in program or data. If something goes wrong
we have to do it over. Secondly, once the program is over, everything has disappeared. It is often
desirable to retain both programs and data for future use. Also, they may be modified if necessary
without having to start from the beginning. This is achieved by placing the program in a file and having
it use data that is also in a file. A file in this context is a stream of information, and most often refers to
one that has been fixed electronically onto a disk. However, the stream of information coming in from
the keyboard is also technically a file, and so is the one appearing on your screen. It may be possible for
you to hold the disk on which a file is registered in your hand, or it may be hidden away in a "hard" or
"fixed" disk in your computer, or if you are using a time-sharing system it may be miles away and quite
invisible to you. Formerly these files were often created by punching holes in cards that encoded the
programs and data, and were transferred to disk by card reader machines. The most common method
now is to enter the data using a keyboard and screen, and a program called an editor is used for this
purpose. Word processors developed from these editors, but word processors are oriented towards
ultimately printing the materials they handle and so possess features (word-wrap and justification, for
example) which are unnecessary for editors. Many different editors are available with different
capabilities, and choice is a matter of personal preference. Most word processing programs have a
“text-only mode" or “save as text” option which allows them to serve as a program editor. The regular
document mode is not suitable because it employs a binary file format that stores formatting, layout,
and font information that is not allowed in program source code files. In the following section some
hints are given on utilizing a commonly used and readily available editor. Any can be used provided
that it uses the ASCII character set referred to in Appendix A.

Editors perform two major functions:

● They place new material into a file.

● They modify or correct material which already exists.

Of course, they are marvelous tools for many other tedious tasks, such as searching and replacing
words or phrases.

3.2 The Emacs Editor
Emacs is an editor commonly found on the UNIX operating system, but it is not part of UNIX.
(Actually the most widely-used version of Emacs belongs to GNU. GNU stands for: "GNU'S NOT
UNIX." When you ask what that GNU stands for, you discover that you have a definition of a type
known as recursive. Remember the cereal boxes carrying a picture of a boy holding the cereal box?)
Emacs is often available on time-sharing systems, and may be copied freely, subject only to certain
conditions which are stated in the documentation. Emacs is also available for personal computers. On
Apple OS X and Linux systems, Emacs may be included in the software. To start Emacs you can type

emacs average.icn

18

which creates a file of that name, and you may proceed immediately to enter your text. You should use
lowercase letters on the command line. You make the file permanent by holding down the Ctrl key and
pressing x, releasing the Ctrl key and then pressing s (for save). On some systems you may need to
continue pressing Ctrl. (If you find that your computer "freezes" when you press Ctrl-S, pressing Ctrl-
Q should get it going again.) You leave Emacs by holding down the Ctrl key and pressing both x and
then c.

Emacs has an enormous number of features, far more than most users ever need. Some of the most
important will be described here. However, Emacs has a built-in tutorial which will acquaint you with
the main features, and also an information tree which can be used as a reference. There is a convenient
“cheat-sheet” at http://ccrma.stanford.edu/guides/package/emacs/emacs.html

In order to use the tutorial, type in

emacs

without naming a file. Then type in Ctrl-H (hold down the Ctrl key and press h) followed by T. The
Ctrl-H summons up the "Help" facility, and t stands for Tutorial. You then simply follow instructions
and are led through the main features.

Here are some of the major features of Emacs. Control-V (for view) enables you to page down through
the file. Pressing the escape key and then V does the same thing in the opposite direction. It is worth
pointing out that the control key modifies another key, much as the shift key does, so it must be held
down while pressing the next key. The escape key, however, produces a character in its own right even
though it is not normally visible on the screen, so it should be released before pressing the following
key. Cursor control is achieved through control-F (forward), control-B (back), control-P (previous
line), and control-N (next line). You can also use the arrows on the keypad. Control-L retypes what is
currently on the screen around the current position of the cursor. Escape followed by the "less than"
sign (which points back) takes you to the beginning of the file, and followed by the "greater than" sign
(which points forward) takes you to the end. The backspace key deletes the character immediately
before the cursor, and the delete key or control-D (for delete) deletes the character over the cursor.
Control-K (for kill) deletes to the end of the line. This may be reversed by control-Y (for yank). This
last feature may be used to move lines around the screen; kill the line, move the cursor to another place,
and then yank it. The work you are doing is being held in a buffer, which is temporary storage. To
make it permanent at any time press control-X and then s (for save).

Emacs does have automatic save features which mean that you are unlikely to lose too much work if
there is some kind of breakdown involving your computer, but it is advisable to save explicitly from
time to time. You can leave Emacs by pressing control-X and then control-C. Your implementation
may allow you to leave Emacs temporarily (probably to tryout a program) by pressing control-Z and
then you can return to the place you were with the command fg or possibly %emacs.

These commands are sufficient to get started with Emacs. You may also wish to look at the information
tree. You can do this by summoning the help facility (control-H, or a local substitution) and then
entering i for info.

3.3 Running an Icon Program From a File
We now have to learn how to handle a file containing a program so that the program can be run, and
later how we bring data which is stored in a separate file into our program. This distinction between
program and data is fundamental. In knitting we may compare the knitting pattern to the program and
the yarn to the data. The yarn is manipulated on the basis of the pattern. In cooking we may compare

http://ccrma.stanford.edu/guides/package/emacs/emacs.html

19

the recipe to the program and the ingredients to the data. The ingredients are reformulated in
accordance with the recipe. Formerly programs and data were kept in different types of files, but that is
no longer necessary. Files containing Icon programs must end in a period and the three letters icn.
There are differing conventions as to the format of filenames, but generally if you keep them
reasonably short and stick to alphabetic and numeric symbols, you will come up with valid filenames.
Unlike the variables in an Icon program, filenames may begin with a numeric symbol. The Icon system
takes this file and converts it into a machine-readable form. It takes the file name, chops off the period
and "extension" as it is called; the three letters icn and this truncated form of the name become the
name of the machine-readable file. In some implementations of Icon, the machine readable file ends in
the extension icx. The original file (called the source file) continues to exist of course, and may be
subsequently modified and reprocessed if necessary. The earlier machine-readable file will be replaced
by doing so.

Let us say that we have created a file called average.icn which contains an Icon program. We type in

icont average

which submits the file average.icn to the Icon translator. Some intermediate files are created by the
Icon system, but since they are later deleted, the programmer need not normally know anything about
them. We may then make this translated file operate by typing in

./average

whereby Icon executes the translated file which it has created. On some systems you say “iconx
average”, since the Icon executable files are in fact executed by a virtual machine named iconx. Icon
files normally do not stand alone; the Icon system must be present when they are executing. Once an
Icon program has been translated into an executable machine code file, the program may be rerun at
any time by repeating the execution command (“./average” or “iconx average”). We may also perform
the two steps on one line thus:

icont average.icn -x

where the -x argument tells the system to execute the file as soon as it has been processed. We shall
learn how to handle data placed on a file in the next chapter.

This chapter covered writing Icon programs in a text editor and storing them in named files. While it is
desirable to get accustomed to using a full-featured programmer's text editor, which ultimately saves
time, it is quite acceptable to use the simple editors Notepad (on Windows) or TextEdit (on Apple OS)
for writing programs. Even word processors such as Word can be used, but in all cases it is necessary to
ensure that the output is in simple text format, without the hidden extras that Word and similar
programs insert by default for their own purposes.

20

21

4. Graphs

4.1 Histograms
Now that we can record both data and programs in a permanent form, let us see how we may construct
a frequency distribution graph in the form of a histogram and get it onto the screen. We want to
represent the word lengths (from 1 up) along the horizontal axis so that the first spot represents words
of one letter, the second spot words of two letters and so on. The vertical axis represents the number of
words of each type (from 0 on up) starting from the bottom of the grid. Using "X" to fill a particular
spot in the grid (since, for the moment anyway, we do not have access to the traditional rectangle) we
get a figure that may look like this. Icon also has elegant 2D graphics facilities; see “Graphics
Programming in Icon”, by Griswold, Jeffery, and Townsend.
 X X
 X X
 X X
 X XX
 X XX
 X XX
 XXXXX
 XXXXX
 XXXXX
 XXXXXXX
 XXXXXXXX
 XXXXXXXXXX X
 XXXXXXXXXXXX
XXXXXXXXXXXXX X
XXXXXXXXXXXXXXXX

There ought, of course, to be some indication of what the X's signify, but we can ignore that for the
moment. When we draw such a figure by hand it is natural to start at the base at the 0,0 coordinates and
move left-to-right and upwards. Although techniques (known as "cursor control") can mimic this, it is
more natural for the computer to start printing out at the top and move down in its normal manner. Let
us assume for the moment that there will be a maximum of thirty words in any column (up-to-down)
and a maximum of ten letters per word in any row (left-to-right). Starting at the row representing thirty,
we need to move along it ten times, inserting an X if there are thirty words for that particular column
and a blank if there are not. This will then be repeated for row twenty-nine, inserting an X if there are
twenty-nine or more words for that particular column, and a blank if there are not. We can express the
movement down the columns by

every n := 30 to 1 by -1 do

Each time this statement is reached, every will call up the next value counting down by -1 so each time
the value of n is reduced by 1. The expression 30 to 1 by -1 is an Icon specialty called a generator,
which we met in the last chapter counting up from 1 to 10. It produces a group of values
{30,29,28...3,2,1} and every effectuates a loop that keeps on going just so long as the generator
continues to produce something (which in this case is assigned to n and can be used inside the loop).
We can express the movement along the rows by

every p := 1 to 10 do

22

It is not necessary to express the "by +1" (although we may put it in if we wish) since this is assumed if
no other value is mentioned. Such an assumed value is known as a default. The number of the iteration
at any particular time is stored in the variable p, just as before. We now place the "row loop" inside the
"column loop":

every n := 30 to 1 by -1 do
 every p := 1 to 10 do

In this way the p-loop will itself be performed thirty times. During each iteration of the p-loop the value
of n will be constant, while that of p increases each time. This procedure is then repeated, with the
value of n being reduced by 1. Now we have to extract the information contained in the list letters. At
each point on the grid we want to put in an X if the p-th item in the list contains a number equal to or
greater than n. This is a good example how variables enable the computer to be a general machine and
is expressed by the command

 if letters[p] >= n then writes("X") else writes(" ")

There are several things to notice. First, the function writes() writes its argument to the screen, but
unlike write() does not then proceed to the next line. When we get to the end of each row we are going
to have to use write(), with its argument omitted, not to write anything, but simply to proceed to the
next line. Second, the blank must be written expressly and comes in the other leg of the if-statement,
beginning with the word else. Finally we need to note the symbol >= which means "is greater than or
equal to." We now have:

 every n := 30 to 1 by -1 do {
 every p := 1 to 10 do
 if letters[p] >= n then writes("X") else writes(" ")
 write()
 }

The curly brackets are needed because the outer loop has within it two statements (the inner loop and
the command to proceed to the next line when that loop finishes). Now do expects to be followed by
only one command; if there are more than one, they must be enclosed within curly brackets. Notice
how the indentation indicates the structure. The second every statement is controlled by the first, and so
is indented. The if statement is controlled by the second every statement, and so is indented further. The
write() statement is controlled by the first every statement, and so has the same indentation as the
second every statement. Indentation is optional, but very helpful when looking at programs
subsequently. The complete procedure now looks like this:

procedure histogram()
 every n := 30 to 1 by -1 do {
 every p := 1 to 10 do
 if letters[p] >= n then writes("X") else writes(" ")
 write()
 }
end

If we call this procedure from the main procedure, our program looks like the following. The function
getch() waits for the user to strike any key. Reading user input after read() has already failed
(indicating end-of-file) is a bit underhanded, but it works on most interactive terminals.

global letters
procedure main()
 while word_length(read())
 write("Hit any key to continue")
 getch()

23

 printout()
 write("Hit Return to continue.")
 getch()
 histogram()
end
procedure word_length(line)
local length
initial letters := list(10,0)
 line ? while length := (write(*tab(many(&letters)))) do {
 tab(many(' .,;:!'))
 letters[length] +:= 1
 }
 return
end
procedure printout()
local n
 every n:= 1 to 10 do
 write("There are ",letters[n]," ",n,"-letter words.")
 return
end
procedure histogram()
local n, p
 every n := 30 to 1 by -1 do {
 every p := 1 to 10 do
 if letters[p] >= n then writes("X") else writes(" ")
 write()
 }
 return
end

getch() expects to get a single character from the keyboard, thus dividing up the sections of the
program for easier reading. There is also a function getche() which expects a single character, and
echoes it to the keyboard. That is not needed here, but is useful if you wish the user to enter “y” (yes) or
“n” (no), as its value can be used to input the user's choice to the program, for example:

 write("Do you wish to continue? y/n")
 answer := getche()
 if answer == "n" then stop()

Note that we specified n and p as local variables which function only in the procedure histogram, and
we added return at the end of the procedure. The procedure would have worked quite well without
these, since variables are assumed to function only within their procedure unless they are specified as
global, and return is similarly unnecessary, because the entire program concludes at this point anyway,
but it is good practice to specify local variables, and to make the procedure return properly. Local
variables are specified by placing the word local at the beginning of the procedure followed by the
names of the variables separated by commas.

4.2 Reading Data From a File
We have already learned how to record the program in a permanent form and run it from the file in
which it has been preserved. It is also possible, and often desirable, to record the data in a file. The
program then reads the data from the file instead of reading from the keyboard. Using Emacs, or any
other editor which uses the ASCII character set, create a file called sample.txt and type in a paragraph

24

of text from a novel, poem, or any other source. We are distinguishing Icon source files by the
"extension" icn and files containing texts by the extension txt. Instead of using the keyboard we wish to
pull in the information from sample.txt, and we need some way of referring to this file in the program.
The name itself will not do, since its value is simply a string of characters. Icon possesses a function
open() which takes such a string as its argument, readies the file by that name for reading, and produces
a value, which, unlike the string that names the file, can be used to reference it. This is then assigned to
a variable of our choice:

 infile := open("sample.txt")

The main procedure now reads as follows:

procedure main()
local infile
 infile := open("sample.txt")
 while word_length(read(infile))
 close(infile)
 write("Hit any key to continue")
 getch()
 printout()
 write("Hit any key to continue")
 getch()
 histogram()
end

Material will now be read in, a line at a time, from the input file which is called "sample.txt" and is
represented by the variable infile. When read() attempts to produce material from the file after the last
line has been read, read() fails and the program moves on to the next item. When we have finished
using the file we close it, using the function close(). In this instance there is no need to assign the value
of close(), if any, to a variable since it would not be useful for any purpose. It is a good idea to close a
file when it is not needed any more, since there may be limits on the number of files that can be open at
one time. If this is omitted, however, Icon automatically closes all files when the program finishes.

The program as it stands at this point can only read from a file called sample.txt, which places a limit
on the usefulness of the program. It is not general enough. It is worthwhile then to set up a separate
procedure which will allow the user to specify what file is to be used. The value of this procedure will
be the name of the file which the user wishes to use. Previously we have not used the values returned
by procedures, but in this case it will be convenient to do so:

procedure getfilename()
 local filename
 write("What is the name of the input file?")
 filename := read()
 return filename
end

In this procedure we prompted the user to give the name of the file, and then returned it as the value of
the procedure as a whole. In the preceding program, then, we replace the command

 infile := open("sample.txt")

by

 infile := open(getfilename())

25

After getfilename() returns the name of a file, we attempt to open it and assign it to infile. There is one
further refinement which is desirable. What would happen if the user specified a file which does not
exist? As it stands there eventually would be a run-time error; that is to say, the Icon system would
stop the program and issue a message stating that it attempted to read from a file that does not exist.
These messages, however, are meant for you as a program developer, not for the end user. To avoid the
user getting a message which might not be understood, instead of the command

 infile := open(getfilename())

we can write

 (infile := open(getfilename()) | stop("File does not exist!")

In this case Icon will try first to execute the command, now within parentheses on the left. The upright
bar specifies an alternative ("or") in the event that that command cannot be fulfilled. The function
stop() simply stops the program dead in its tracks and writes on the screen the message, if any, which is
its argument. This enables us to stop the program gracefully in a manner of our own choosing if
continuance is impossible, rather than having the Icon system throw up its hands in disgust and declare
that the programmer did not allow for the user's carelessness.

There is an alternative possibility. We can set up a loop that will only function if the attempt to open a
file is unsuccessful. It will then solicit a new attempt by the user. When eventually the user enters an
appropriate filename, the loop ceases:

 while not (infile := open(getfilename())) do
 write("File cannot be opened. Please try again.")

In effect this means: "If the attempt to open the file is not successful, then enter the loop; otherwise
continue." After the logical expression not it is a good idea to put what it controls in parentheses,
otherwise it may attach itself to part of what follows with unexpected results. If we wish, we may use
the word until instead of while not. Our program has now expanded to the following:

global letters
procedure main()
 local infile
 while not (infile := open(getfilename())) do
 write("File cannot be opened. Please try again.")
 while word_length(read(infile))
 getch()
 printout()
 getch()
 histogram()
end
procedure word_length(line)
 local length
 initial letters := list(10,0)
 line? while length := (write(*tab(many(&letters)))) do {
 tab(many(' .,;:!'))
 letters[length] +:= 1
 }
 return
end
procedure printout()
 local n
 every n:= 1 to 10 do
 write("There are ",letters[n]," ",n,"-letter words.")

26

 return
end
procedure histogram()
local n, p
 every n := 30 to 1 by -1 do {
 every p := 1 to 10 do
 if letters[p] >= n then writes("X")
 else writes(" ")
 write()
 }
 return
end
procedure getfilename()
local filename
 write("What is the name of the input file?")
 filename := read()
 return filename
end

4.3 Refining the Histogram
If you try the preceding program you will see that the histogram is very crude. It is squeezed into the
left-hand side of the screen. If a text is chosen that has more than twenty or so examples of a word of a
particular length, the top of the histogram will run off the screen. And the X's are not very attractive.
Let us try to remedy these failings in turn. Icon possesses a function right() which produces the string
which is its first argument padded out by blanks on the left so that it fills up a string the length of its
second argument. Thus write("hi") will produce

hi

on the screen. write(right("hi" , 10)) will produce

 hi

on the screen, that is "hi" preceded by eight blanks to make up a total of ten. Accordingly, right before
the p-loop in histogram() we can add

writes(right(" ",10))

which will place ten blanks at the beginning of each line. If we would like to start the line with the
value at the point of the vertical axis we could use the corresponding function writes(left (n, 2)) which
will write the value of n left-justified in two spaces. Thus whether the numeral printed out has one or
two digits, the columns of the histogram will be in proper order. The second problem can be solved by
scaling. If we take the statement

every n := 30 to 1 by -1 do {

and change the steps, the value of a particular X is augmented. Thus 85 to 5 by -5 would allow for a
total of 85 occurrences of words of a particular length, and each X would be equivalent to five
occurrences. This will occupy only 18 lines on the screen and will of course treat occurrences of less
than five as a non-event. These numbers can be adjusted in any way convenient.

Finding something to replace the X is a little more complicated because it involves using characters
which cannot be input from the keyboard, and is dependent on the particular kind of screen you are
using. All the characters of the ASCII character set have a number. Icon has a function char() which

27

takes a number as its argument and returns the corresponding character as its value. So the value of
char(65) is the uppercase A. As an exercise let us try to write a procedure to mimic what char() does.
Let us call it chr(). Now Icon has several standard sets of characters. Such useful standard values are
called keywords and are preceded by the character &. Thus &ucase is the set of all the capital letters
from "A" to "Z". &lcase is the set of all the small letters from "a" to "z". &letters is the two previous sets
combined. &digits is the set of numbers from "0" to "9". &ascii is the set of 128 ASCII characters from 0
to 127. &cset is the set of all the 8-bit characters from 0 to 255. This latter is known as the extended
ASCII set. The characters from 128 to 255 may or may not have a graphic representation, according to
the local conditions under which you are working. All we need to do is to find the correct character in
the set and return it as the value of the function. This is achieved by the following:

procedure chr(n)
 if integer(n) then
 &cset ? {
 move(n)
 return move(1)
 }
end

&cset is actually a set, in which the order of the components is not significant, but Icon converts this
set to a string for this purpose. These automatic conversions are characteristic of Icon. They contribute
to Icon's status as a "high-level" programming language and certainly save time for the programmer.
Function move() moves that imaginary pointer as many slots as have been put into the procedure. Since
the first character is number 0, the value of move(n) is a string from the beginning of the set right up to
the character we wish to capture. Since this string is of no particular interest to us, no use is made of it
and it is discarded. But the pointer has been moved up, and by moving it up one more and returning
that one-character string as the value of the function, our goal has been achieved. Note carefully the
difference between move() and tab(). The first moves up the pointer by adding the number of its
argument to the current position of the pointer in the string. The second moves it to the position in the
string stated in its argument. So if you are starting at the beginning of a string, move(2) brings you to
position 3 (since the first position is numbered 1), whereas tab(2) brings you to position 2. Try running
the following:

procedure main()
 printout()
end
procedure printout()
local n
 every n := 0 to 255 do {
 writes(right(n,3) ,"=" ,char(n)," ")
 if n % 13 = 0 then write()
 }
end

Now, if you like, you can change char to chr, include the chr() function in the program and satisfy
yourself that it works in exactly the same way.

Using the right() function in printout() ensures that most of the characters are lined up appropriately.
The result is not completely satisfactory because when some characters are written to the screen they
cause special movements of the cursor, such as number 8 which causes a backspace. The percent sign
represents the arithmetic modulo, i.e., it gives the remainder of n divided by thirteen. This ensures that
a maximum of thirteen items are included on each line, each item including the ASCII number, an

28

equal sign, the corresponding character, and a space. For clearer examination of the characters 128 and
over, change

 every n := 0 to 255 do {

to

 every n := 128 to 255 do {

and

 if n % 13 = 0 then

to

 if n % 13 = 0 then { write(); write() }

The semicolon causes the following command to be considered as if it were a separate command
written on another line. The extra pair of curly brackets is necessary so that both occurrences of write()
are part of the then clause. Try leaving them out, and figure out why the effect on the screen is what it
is. Also, try changing n % 13 = 0

to

 n % 13 = 10

and figure out why it produces a better-looking result on the screen.

Returning to our original problem, if we are lucky, we now have a choice of graphic-type characters
that we might use to replace the X. 171, 177, 178, 219 may be possible candidates. Substitute char(171)
(or another number) for the "X". In implementations that do not use the ASCII characters 128 to 255
for any graphic representation on the screen, you may try characters 24 and 26 which sometimes are
represented by a rectangle on the screen. Unfortunately Icon on the Apple terminal has no graphic
representation for the ASCII characters lower than 32 or higher than 126. However, by "writing" any of
the characters 7 through 13 certain things happen with which you can experiment. For example, writing
char(7) caused a bell to ring on the old teletype machines; strangely, this is represented on the Apple by
a dull thud. It might be used to draw the users attention:

write(char(7),char(7),char(7),"Listen up!")

SUMMARY OF ICON FEATURES

1. The expression by -1 may be used in Icon to count down a loop.

2. A group of commands included inside curly brackets is treated as though the whole was a single
command.

3. return is followed by the value of the function, if any, and indicates that the function has succeeded.

4. open()
value a file variable which may be used in a program to reference a file.
effect prepares a file for use in a program.

5. close()
value its value is not useful, since the file it references is closed.
effect closes a file, and prevents it from being further used in the program.

29

6. The upright bar (|) is the logical “or”. If the expression preceding it fails, the one following it is tried.

7. stop()
effect concludes the program as soon as the message, if any, in its argument has been printed on the
screen.

8. right() and left() control positioning on the screen by padding out the string which is the first
argument by the number of blanks stated in the second argument. An optional third argument may
use some other string instead of a blank

9. getch() and getche() both make the program await the input of a character by the user. The second
echoes the character entered to the screen. The term “echo” means that what appears on the screen
has been input by the user, and is not output from the program.

10. Keywords are preceded by an ampersand sign and contain useful values. Keywords presented back
in chapter 2 included &ucase and &lcase, the upper- and lowercase character sets, and &letters, the
set of upper and lower case letters. &digits is the set of numeric digits from 0 to 9. &ascii is the set of
the first 128 ASCII characters. &cset is the set of all 256 characters.

11. The percent sign produces the remainder of the numeral before it divided by the numeral after it.

12. move()
value the string between the old and new positions of the pointer.
effect moves up the pointer in a string being scanned the number of places stated in its argument.

30

31

5. Measures of Central Tendency

5.1 The Mode
The mode represents the most common value, even though values almost as common may be very
different from it. Our task is to take a text, divide it into three sections, and find the most common
word-length in each. The task can be divided up as follows, and these subtasks will correspond to
procedures in the program:

1. Get the name of the file containing the data and make sure that it actually exists.

2. Count the number of words in the file and divide by three.

3. Find out how many words of length 1 to 20 there are in the first third, find the most common value
(the mode), and print out the results on the screen neatly; repeat this operation for the remaining
two-thirds.

At this point it may prove convenient to devise a procedure which pulls a single word from a file every
time it is called until the end of the file is reached. This procedure becomes in effect a "black box" as it
is called; at one end an entire file enters, at the other the words pour out in sequence. Once we have the
procedure, we can forget about how it works, and this is what the black box is: a machine which works
without requiring the owner to know how. We just have to be sure to give it the right input and use the
output appropriately. Our procedure operates much as a food processor turns vegetables into soup,
although turning soup into vegetables might be a closer analogy. We first need to define the characters
which may occur in words and the punctuation marks (including the space) which mark them off. This
may be achieved tentatively by:

 chars := (&letters ++ &digits ++ '\'-')
 punct :=' .,?";:!'

The double plus signs are used for adding sets, an operation that is often called a set union. We add the
set of letters to the numerals, the dash, and the apostrophe. Note that the apostrophe (or "single quote")
is preceded by a backslash. If we did not put it in, Icon would assume we meant it as the closing marker
of the set which is marked off by single quote marks. There is a slight problem here: Does the word
"boy's", for example, contain four letters or five? This is really a matter of definition, involving perhaps
a distinction between letters and characters, and for our purposes it will be simpler to assume five in
this case. We can cope with this problem later if necessary. Another problem will occur if single quote
marks are used in the file much as double quote marks are used. This problem too can be coped with if
necessary, but for the moment we may want to be sure that our data uses single quote marks only as
apostrophes. We let the procedure know the name of the relevant file by including a variable in the
parameters of the procedure, i.e., in the parentheses which follow the procedure name. The procedure
heading will then be:

 procedure getword(filename)

This file is opened by:

 filvar := open(filename)

The function open() takes the filename, prepares the file for reading and assigns a file value to the
variable filvar. Note the difference between the value of filename and filvar. The first is a string of
characters which is the name of the file. The second is the file itself. We assume that a check has

32

already been made that a file of this name actually exists, and will discuss this later. We are now free to
read a line from the file and chop it up into words much as we did before. Instead of using return to
precede the value that will be the value of the procedure, we use suspend. This returns a value just like
return, but leaves everything in the procedure in place so that it can continue when called again in a
loop. Normally, when a procedure returns, all the variables it has employed disappear, thus making
room in the memory for storing other necessary information. But in this case a loop like

 every write(getword(filename))

will produce every word in the file and write it to the screen. Here now is our complete procedure:

procedure getword(filename)
#This procedure produces one word at a time from the file
local chars, punct, filvar, line, word
 chars := (&letters ++ &digits ++ '\'-')
 punct:='.,?";:!'
 filvar := open(filename)
 while line := read(filvar) do
 line ? {
 tab(many(' ')) #skip leading blanks
 while word := tab(many(chars)) do {
 tab(many(punct))
 suspend word
 }
 }
 close(filvar)
end

This procedure should always be used to process the entire file. If it is stopped at some point in the
middle, and later resumed, the results may be unexpected.

For the first time we have added a comment. When Icon sees the pound sign # (also known as the
number sign or crosshatch) it ignores it and the rest of the line. This enables us to make comments to
aid the understanding of the program. These comments are written in normal English and can be as
long as desired, provided each line or part of line begins with #. Another comment explains that we
move up the imaginary pointer until just after any blanks that begin a line. This refers to indentation of
course. When the file has been completely read, an attempt to read again fails, and the file is closed.

The preceding procedure makes it an easy matter to count the number of words in a file:

procedure countfile(filename)
#Counts the number of words in a file
local total
 total := 0
 every getword(filename) do total +:= 1
 return total
end

Here we pass the name of the file (previously checked) to this procedure which simply calls getword()
and counts the number of times that it works. This is done by setting the value of a local variable
(called here total) to zero and incrementing it on each turn of the loop. The value of total becomes the
value of the procedure. This can be captured by assigning it to a variable, or using it as the argument for
some other function.

33

We mentioned that we have to have some way of getting a filename from the user and checking that the
file actually exists. We suggested two ways of doing this: checking and stopping the program if the file
does not exist, or alternatively keep on asking the user for a filename until a valid filename is received.
It is possible to combine these two approaches. We can give the user a fixed number of tries, and then if
it still isn't right, halt the program:

procedure get_valid_filename()
#This procedure gives user three chances to select a file
local filename
 every 1 to 3 do {
 writes("What is the name of the input file? ”)
 filename := read()
 if close(open(filename)) then return filename else
 write("Unable to open file.")
 }
 stop("Bye!")
end

Let us first look inside the every loop. The program solicits a filename which will be typed on the same
line as the question since writes() was used, and does not issue a carriage return. (There is a blank at the
end of the question to make a small division.) Whatever is read in from the keyboard is stored in the
variable filename. The command

 close(open(filename))

attempts to open the file and immediately close it. The value produced by open() is passed immediately
to close(). If the attempt is successful, then the string of characters which constitutes the name of the
file is immediately returned as the value of the procedure, jumping clean out of the loop and the
procedure. If this is not the case, a message is given to the user and the process is repeated. This can
only be repeated a total of three times. If the third attempt fails, the loop is left normally, and the
program is stopped with a farewell. You might ask why the file is not left open, since presumably we
plan to use it. It is probably best to allow the procedures that need it to open their own files and close
them when finished. Closing the file enables the next procedure which needs the file to start at the
beginning. If a file is left open after use, we remain at the point reached in the file, which will generally
be the "end of file" or EOF, as it is known. In this case there would be no problem, since the file has
not been read, but it is best to get accustomed to closing files as soon as they are no longer needed.

Now we have to consider a procedure to do the actual work of processing the information we wish to
display. The procedure getmodes(filename) receives the name of a valid filename from the main
program, and will read as follows:

procedure getmodes(filename)
#Does the main work of the program
local filelength, limit, section, counter, letters, word
 filelength := countfile(filename)
 limit := (filelength / 3)
#Section is the numeric name of one of the sections of the file
 section := 0
#Counter triggers a printout when it reaches limit
 counter := 0
 letters := list(20,0)
 every word := getword(filename) do {
 #Increment the appropriate element in the
 #list of word-lengths

34

 letters[*word] +:= 1
 counter +:= 1
 if counter = limit then {
 #Increment the section number, pass it to
 #printout() with the list
 printout(section +:= 1, letters)
 #Reinitialize letters and counter
 letters := list(20,0)
 counter := 0
 }
 }
 return
end

The procedure contains a rather large number of local variables. The variable filelength holds the
number of words in the file, and is found by using the procedure countfile. This number is divided into
three and the result stored in the variable limit which is the number of words in each of the three
sections we shall consider. The expression

 limit := (filelength / 3)

contains an example of integer division. If one whole number is divided into another whole number, the
result will be a whole number with any remainder discarded. Note that the number is not rounded to the
nearest number, it is rounded down. To compute a result with a decimal, use 3.0 rather than 3. This is
not necessary here where we have no need to handle fractions of words. In this instance the variable
filelength is not used much and we could save a variable by replacing the two commands

 filelength := countfile(filename)
 limit := (filelength / 3)

by

 limit := (countfile(filename) / 3)

The variable section will be used to number the sections when we print them out. We shall make its
initial value 0, then right before each time we use it, we shall increase its value by one. Similarly, the
variable counter is initially zero, and will have its value increased by one each time we pull a word.
When it reaches the limit, which is one-third of the file, it will trigger a printout of results so far,
enabling the process to start over. The variable letters is a list of twenty variables, which will be used to
hold the number of occurrences of a particular word length. Thus if there are five occurrences of four-
letter words, the value of letters[4] will be 5; if there are ten occurrences of two-letter words, the value
of letters[2] will be 10. The initial value of each member of the list is 0, and there are twenty members
because we suppose that is the maximum likely length of any word in English. (The number would
have to be higher for German, for example.) The variable word holds the current word that we are
dealing with. Now let us see how the procedure works. A word is extracted from the file by getword().
Its length is ascertained by prefixing an asterisk and this is used as the index of the list

 letters[*word]

which is increased by one. Each time we do this we check if the number of times it has been done is
equal to the limit of one-third of the length of the file. When this occurs, we take time out to print what
we have achieved so far by calling printout(), and when that has been done, return to getmodes(), reset
the counter and all the elements of the list to 0 and start over with the next section of the text.

35

Now let us see what this diversion to printout() achieves. This procedure receives two pieces of
information: the number of the section (from one to three) on which it is currently working, and the list
containing the information which getmodes() has acquired. There are three local variables:

● greatest—holds the greatest value in the list.

● n—holds the current index from 1 to 20.

● mode—holds the index which points to the greatest value at any particular time, ultimately
pointing to the greatest value of the entire list.

We simply print out the values in the list from the top down, and compare greatest which is initially
zero with the particular value. If the value is greater, it replaces the current value of greatest and that
particular index becomes the mode, and is stored in the variable mode. At the end we print that out too,
and go back to getmodes(). Our complete program is now as follows:

#This program divides a text into three parts, finds the
#number of words of length 1-20, prints out a list of
#each and gives the mode in each case.
procedure main()
 getmodes(get_valid_filename())
end

procedure get_valid_filename()
#This procedure gives user three chances to open a file
local filename
 every 1 to 3 do {
 writes("What is the name of the input file? ")
 filename := read()
 if close(open(filename) then return filename else
 write("Unable to open file.")
 }
 stop("Bye!")
end

procedure getword(filename)
#This procedure produces one word at a time from the file
local chars, punct, filvar, line, word
 chars := (&letters ++ &digits ++ '\'-')
 punct := ' .,?\";:!'
 filvar := open(filename)
 while line := read(filvar) do
 line? {
 tab(many(' ')) #skip leading blanks
 while word := tab(many(chars)) do {
 tab(many(punct))
 suspend word
 }
 }
 close(filvar)
end

procedure countfile(filename)

36

#Counts the number of words in a file
local total
 total := 0
 every getword(filename) do total +:= 1
 return total
end

procedure getmodes(filename)
#Does the main work of the program
local filelength, limit, section, counter, letters, word
 filelength := countfile(filename)
 limit := (filelength / 3)
#Section is the numeric name of one of the sections of the file
 section := 0
#Counter triggers a printout when it reaches limit
 counter := 0
 letters := list(20,0)
 every word := getword(filename) do {
 #Increment the appropriate element in the list of word-lengths
 letters[*word] +:= 1
 counter +:= 1
 if counter = limit then {
#Increment the section number, pass it to printout() with the list
 printout(section +:= 1, letters)
#Reinitialize letters and counter
 letters := list(20, 0)
 counter := 0
 }
 } #end of the every loop
 return
end
procedure printout(p, L)
#prints out the info. p is the section no., L is the list.
local greatest, n, mode
#Assume the lowest possible value for the most occurrences #& correct it
 greatest := 0
 write("Section no. ", p, ".")
 write("Length Number Such")
 every n := 20 to 1 by -1 do {
#Arrange info in columns
 write(right(n, 2),right(L[n], 12))
#Update greatest and mode if necessary
 if L[n] > greatest then {
 greatest := L[n]
 mode := n
 }
 } #end of the every loop
 writes(" ", "Mode = ", mode)
 write(right("Press any key to continue.", 52))
 getch()
 return
end

37

5.2 The Arithmetic Mean
The substitution of the arithmetic mean or average for the mode is quite simple. The procedure
printout() needs to know the number of words with which it is dealing so that it can figure the mean.
We achieve this by making limit a global variable, which means that it can be used by all procedures in
the program. So we declare this variable at the very beginning of the program preceded by the word
global. We remove it as a local variable in getmodes() which perhaps now we should call getmeans().
It would be possible to pass this value to printout(), but since it never changes there is not much point,
and it might as well be stored once for all in limit. The beginning of our program will now read as
follows:

#This program divides a text into three parts, finds the
#number of words of length 1-20, prints out a list of
#each and gives the mean in each case.
global limit
procedure main()
 getmeans(get_valid_filename())
end

We set up a local variable in printout(), letter_total, to hold the total number of letters. letter_total is
initialized to 0, and at each turn of the loop we increase it by the value of L[n] multiplied by n (i.e., the
number of words multiplied by the number of letters in those words). So our revised printout() will look
like this:

procedure printout(p, L)
#prints out the info. p is the section no., L is the list.
local letter_total, n
 letter_total := 0
 write("Section no. ", p, ".")
 write ("Length Number Such")
 every n := 20 to 1 by -1 do {
 # Arrange info in columns and figure letter total
 write(right(n, 2), right(L[n], 12))
 letter_total +:= (n * L[n])
 }
 #Write out the mean
 writes(" ", "Mean = ", real(letter_total) / limit)
 write(right("Press any key to continue.", 52))
 getch()
 return
end

Note that we convert one of the items in the division to a real number (i.e., one with a decimal point) so
that the result will be precise. If arithmetic functions are performed on numbers of which at least one is
real, the answer will be real. The function real() converts an integer, or a string if feasible, into a real
number. One question arises. What would happen if the file were empty? It might appear that we
should divide by zero and thereby cause a run-time error. In point of fact there is no problem, because
getword() will fail as soon as it is called, with the result that printout() will not be called at all.
However, this is something to watch for. It is always a good idea to test a program by offering it
unusual data, such as an empty file.

38

5.3 The Median
In order to figure the median, only printout() needs to be changed from the form it took in the previous
version of our program, although we may wish to change the name getmeans() to getmedians(). First
we must get a list of cumulative frequencies, based on the list of frequencies which was prepared in
getmedians(). We set up this totally distinct list in the same way as before:

 lcf := list(20, 0)

We now have a list called lcf containing twenty elements initialized to zero. The first value in the list is
identical with the first value in the frequencies list:

 lcf[1] := L[1]

We then increment each value of the cumulative list by the next value in the frequencies list, and that
becomes the next value of the cumulative list:

 every n := 2 to 20 do
 lcf [n] := (lcf [n - 1] + L[n])

Our list of cumulative frequencies is now complete. The parentheses are put in to ensure that the
addition is done before any assignment is made to lcf[n]. Items within parentheses are always computed
first, and their use may avoid an incorrect computation. It is often safer to put in parentheses than try to
remember the priorities that Icon assigns, even though it is quite consistent in the manner in which this
is done. We now compute the value which contains the median. We set an index n to zero and increase
it so long as the corresponding value in the list of cumulative frequencies is less than half of the total:

 #calculate vcm
 n := 0
 while lcf[n +:= 1] < (limit / 2.0)
 vcm := n

As soon as lcf[n] overshoots one-half of the total, the loop stops. This while loop contains only the
expression which controls the loop, so the word do which normally introduces the body of the loop is
missing altogether. This is in order, since we are interested in the value of n which is part of the
controlling expression and increases until it becomes the number we are seeking. It is then the number
of the value containing the median and is stored in vcm. We can now compute the median by
subtracting 0.5 from the value containing the median (since the upper range of the next value down is
in between the two values) and add it to the cumulative frequency of the lower value subtracted from
one-half of the total divided by the frequency of the value containing the median. This gives us the
following:

#calculate median
 median := ((vcm - 0.5) + ((limit / 2.0 - lcf[vcm - 1]) / L[vcm]))

with the entire procedure as follows:

procedure printout(p, L)
local lcf, vcm, n
#lcf is a list of cumulative frequencies,
#vcm is the value which contains the median, n is the index
#The procedure prints out the info. p is the section no., L is the list of frequencies.
#calculate lcf
 lcf := list(20,0)
 lcf [1] := L[1]
 every n := 2 to 20 do
 lcf[n] := (lcf[n - 1] + L[n])
#calculate vcm

39

 n := 0
 while lcf[n +:= 1] < (limit / 2.0)
 vcm := n
#calculate median
 median := ((vcm - 0.5) + ((limit / 2.0 - lcf[vcm - 1]) / L[vcm]))
 #Arrange info in columns
 write("Length Number Such")
 every n := 20 to 1 by -1 do
 write(right(n, 2), right(L[n], 12))
 writes(" ","Median = ", median)
 write(right("Press any key to continue.", 52))
 getch()
 return
end

5.4 Variants on the Program
You may wish to try modifying these programs to do slightly different tasks. For example, you could
remove the feature of splitting the text into three and allow it to find the various averages for an entire
text. You could solicit the user to tell you into how many pieces the text should be split before
proceeding. This would need a prompt for the user, and the response would be stored in a variable
which would replace the fixed number three. Note that in this case it would be a good idea to check that
the user enters a valid number. One way to do this is to use the function integer() which converts its
argument to an integer if that is possible, and fails if it is not. Hence, if the user would enter q instead of
2 the function would fail and an error message could be issued. You might get one program to print out
on the screen several averages. You might include more than one version of printout(), giving them
different names to keep them distinct, and call each version. It would be a good idea to make a copy of
a working program with a different name and use the copy for experimentation of this type.

SUMMARY OF ICON FEATURES

1. The union of sets may be achieved by using the double plus sign (++). The double minus (--) and
double multiplication sign (**) may similarly be used for set difference and intersection.

2. If we wish to include a single quote in a set (itself delineated by single quotes) we must precede the
single quote with a backslash(\).

3. The word suspend returns a value from a procedure, but leaves the current status of the procedure in
place for another call.

4. Comments may be inserted freely in a program provided that on each line they are preceded by the
number sign (#).

5. If one integer (whole number) is divided by another integer, any remainder is discarded. A
calculation which contains a real number (one with a decimal point) will result in a real number.

6. Global variables, which are available to all procedures in the program, must be declared at the
beginning of the program preceded by the word global.

40

7. The function real() converts its argument to a real number (one with a decimal point) if it is possible,
and fails otherwise.

8. Normally multiplication and division have precedence over addition and subtraction, but this order
may be changed by using parentheses. Operations within parentheses are always done first. Thus 2
+ 5 * 8 evaluates to 42, while (2 + 5) * 8 evaluates to 56. It is a good idea to use parentheses freely,
in non-arithmetic expressions also, for clarity and to avoid unexpected results.

41

6. Icon and Unicode

6.1 Introduction to Unicode
The "native script" of the Icon Programming Language is the extended character set of ASCII, which
stands for American Standard Code for Information Interchange, comprised of 256 characters
numbered from 0 to 255. The only alphanumeric characters recognized are those of the Roman
alphabet, and the usual numerals used in the west. For example, character number 065 is capital A of
the English alphabet. Clearly such a system, devised when computers used mainly English, is
inadequate to cover even European languages, let alone world languages. There is now a system called
Unicode which offers a character set having tens of thousands of characters, covering almost all of the
scripts which are, or have been, used on this planet. Despite the limitations placed on Icon by its
adherence to ASCII, Icon is capable of handling so-called character entities, which evolved to
represent individual characters for use on new developments such as Hypertext Markup Language
(HTML) used on the World Wide Web which has developed so dramatically over the past decade.
HTML is used not only on the World Wide Web, but with other items such as email. HTML is still
very much in development, and it is difficult to tell now what its future will be. It certainly has come
far in the few years of its existence. Originally a character entity was of the form &#nnn; where nnn
was a three-letter integer in the range 000—127 (several of these numbers were not in use) and this
represented the same characters of the brief ASCII character set. There were only three so-called
control characters, 009 (tab), 010 (linefeed), and 013 (return). The formerly dominant Netscape browser
brought into use the extended ASCII character set, and new characters were included in the 3.2 HTML
standard. For example, é represents the letter e with an acute accent (é). Some of these numeric
entities can be replaced with more easily remembered named entities. So é is precisely
equivalent to é. It must be said that the choice of entities was rather arbitrary: < (the "less
than" sign) has an equivalent named entity <, whereas = (the "equals" sign) does not, probably
because the “less than” sign was used as a pointy bracket in HTML to begin a "tag", which is used to
give instructions to the browser, and they wished to avoid confusing the browser. By the same token
Þ represents a sign used only in Icelandic, yet there is no representation for the a with a tilde (~)
used in Portuguese, a language spoken by many millions more than Icelandic. (Could there have been
an Icelander on the committee?) Unicode was elaborated in the 1990s to remedy this chaotic situation.
It is a carefully thought out system, still in process of revision and improvement.

Unicode customarily uses hexadecimal numbers (base-16 or hex numbers) but in HTML you may use
decimal numbers if you wish. In addition to the usual decimal digits 0—9, hex numbers use A—F for
the numbers represented in decimal by 10—15. Thus the Russian capital A (which is quite similar to
the English letter, but treated as a separate entity) is represented in Unicode for HTML as А
using the notation explained in the previous paragraph. If you use hex numbers you must write
А. The x tells the browser that this is a hex number. 0410 is the hexadecimal equivalent of 1040.
Multiply 1 by 16, and add it to 4 multiplied by 16 squared to satisfy yourself of this. You can ascribe to
the Arabs the fact that you naturally move from right to left when you do this. Arabic is written from
right to left, so they placed the least significant digit on the right.

Unicode is quite complex, but it is possible to find on the World Wide Web as much help as you need,
and we shall give some pointers to this presently. Here we shall try to show how Icon might be used
with three non-Roman scripts, each of which presents different issues. One is a non-Roman, Indo-
European script (Russian), one is Indic (Tamil), and one is Semitic (Hebrew). The three are dissimilar,

42

but typical of the varying scripts which Unicode includes. Even if you are unfamiliar with these
languages, you should find the information of value, beyond the particular problem dealt with here.

It should be noted that character sets such as ASCII and Unicode are distinct from fonts. A font is
defined as a collection of typeface of one style and size; italic and bold fonts are well-known, but there
are many others. Character sets make no determination of what font should be used; there is an HTML
tag which can be used to recommend a particular font to the browser, which will use it if it is available.
Note also that Unicode may repeat items similar in appearance for different scripts. English capital A
which we mentioned before occurs in the Russian character set as number 1040 (decimal) or 0410 (hex)
and looks quite similar. (Spammers sometimes use this feature to beat filters!)

6.2 Working with Russian, Tamil, and Hebrew
Russian uses a subset of the Cyrillic alphabet which is based on the Greek and Hebrew alphabets. It is
used by a large number of languages, Serbian and Mongolian among them, for example, although since
the collapse of the Soviet Union where the use of Cyrillic was fostered, some have switched to Roman
script. Russian has 33 characters, upper and lower case, which is seven more than English, so no one-
to-one equivalence is possible. One character ("yo"), mainly used in texts meant for foreigners or
children, is excluded, and will be handled separately. Modern microcomputers handle Russian readily,
but there is an additional problem: the characters are keyboarded according to the customary Russian
keyboard, which has an arrangement totally different from the English keyboard. Icon is able to convert
an easily memorized set of correspondences of the individual's own choosing to the appropriate
Unicode characters. This makes it possible to create a Russian HTML text in Unicode which can be
used on the World Wide Web or in email. We shall call this a qwerty representation, in reference to the
traditional arrangement of the top line of the English typewriter keyboard. (This arrangement was
originally intended to slow down the typist using a mechanical typewriter to avoid the keys' jamming.
This gave rise to the expression "qwerty effect" to signal an arrangement that one is stuck with even
though the original reason has evaporated.) We use the upright bar(|) in front of an alphabetic letter to
represent another similar, but distinct, letter. This doubles the reach of the English alphabet.

Tamil uses a syllabary, that is to say each symbol usually represents a syllable, rather than a single
sound. It therefore has more than 100 characters, which are, however, partially similar. The native
reader sees each of these characters as a single entity, but such grapheme clusters will be represented
ingeniously in Unicode by only two Unicode characters, whatever cluster is involved. Here too we can
create with Icon a mode of entering Tamil which suits our taste in transcription. In order to make the
code consistent, the short vowel a will be represented by the same letter on the keyboard, and will
actually insert an empty string.

There is an additional issue with Tamil. Tamil has more slots in Unicode than it actually needs, and
more than 20 of these slots are left empty, occurring unevenly within the set. I suspect this is due to the
fact that originally, as a syllabary, Tamil was given a large allotment, but it was found that not all were
needed. Another qwerty effect, I suppose. This is handled in our list by insertion of the empty string
("") which becomes the key to the blank element. Each of the empty strings replaces the previous one
in the table, so the table is finally increased in size only by 1.

Hebrew has two substantial problems. First, it optionally uses vowel representations which work
essentially like Tamil, effectively creating syllables rather than letters. Modern Hebrew usually does
not bother with them, since the native speaker finds the consonantal shp 'f th wrd sffcnt. (You were able
to read that, wrn't y?) Unicode has a rich representation of this complex system, but we shall ignore it
here. If it is important to you, you will become able to find ways to handle it yourself. Secondly,

43

Hebrew, like most Semitic languages, is written from right to left, yet both printing and scanning have
traditionally moved from left to right in computers for the obvious reason that these innovations were
created in the west. Computers handle this by expecting left-to-right input, which is processed by
prepending, rather than appending, characters. Unicode is supposed to have a right-to-left mark (200E),
but it does not appear to be implemented.

It must be pointed out that modern browsers all handle Unicode to some degree, but with a varying
measure of completeness. There may even be differences in the same browser when it is used with
different platforms. It is to be expected that this situation will gradually improve. In the meantime, it is
well to test the results of your activities on various browsers. Let us now consider each language in
turn.

6.2.1 Russian

Cyrillic characters in Unicode start at 0400 hex, 1024 decimal, but the specifically Russian characters
are at 0410—044F plus 0401 and 0451 hex (1040—1103 plus 1025 and 1105 decimal). These appear
in the following fully commented program.

#This program converts a text from Roman to Cyrillic (Russian) HTML
global chartable
procedure main()
 initialize()
 process()
end

procedure initialize()
local n,m, charlist
 # Create table. Maverick chars return ?? which is the default.
 chartable := table("??")
 # charlist is in the order of the Russian alphabet, capital letters first,
 # but yo (e with an umlaut) is excluded and dealt with under "special items"
 # below. In the input file zhe, che, shcha are preceded by a vertical bar.(|)
 # ~ (tilde) is used for the hard sign, and |~ for the capital hard sign.
 # ` (grave) is used for the soft sign, and |` for the capital soft sign.
 # The equivalents of sha and kha are chosen for their resemblance to the English letter.
 # Normally an Icon statement ends at the end of the line. If the statement is incomplete
 # however, the compiler will look to the next line, as in this long charlist. The list is
 # created here by placing the items between square brackets [].
 charlist := ["A","B","V","G","D","E","|Z","Z","I","J","K","L","M","N","O",
 "P","R","S","T","U","F","X","C","|C","W","|W","|~","Y","|`","|E","|U","|A",
 "a","b","v","g","d","e","|z","z","i","j","k","l","m","n","o",
 "p","r","s","t","u","f","x","c","|c","w","|w","~","y","`","|e","|u","|a"]

 #initialize list index counter
 m := 0
 #n holds a constantly augmenting unicode number; m uses the augmented assignment +:=
 #this type of loop was explained in chapter 2.3. A character entity is created after :=
 every n := 1040 to 1103 do
 chartable[charlist[m +:= 1]] := "&#" || n || ";" #put 64 chars in table
 #Special items
 chartable["{"] := "«" #Russian left angle quote (left guillemet)
 chartable["}"] := "»" #Russian right angle quote (right guillemet)
 chartable["|O"] := "Ё" #upper case Yo

44

 chartable["|o"] := "ё" #lower case yo
 chartable["["] := "
" #HTML newline tag
 chartable["]"] := "</p><p>" #HTML end old, begin new paragraph tags
 # table is complete
 return
end #initialize()

procedure process()
local filename,title,infilvar,outfilvar,line,newline,char
 # filename and title are provided by user. infilvar and outfilvar are
 # the input and output file variables. line is taken sequentially from
 # the input file, processed and written to newline which is then appended
 # to the new html file. Your input file can be created by any editor or
 # word processor, but be sure it is in text only format. It is preferable
 # for the filename not to have a suffix. Omit the underlines if you wish
 # the browser to take care of line breaks.

 writes("Enter the name of previously prepared file: ")
 filename := read()
 writes("What is the title of the text? ")
 title := read()
 # if the input file cannot be found, the program aborts.
 (infilvar := open(filename)) | stop(filename," not found.")
 # since all is well open a file for writing
 outfilvar := open(filename || ".html","w")
 # write to the output file a simple HTML header.
 write(outfilvar,"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0Transitional//EN\">")
 write(outfilvar,"<html>")
 write(outfilvar,"<head>")
 write(outfilvar,"<title>",title,"</title>")
 write(outfilvar,"<body>")
 write(outfilvar,"<p>") # begin a paragraph
 # loop brings in lines from input file
 while line := read(infilvar) do {
 # initialize newline to the zero string
 newline := ""
 # scan the input line
 line ? {
 # loop processes the character, terminates at end of line when move() fails
 while char := move(1) do {
 if char << "A" then newline ||:= char #punctuation,numerals.
 # << means: is lexically lower than "A" in the ASCII character set.
 else if char == "|" then newline ||:= chartable["|" || move(1)]
 else newline ||:= chartable[char]
 }
 }
 write(outfilvar,newline)
 }

 # write a simple HTML footer to the output file. Program end closes files.
 write(outfilvar,"</p>") # close last paragraph
 write(outfilvar,"</body>")
 write(outfilvar,"</html>")

45

 write("File ",filename,".html has been created.")
 return
end #process()

Let us compile this program, and submit to it the following brief Russian text in a file we call simply
joke. You may omit the square bracket if you want the browser to take care of linebreaks.

K vra|cu prixodit vos`mides|atiletnij akt|or:[
--Doktor, ka|zdoe utro, vstav s posteli, |a pervym delom |cita|u gazety.
I esli ne vi|zu v nix nekrolog o moej smerti, odeva|us` i idu v teatr.

(Meaning: An eighty year old actor goes to the doctor [and says:] "Doctor, first thing every morning I
read the newspapers. And if I don't see in them an obituary about my death, I get dressed and go to the
theater.")

Here is the output of the program:

!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0Transitional//EN">
<html>
<head>
<title>A Joke</title>
<body>
<p>
К врачу прихо\
дит восьмиде&\
#1089;ятилетний а&#\
1082;тёр:

--Доктор, каждl\
6;е утро, встав \
089; постели, я пе\
рвым делом чи\
таю газеты.
И если не вижу\
; в них «некрол\
;ог» о моей сме\
;рти, одеваюсь\
; и иду в театр.
</p>
</body>
</html>

Two observations may be made about this output. First, the data is difficult to read unless you have an
unusual memory. However, items such as punctuation, and HTML tags can help find a location if
editing is called for. Secondly, the HTML coding is extremely lean and to the point, without the large
amount of surplus coding that front-ends tend to insert. It results in this quite satisfactory result:

6.2.2 Tamil

Unicode saves us a lot of work by enabling us to represent the complex Tamil syllabary relatively
simply. A single syllable may be represented by one, two, or three graphs on paper, but Unicode takes
care of that for us automatically.

46

Here is a table of the Tamil characters with the Qwerty representation.

CONSONANTS

V ஃ
c ச
h ஹ
j ஜ
k க
l ல
L ள
|r ழ
m ம
N ந
|N ண
n ன
g ங
|n ஞ
p ப
r ர
R ற
s ஸ
S ஷ
|s ஶ
t த
T ட
v வ
y ய

VOWELS

In our transcription, vowels always follow the consonant, whatever the Tamil representation may be.

Regular Vowels

Initial short vowels: |a |e |i |o |u
Initial long vowels: |A |E |I |O |U
Medial/final short vowels: a e i o u
Medial/final long vowels: A E I O U

Diphthongs

Initial ai: |~ Initial au: |`
Medial/final ai: ~ Medial/final: `

Absence of any vowel (Virama)

} This must be placed after any unvoweled consonant.

Special Signs

Rupee sign: |R
Pound Sterling sign: |P
HTML Newline tag: [

47

HTML New paragraph tag:]

Tamil characters in Unicode start at 0B83 hex, 2947 decimal, but many slots are empty, as explained
above. These characters appear in the following fully commented program.

#This program converts a text from Roman to Tamil HTML
global chartable
procedure main()
 initialize()
 process()
end

procedure initialize()
local n, m, charlist
 # create table. maverick chars return ??
 chartable := table("??")

 # The characters in charlist are explained in the preceding text. The empty
 # string ("") is used to fill one of the empty slots which will not be
 # referenced when the table is constructed.

 charlist := ["V","","|a","|A","|i","|I","|u","|U","","","","|e","|E","|~","",
 "|o","|O","|`","k","","","","g","c","","j","","|n","T","","","",
 "|N","t","","","","N","n","p","","","","m","y","r","R","l","L","|l",
 "v","|s","","s","h","","","","","A","i","I","u","U","","","","e",
 "E","~","","o","O","`","}"]

 #initialize list index counter
 m := 0
 #n holds constantly augmenting unicode number
 every n := 2947 to 3021 do
 chartable[charlist[m +:= 1]] := "&#" || n || ";" #put 75 chars in table but
 #length of table is now only 53 characters
 #Special items
 chartable["a"] := "" #zero length string--base form has short a
 chartable["|R"] := "௹" #rupee sign
 chartable["|P"] := "#163;" #English pound sign
 chartable["["] := "
" #HTML newline tag
 chartable["]"] := "</p><p>" #HTML end old, begin new paragraph tags
 #table is complete with 58 characters
 return
end #initialize()

procedure process()
local filename,title,infilvar,outfilvar,line,newline,char
 # filename and title are provided by user. infilvar and outfilvar are the input and output file variables.
 # line is taken sequentially from the input file, processed and written to newline which is then
 # appended to the new html file. Your input file can be created by any editor or word processor, but
 # be sure it is in text only format. It is preferable for the filename not to have a suffix. Omit the right
 # curly brackets if you wish the browser to take care of line breaks.

 writes("Enter the name of previously prepared file: ")
 filename := read()
 writes("What is the title of the text? ")

48

 title := read()

 # if the input file cannot be found, the program aborts.
 (infilvar := open(filename)) | stop(filename," not found.")

 # since all is well open a file for writing
 outfilvar := open(filename || ".html","w")

 # write to the output file a simple HTML header.
 write(outfilvar,"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0Transitional//EN\">")
 write(outfilvar,"<html>")
 write(outfilvar,"<head>")
 write(outfilvar,"<title>",title,"</title>")
 write(outfilvar,"<body>")
 write(outfilvar,"<p>") # begin a paragraph
 # loop brings in lines from input file
 while line := read(infilvar) do {
 # initialize newline to the zero string
 newline := ""
 # scan the input line
 line ? {
 # loop processes the character, terminates at end of line when move() fails
 while char := move(1) do {
 if char << "A" then newline ||:= char #punctuation,numerals.
 # << means: is lexically lower than "A" in the ASCII list.
 else if char == "|" then newline ||:= chartable["|" || move(1)]
 else newline ||:= chartable[char]
 }
 }
 write(outfilvar,newline)
 }

 # write a simple HTML footer to the output file. Program end closes files.
 write(outfilvar,"</p>") # close last paragraph
 write(outfilvar,"</body>")
 write(outfilvar,"</html>")
 write("File ",filename,".html has been created.")
 return
end #process()

Let us compile this program, and submit to it the following brief Tamil text in a file we call simply TV:

|eNt~ yAy}, |em} paran}, maR}Ru miyA var}k}kum}[
taN}t~, tAy}, tam}pi rAn}, Ranak} kVtilAn}[
muN}ti |en}nuL} pukuN}tanan}, yAvarum}[
ciN}t~ yAlum} |aRivaru|n} cel}vanE!

This stanza from the classical Tamil poem Tiruvacakam 5.47 is translated by G.U. Pope thus:

Father and Mother, Lord! To all besides.

Sire, Mother, Lord:—to him all these are not!

Erewhile within my inmost soul he entered,

49

Whom none can know, the Ever-blissful one!

We follow the same procedure as above, and the final result is as follows:

To learn more about Tamil Unicode, see http://www.unicode.org/faq/tamil.html

6.2.3 Hebrew

A basic program for Hebrew, omitting the vowel points, is very easy. Hebrew is caseless, i.e. it very
sensibly does not bother with capitalization, which makes the lives of school kids much easier. (We
should have dumped capitalization, like the poet e.e. cummings, when the computers came in, but we
lost our opportunity.) So we only need 27 characters in total, and I will let you do this yourself.

Unicode expects input from left to right even for languages that are written and read from right to left.
As soon as it spots a Hebrew (or Arabic etc.) character, it automatically prepends the characters rather
than appending them. This achieves right-to-left output. You are liable to confuse the poor browser if
you start or end a line with a punctuation character from the regular, left-to-right set, so be careful.
There is a Unicode right-to-left mark (200F hex) but the browsers do not seem to know about it.
Another thing. You must reverse parens () and similar items, because a beginning opening paren in
English is a closing paren in Hebrew. Sorry. Oh yes. When you use <p> to start a new paragraph,
replace it with <p align="right"> so that the output is ragged left.

For the Hebrew alphabet we can use the following, with the five final letters preceding their
initial/medial sisters. I do not know why the finals get precedence in the computer world, but they do:

abgdhvzjTyXxlMmNnSoFfCcqrst

When two similar letters occur, I capitalize the less common one to save work. I have used j, as in
Spanish, for the het, and x for khaf, as in Greek. Now I chose o for Hebrew ayin, because they were
originally the same letter, despite appearances. When you realize that ayin means "eye" or "well" (the
kind from which you draw water) you will see that Hebrew has strayed farther from the original
pictogram than English, where the resemblance is still apparent. You can change these in any way you
like, but be consistent. The Unicode decimal numbers for the 27 Hebrew letters go from 1488 (alef)
through 1514 (tav). (By the way, if you subtract 1488 from 1514, you get 26 and not 27. Why is that? If
you do not know, figure it out, because it will save you from some programming errors.) Since there
are so few characters, we do not need to use the upright bar. Calling the table "chars", it is sufficient to
write:

 while char := move(1) do
 if char << "A" then newline ||:= char
 else newline ||:= chars[char]

Now let's say you want to get fancier and mark the Hebrew letters b x f with a dot in the middle for
their "hard" sound. There are two possible ways to do this. The Unicode character 1468 decimal, 05BC
hex will put a dot in the middle of the letter right before it, so after we fill up our table we can have a
statement:

chars[`] := "ּ"

http://www.unicode.org/faq/tamil.html

50

If there is a plain b in our input text it will appear in the output as a vet (the soft pronunciation); if we
write b` it will be bet with a dot in the middle, the hard pronunciation. Note that I chose the grave (`)
arbitrarily. You can choose any letter you do not need.

Another way is to have a special letter for the hard pronunciation of these three letters, let us say B K P.
Then we shall need to enter a separate item in our table:

chars["B"] := "בּ"

Note that not every browser will insert the dot or dagesh. Some may simply ignore it.

Another thing you might consider is the following. The final letters XMNFC only occur at the end of
words. When the program brings in a line from the input you could scan it for the letters which have
final variants, check the next letter, and if it is not another letter, but a space or a period or something of
the sort, or the end of the line, you could swap x for X and so on. (Hint: use the Icon function
upto('xmnfc') with every to locate the position of each such letter, check what the next one is, and if
necessary change it to the corresponding final letter, X etc.) This would be obeying the IBM Polyanna
Principle: "Computers should work; people should think." On the other hand, you would lose a certain
amount of flexibility: in Isaiah 9.7 (verse 6 in English bibles) there is an anomalous final mem in the
middle of a word, (!) and you would lose the ability to represent this. There is often a tension between
flexibility and ease of use; if you use a modern scanner to scan a document, or a camera to take a photo,
and use the "auto" option it is so easy, but the machine makes decisions for you with which you may
not be entirely happy. Or compare it to choosing the fixed meal in a fancy restaurant, or eating à la
carte; your insistence on precise choice comes at a cost. 'Twas ever thus.

6.3 Further Study
Look first at:

http://www.unicode.org/charts/

There you will find all the myriads of Unicode. Click on Cyrillic, or Tamil, or Hebrew, or whatever
language group you are interested in, and you will find the characters laid out before you. Great
ingenuity has gone into all this. It is a tribute to what humans can achieve when they work together.
Tamil is truly remarkable. You do not have the option of ignoring the vowels as you do in Hebrew;
some vowels are attached to the consonant, some precede it, some follow it, some follow and precede
it! All this Unicode takes in its stride by subtle modifications that are transparent to the user. I used the
stratagem of the empty string("") in dealing with the short "a" vowel because that is really the base
form, and it makes it possible to regularize the way we handle vowels. Sometimes "nothing" is quite
useful. We have long got used to the idea of zero, but getting used to a string of zero length is still a bit
difficult. The final result is the beautiful, curvaceous, Tamil script, used by 30 million people in India
alone.

Alan Wood's Unicode Resources is also very helpful:

http://www.alanwood.net/unicode/

There are numerous links there, including tests you try on a particular browser to see what it does and
does not recognize. Codes there are given both in decimal and hexadecimal.

51

6.4 Hex to Dec
Talking of hexadecimals, here is a little program which will convert hex numbers to decimals if you
should need it. Note that when Icon scans the number from left to right it constantly decrements the
number of the index. When it gets to the last digit it multiplies it by 16 to the zeroth power which is 1
for all numbers. This looks to be unnecessary, but it simplifies the programming (comparably to the
zero string above!) and is worth thinking about apart from the modest achievement of the program.

#This program converts hex numbers to decimals
global A,a,B,b,C,c,D,d,E,e,F,f,impermissible
procedure main()
 initialize()
 process()
end #main()

procedure initialize()
#High hex numbers are normally caps, but lower case is ok.
#The value at the right is first assigned to the lower case letter, then
#that value is assigned in turn to the upper case letter.
 A := a := 10
 B := b := 11
 C := c := 12
 D := d := 13
 E := e := 14
 F := f := 15
#create a global character set excluding hex numbers
 impermissible := (&ascii -- &digits -- 'aAbBcCdDeEfF')
 return
end #initialize()

procedure process()
local hexno,length,result,n
 write("This program converts hex numbers to decimal.")
 writes("Enter hex number to be converted. Period (.) to finish: ")
#continue the program as long as input is not a period.
 while (hexno := read()) ~== "." do {
#check input for invalid characters, conclude program if found
 hexno ? if upto(impermissible) then stop(hexno," is an invalid entry.\nBye.")
#set *length* to the length of the hex humber, initialize *result* to 0 because you
cannot increment the initial null value of an undefined variable.
 length := *hexno
 result := 0
 every n := 1 to length do
#pick up the digits in turn, left to right, increment the result. The augmented assignment
"+:=" adds the value of the convert function to value of result, and assigns the new
#value to result.
 result +:= convert(hexno[n],length - n)
 write("Hex number ",hexno," = ",result," decimal.")
 writes("Enter hex number to be converted. Period (.) to finish: ")
 }
 write("Bye.")
end #process()

52

procedure convert(digit,index)
local outcome
convert the digit to decimal, allowing for its place by power.
variable(char) converts the alpha hex number to the variable of that name.
 outcome := (integer(digit) | variable(digit)) * (16 ^ index)
 return outcome
end #convert()

SUMMARY OF ICON FEATURES

1. table("??") creates a table comparable to the familiar printed tables. A table is a collection of pairs,
each of which has a key, such as "b" corresponding to a value, such as its Unicode encoding. So
chartable["A"] := "А" assigns the letter A on the keyboard as the Unicode first letter of the
Russian alphabet. We chose "??" as the default value, which shows up if a key unknown to the table is
entered. When the double question mark appears in the output, you know that you forgot something!

2. The function open() is used to work with files, which store information on some persistent media
which may be available after the program execution is finished, for example in some later program run.
The statement var := open(filename) opens an already existing file named filename, and stores that
opened file in var, which may be used in subsequent read operations. Function open() takes an optional
second argument "w" which allows the file to be written to. Data previously there will be destroyed. If
the second argument to open() is "a", data that is written will be appended to data already there. Note
that these arguments must be in double quotes, or must be a variable holding the string value "w" or "a".

3. Augmentation (increasing or decreasing an existing value) occurs frequently in programs, e.g. p := (p
+ 1). If the original value of p was 7 it will now be 8. Icon has an economical shorthand for this called
augmented assignment: p +:= 1. This can be used for other operators. Thus, s1 := (s1 || s2) appends the
string s2 to s1, and can be shortened to: s1 ||:= s2.

4. The symbol << means "lexically less than" and will succeed if the character on the left has an ASCII
number less in the ASCII numbers. See Appendix B for the list in the Griswold book. Similarly, the
symbol >> means "lexically greater than".

5. The function variable(s) converts the identifier (which is a string) called here "s" to a variable. We
used this in the Hex to Dec program by converting "A", in the incoming string "0B8A" for example, to
the variable A, to which we had assigned the decimal value 10, A being the equivalent of 10 in
decimal, and similarly B,C,D,E,F.

53

7. Standard Deviation

7.1 Working with Sentences
Our main task in this chapter is to find the standard deviation of the sentence length of a text, sentence
length being measured by the number of words the sentence contains. Let us begin by developing a
procedure to produce sentences from a file analogous to the one which produced words from a file. In
this way we can build up a library of procedures which may have various applications. Let us first
define a sentence as a string of characters ending in a period, a question mark, or an exclamation point.
This definition is probably inadequate, because it may not be allowing for quoted sentences, but it will
do for now. This does show us incidentally that programming often forces us to consider issues which
we tend to overlook, since the computer requires us to be totally explicit. Let us observe first that the
sentence can be longer or shorter than the line. The line is of a length that happens to be convenient for
human beings to handle on the printed page or screen, and hence text files are traditionally divided into
lines, which are about the length of a punched card—i.e., eighty characters—although the computer can
handle lines of any length. When we bring in a line for handling, we must allow for the fact that the
sentence which we wish to isolate can potentially be shorter or longer than the line. We are going first
to bring in lines from the file as long as there are lines to bring, so we can safely start off with the now
familiar loop

 while line := read(filvar)

which brings in lines from a file until there are no more to bring, whereupon it fails. We assume that we
have already checked that filvar refers to the relevant file. A variable named markers will hold the set of
characters that can finish the sentence and mark it off. The variable line will hold the current line of the
file with which we are dealing. The variable sentence will hold the string of characters that will
ultimately constitute a sentence by our definition, and will be returned as one of the values of the
procedure. The variable substring will hold the string of characters from the beginning of the line up to
a marker. This could be a complete sentence, or it could be the end section of a sentence that is several
lines long. Now we set sentence to "", a valid string of zero length, and go looking for one of the
sentence markers. So often as we find one, we have delineated a sentence, and can return it as one of
the values of the procedure. Accordingly we try to find a marker, and if we do, add that section of the
line, including the marker, to sentence, in case there is something there already from a previous line.
This activity is analogous to incrementing a number. Recall that the statement

 letters[n] +:= 1

adds 1 to letters[n] and stores the resulting number in letters[n]. Similarly

 sentence ||:= substring

adds substring to sentence, or, as we say, concatenates it, and then stores the new augmented string in
sentence. The double bar (||) is used for the concatenation of strings. Of course, initially we shall just
be adding the section of the line to the zero-length string that sentence is at first. We then return this
value, reset sentence to the zero-length string, skip over any blanks beginning the next sentence, and
try again. If we fail and are at the end of the line, we can just go fetch another line (if any are left) and
repeat the process. So we have so far:

sentence := ""
while line := read(filvar) do
 line ? while substring := tab(upto(markers)) do {
 sentence ||:= (substring || tab(many(markers)))

54

 suspend sentence
 tab(many(' '))
 sentence := ""
 }

But what if we are not at the end of a line? This would imply that there is something left in the line, or
possibly the entire line which has not been taken care of. We can test for this by the function pos().
This function takes a single numeric argument and succeeds if its argument corresponds to the position
of that imaginary pointer. 0 is the position right after the last character on the line, or perhaps more
accurately, the initial position going from right to left. These positions start from 1 at the far left just
before the first character and add one as you move right (1, 2, 3...), or from 0 at the far right just after
the last character and subtract one as you move left (0, -1, -2...). It is possible then to indicate the
position of the pointer positively from the left, beginning at 1, or negatively from the right, beginning at
0. Accordingly, pos(0) will succeed if the imaginary pointer is right at the end. If it is, we don't have to
do anything. If it is not, we want to add what is left to the sentence, plus a space to allow for the fact
that we don't normally put in a space at the end of the line:

 if not pos(0) then
 sentence ||:= (line[&pos:0] || " ")

&pos is a keyword which always contains the current position of the imaginary pointer, so

 line[&pos:0]

represents the portion of line from the position of the pointer up to the end. This is added to sentence, a
space is added, and we are ready to start over. Observe that like do, the ? which marks the scanning
facility expects one statement, so we must use the curly brackets if there are more than one. Here is the
complete procedure:

procedure get_sentence(filename)
local filvar, sentence, line, substring, markers
 markers := '. !?'
 filvar := open(filename)
 sentence := ""
 while line := read(filvar) do line ? {
 while substring := tab(upto(markers)) do {
 sentence ||:= (substring || tab(many(markers)))
 suspend sentence
 tab(many(' '))
 sentence := ""
 }
 if not pos(0) then
 sentence ||:= (line[&pos:0] || " ")
 }
 close(filvar)
end

It is worthwhile working through this procedure one step at a time with various types of sentences to
see how it works. Let us take, for example, a file which begins with a sentence that takes up the whole
of the first line and concludes with a period in the middle of the second line. The value of sentence is
an empty string. Variable line acquires the value of the first line of the file. The while loop looks for a
marker and fails, so the loop is never entered, and the value of &pos remains at 1 as it was initially.
Since it is not at the end of the line, the if-statement right after the loop applies, and the value of
line[1:0]—which is the entire line—is added to the string of zero length, along with a blank, and stored
in sentence. Notice the productive way in which a zero-length string can be used; it enables us to treat

55

the initial build-up of the string in exactly the same way as the subsequent ones. Initialization to zero
in arithmetic computations gives analogous benefits. This represents a less easygoing approach than
that of Icon's predecessor language SNOBOL-4, in which the initial value of a variable is the empty
string, which can function too as zero. This casualness may often save time and effort, but also it can
lead to subtle programming errors.

The next line is then fetched from the file. Again, an attempt is made at the entry of the while-loop to
find a marker, and this time it succeeds, so the loop is entered. The characters up to the marker are
stored in substring, then this plus the following marker are added to sentence. The sentence is now
complete, and returned as the value of the procedure by suspend which puts everything on hold until
the process can continue. When it does, any blanks following the sentence just processed are skipped,
and &pos now has the value of the position right after those blanks. sentence is reset to the empty
string so as to be ready for the next sentence. The loop is attempted again, but fails. The if-statement is
checked and succeeds, because &pos does not indicate that the pointer is at the end. So the piece of the
line from the beginning of the new sentence until the end of the line plus a blank are stored in sentence
and we are ready to look for the rest of the line.

Let us consider a different possibility. Imagine our line consists of three short sentences, so the last
character on the line is a period. The while-loop succeeds, and the first sentence is returned. The loop
succeeds a second and third time, each time returning a sentence. On the fourth try the loop fails. Since
the pointer is right at the end of the line the if-statement fails, and a new line is brought in for
processing.

We now need the ability to count the words in a sentence, and to do so we modify and simplify two
procedures we have used already:

procedure getword_from_sentence(sentence)
#This procedure produces one word at a time from the sentence

local chars, punct, word
 chars := (&letters ++ &digits ++ '\'-')
 punct:=' .,?";:!'
 sentence? {
 tab(many(' ')) #skip leading blanks
 while word := tab(many(chars)) do {
 tab(many(punct))
 suspend word
 }
 }
end
procedure countsentence(sentence) #Counts the number of words in a sentence
local total
 total := 0
 every getword_from_sentence(sentence) do
 total +:= 1
 return total
end

The procedure getword_from_sentence() is like getword(), but it does not have to concern itself with
opening a file. The procedure countsentence() uses getword_from_sentence() to count the number of
words in a sentence.

56

We are now ready for a procedure which will do the main work of the program. This will be simpler
than our previous program in that it does not have to divide the text into parts, but it will also use a
procedure to calculate the standard deviation as well as the mean.

7.2 Figuring the Standard Deviation
Let us consider the following procedure:

procedure getav(filename)
#Does the main work of the program
local counter, words, sentence
 words := list(20,0)
 counter := 0
 every sentence := get_sentence(filename) do {
 #Increment the appropriate element in the list of sentence lengths
 words[countsentence(sentence)] +:= 1
 counter +:= 1
 }
 printout (words , counter)
 return
end

Remember that the while-loop succeeds so long as the control statement at its head succeeds. The
every-loop succeeds so long at the control statement at its head produces a result, and it prompts the
statement to produce all the results in turn. Observe that a while-loop being controlled by a generator
may go on perpetually, since only the first item that the generator may produce will be called up. This
will be successful, but the next time around the same result will be produced, unless some effort is
made within the loop to alter that situation. The variable sentence will hold the sentences in the file in
succession. The number of words in the sentence is found by countsentence(sentence) and the
corresponding element in the list words is increased by 1. We also have a counter which is increased in
value each time the loop is entered and thus counts the total number of sentences in the file. When the
job of getav() is done, it passes the information it has stored in the list words and the total number of
sentences to printout(), which will figure the mean, call a procedure to figure the standard deviation,
and print out the results on the screen. Let us look at these.

procedure printout(w,c)
#prints out the info. c is the total
#of sentences. w is the list.
local word_total, n
 write("Length Number Such")
 word_total := 0
 every n := 20 to 1 by -1 do {
 #Arrange info in columns
 write(right(n, 2), right (w[n], 12))
 word_total +:= (n * w[n])
 }
 mean := real(word_total) / c
 writes(" ","Mean = ", mean)
 writes(right("Standard deviation = ", 42))
 write(standard_deviation(w,c,mean))
 return
end
procedure standard_deviation(w,c,mean)

57

local sum_of_squares, n, st_dev
 sum_of_squares := 0
 every n := 1 to 20 do
 sum_of_squares +:= ((n - mean) ^ 2) * w[n])
 st_dev := ((real(sum_of_squares) / c) ^ 0.5)
 return st_dev
end

printout() works in a similar way to the previous chapter, but it is only called once since it is processing
the entire file. We already know the sentence total. We figure the word total by running through the list
and multiplying the total words in a particular sentence by the number of times that that length of
sentence occurs. We pass on this information to standard_deviation() which is ready to do the
calculation. Our local variables are n which serves as an index; sum_of_squares (which speaks for
itself) and st_dev which will be the final value that we want. Initially sum_of_squares is set to zero
and n is set to 1. The mean supplied by printout() is subtracted from 1 and this is squared. In Icon the
symbol caret or wedge (^) is used for exponentiation, and so n ^ 2 achieves this end. On some
keyboards or screens the circumflex (ˆ) (most often) or the up-arrow (↑) may appear. All three
represent the same character, ASCII 94. This is then multiplied by the number of times that that value
is needed, which is stored in the first element of the list. It might be noted that if that number is zero the
entire calculation is pointless because the ultimate result is zero. This could be taken care of by
introducing a condition:

 if w[n] ~= 0 then
 sum_of_squares +:= (((n - mean) / 2) * w[n])

The Icon symbol ~= means "does not equal." (The symbol ~ is called a tilde.) This will inhibit the
calculation if it is unnecessary. However, in this case the value of w[n] has to be fetched each time,
causing additional computing if the value of w[n] is greater than zero, so it is probably not worthwhile
to add this provision. Notice that there is still no need to insert a curly bracket after the do because the
if-statement is a single statement, including its else-leg if it has one. Finally the standard deviation is
figured by getting the mean and taking its square root (using a fractional exponent.)

Here is the complete program:

procedure main()
 getav(get_valid_filename())
end
procedure get_valid_filename()
local filename
#This procedure gives user three chances to select a file
 every 1 to 3 do {
 writes("What is the name of the input file?”)
 filename := read()
 if close(open(filename)) then return filename else
 write("Unable to open file.")
 }
 stop("Bye!")
end
procedure getword_from_sentence(sentence)
 #This procedure produces one word at a time from the sentence
local chars, punct, word
 chars := (&letters ++ &digits ++ '\'-')
 punct := ' .,?";:!'
 sentence ? {

58

 tab(many(' ')) #skip leading blanks
 while word := tab(many(chars)) do {
 tab(many(punct))
 suspend word
 }
 }
end
procedure countsentence(sentence)
#Counts the number of words in a sentence
local total
 total := 0
 every getword_from_sentence(sentence) do
 total +:= 1
 return total
end
procedure getav(filename)
#Does the main work of the program
local counter, words, sentence
 words := list(20,0)
 counter := 0
 every sentence := get_sentence(filename) do {
 #Increment the appropriate element in the list of sentence lengths
 words[countsentence(sentence)] +:= 1
 counter +:= 1
 }
 printout(words, counter)
 return
end
procedure printout(w, c) #prints out the info, c is the total # of sentences,
#w is the list,
local word_total, n, mean
 write("Length Number Such")
 word_total := 0
 every n := 20 to 1 by -1 do {
#Arrange info in columns
 write(right(n,2),right (w[n],12))
 word_total +:= (n * w[n])
 }
 mean := real(word_total) / c
 writes(" ","Mean = ", mean)
 writes (right ("Standard deviation = ", 42))
 write(standard_deviation(w,c,mean))
 return
end
procedure get_sentence(filename)
local filvar, sentence, line, substring, markers
 markers := ' . !?'
 filvar := open(filename)
 sentence := ""
 while line := read(filvar) do
 #look for a marker
 line? {while substring := tab(upto(markers)) do {
 #if one is found add it to sentence plus the marker

59

 sentence ||:= (substring || tab(many(markers)))
 suspend sentence
 #skip blanks at beginning of next sentence
 tab(many(' '))
 sentence := ""
 }
 #if the line is not finished, append the rest to sentence
 if not pos(0) then
 sentence ||:= (line[&pos:0] II " ")
 }
 close(filvar)
end
procedure standard_deviation(w,c,mean)
 local sum_of_squares, n, st_dev
 sum_of _squares := 0
 every n := 1 to 20 do
 sum_of_squares +:= (((n - mean) ^ 2) * w[n])
 st_dev := ((real(sum_of_squares) / c) ^ 0.5)
 return st_dev
end

7.3 Word Frequency
Using the preceding procedures we have designed, it is not difficult to construct a program which will
check the frequencies of particular words. Our main procedure will have a parameter word_list which
means that when the program is run, the user can simply write the words right after summoning the
program. So if the program is in a file called wordfreq. icn one might write

icont wordfreq.icn -x the by in

to translate and execute the program for those three words. Later we shall show how we can proceed if
the user fails to enter one or more words. The main procedure is quite simple:

procedure main(word_list)
 process(get_valid_filename, word_list)
end

The first argument of process() is obtained just as before. The second, which is the user's word list
must be passed on to process() which otherwise would know nothing about it. As an alternative, one
could specify a global variable right at the very beginning of the program (wl let us say) and assign
word_list to this variable. Then all procedures can use it. In this procedure we shall use a table. We set
up our table by

 word_table := table(0)

If at this stage we check the value of, let us say, word_table["the"], it will return 0, but this does not
mean that there is actually such a value in the table. The length of the table (found by word_table) is
zero. Once some value is assigned to an element in the table the element comes into being, and the
length of the table is increased by one. So

 word_table["the"] +:= 1

increases the the-th element by one. Tables make it very easy to tabulate numbers related to strings.
Additionally both the values and the indexes of tables can very easily be sorted into order, alphabetical
or otherwise. We shall therefore use getword() to bring in the words from the file. Each individual word
will be checked against each word in the list furnished by the user. If a match is found, the

60

corresponding entry in the table will be incremented, and looking for further matches will cease. It
should be pointed out that while this method of word checking works, it is cumbersome and tedious. A
better method, more in the spirit of Icon, involving pattern matching will be discussed in the next
chapter. When we are through we shall move to another procedure which will print out the results on
the screen in alphabetical order. Here is the procedure:

procedure process(filename, word_list)
local filvar, counter, word, n, word_freq
#set up the frequency table
 word_freq := table(0)
#open the previously checked file
 filvar := open(filename)
#initialize the word counter
 counter := 0
#bring out the words in the file one at a time
 every word := getword(filvar) do {
#increment the word counter
 counter +:= 1
#check the word against the user's list
 every n := 1 to word_list do
 if word == word_list[n] then {
 #if found, increment the corresponding slot in the table
 word_freq[word] +:= 1
 #and break out of the inner loop--no point in further checks
 break
 }
 }
#close the file, pass the counter and the
#table to printout
 close(filvar)
 printout(counter, word_freq)
end
procedure printout(c, wf)
local wl, n
 write(); write(); write()
 write("Total number of words in file= ",c)
 writes ("Word")
 writes(right("0ccurrences",30))
 writes (right("Percentage", 30)
#sort the table into a list
 wl := sort(wf)
#print list
 every n := 1 to wI do {
 writes(wl[n] [1])
 writes (right (wl[n][2],30)))
 writes(right((wl[n][2] * c) / 100.0,30))
 }
end

You will note that the function sort() takes a table and creates from it a list. This list itself contains a
group of lists in which the first element is the entry in the table and the second is the value of the entry,
the entries now being in order. So in the preceding program, wl[3][1] refers to the third sorted entry in
the table (now a list), while wl[5][2] refers to the value of the fifth sorted entry. There is an alternate

61

way of handling this. If you add 3 as the second argument of sort() then a single long list will be created
in which the entries and values of the tables will alternate, the entries being in sorted order. Try
modifying the preceding program to use this feature. The second argument 2 will produce a list in
which there is a group of lists sorted according to value rather than entry, and the second argument 4
will produce a single list in which entries and values alternate, but sorting is by value rather than entry.
The function sort() may also be used to sort lists, in which case the order of items is simply rearranged.
No second argument is available for sorting lists. Numbers will be sorted before strings. It should be
noted that sorting is according to the order in the computer character set, so all uppercase letters will
occur before all lowercase letters.

SUMMARY OF ICON FEATURES

1. In the line-scanning facility the position of the imaginary pointer at any time is stored in the
keyword &pos. The line which is being scanned is stored in the keyword &subject.

2. Positions in the line may be numbered positively from the left (beginning at 1) or negatively from
the right (beginning at 0).

3. The function pos() succeeds if the argument (positive or negative) corresponds to the position of the
pointer in the line being scanned.

4. Exponentiation is expressed by the caret (∧). On some keyboards this character may appear as the
up-arrow (↑) or circumflex (ˆ). Roots may be obtained by a fractional exponent. The following
comparisons would succeed, in theory. In practice, the second one is dangerous, as a floating point
number produced by computation often has the tiniest errors, such as 4.0000001 or 3.99999999.

(7 ^ 2) = 49
(16 ^ 0.5) = 4

5. The tilde (~) is used to negate an operator such as equals (~=). It is not to be confused with not which
negates conditional expressions, making them succeed when they would fail and vice versa.

6. The function table() creates a structure in which values may be indexed by any data object. Its
argument becomes the initial value of each element in the table.

7. The function sort() will accept a table as its argument and produce a sorted list as its result. With no
second argument this will be a list of two-element lists, the first element being an entry from the
table and the second its value, the entries being in order. If the second argument is 2, sorting is by
value. If the second argument is 3 or 4, a single list is created in which entries and values alternate,
sorting being by entry (3) or value (4). Lists may also be sorted. Numbers will be sorted before
strings, which are arranged in character set order.

62

63

8. Correlation

8.1 The Spearman Rank Correlation
In this section we shall develop a program to figure the Spearman Rank correlation coefficient. It is set
up as though dealing with a correlation between the date of composition of plays and the average
number of words per verse indicating a constant increase or decrease, but it could of course be used for
many other purposes with slight modification. It is assumed that the values of words per verse will be
read in order of date of composition. The values could be read in random order, provided that they were
associated with some value that would rank them.

Here is a table of the information for ten plays of Corneille:

 Date Mean Words per Verse
 1629 8.93
 1632 9.02
 1635 9.147
 1640 9.26
 1644 9.152
 1650 9.2
 1662 9.22
 1666 9.32
 1672 9.48
 1674 9.53

Let us first decide to give the user the option of giving the values on the command line which calls the
program or being solicited for them by the program. We can achieve this with a main procedure as
follows:

#Calculates Spearman Rank Correlation Coefficient
procedure main(command_line)
#if the command line has data send it to process, otherwise let get_info() get it.
 if *command_line = 0 then
 process(get_info())
 else
 process (command_line)
end

Here the main procedure has a parameter command_line. If the user writes values after the instruction
to the computer to call the program, these values will be stored in command_line in the form of a list.
So we measure the length of the list. If it equals zero, then the list is empty, and we call a procedure
get_info() which will solicit the missing information and return it as its value. This can then be supplied
to the procedure process() which will do the main work of the program. Otherwise we simply supply
what we got in the command line to process().

Now let us see how get_info() will function. We have to get the values into a list to replace
command_line which the user left empty, so we will set up a variable dlist. Since we do not know how
long the list will be, it will be best to set it up empty and allow it to expand to be as large as necessary.
We achieve this by

 dlist := list(0)

64

which creates a list of zero length. This function may take a second argument which gives an initial
value to each element of the list, but that would be pointless in this instance. Alternatively we may
write

 dlist := []

which serves the same purpose. The square brackets enclose the list, and here they are enclosing an
empty list. Icon has a function

 put()

which puts the value of its second argument at the tail of the list that is its first argument. For example

 put(dlist, 1.5)

would make 1.5 the first element of dlist. Executing subsequently

 put(dlist, 2.0)

would make 2.0 the second element of dlist and so on. Notice that the elements are added at the right
side of the list, that is, at its tail. We are actually creating an entity called a queue, because if
subsequently we come to process the list from left to right, we shall meet first with the first element
that was put in. We may think of it as a theater queue or line; the first person to come is the first to get a
ticket. This is sometimes known by the acronym FIFO—first in, first out. We may mention in passing
that there is a similar function push(), which adds an element to a list on the left side, so that if we
process from left to right, the last element to go in is met with first. This is known as LIFO—last in,
first out—and creates an entity called a stack, which may be compared to a stack of dishes; when you
get one you use the one that was placed there last. So

 put(dlist, read())

will add to the right of dlist whatever the user types in at the keyboard. We want to repeat this as many
times as the user desires.

 while put(dlist, read())

will keep on doing this so long as put() succeeds. But how can we get it to stop? There is no way that
the computer can read the mind of the user, and know that a particular value is the last. (Compare this
with the situation where a disk file is being read, and the computer finds a physical “end of file.”) Icon
has a function

 numeric()

which converts its argument to a whole number (integer) or number with a decimal point (real number)
if possible. If it is not possible it will fail. So

 numeric(read())

will succeed if read() is bringing in numbers and fail otherwise. (We may note that when we type in 1.5
for instance we are really entering a string which at some point Icon will automatically convert to a real
number. Here we are doing the conversion explicitly to achieve a particular effect.) All we need to do is
to instruct the user to enter some non-numeric data (a period, for example). The function numeric() will
then fail, and put() will be "infected" by this failure and fail too. So the loop will end. This will serve
the additional purpose of excluding bad data; as soon as something other than a number is entered, no
further data will be accepted. For safety's sake it will be a good idea to repeat back to the user the data
that the program is working with so that any discrepancy can be noted. One final point. What if the user
enters no data even when solicited, either just hitting return or entering a period immediately? It might
be well to check if this has happened (by measuring the length of the list) and stop the program if it has.
Otherwise we may be doing calculations with no data. In addition, a significant aspect of the "user-
friendliness" of a program is its capacity to handle bad data appropriately, by making a new request for

65

good data, or bringing the program to an orderly halt, without cryptic messages from Icon or the
operating system. It is worth noting that we have not really attempted to check what the user puts in if
the command line is used. Perhaps we can assume that a user doing that will be extra careful; perhaps
we should indeed devise some checks for that method too, but we shall not do that here. You may want
to consider how that might be done. (The list could be scanned to see what is in it before processing it,
for example.)

Our procedure now appears as follows:

procedure get_info()
local dlist
 dlist := []
 write("Enter mean words per verse for each play in order of composition.")
 write("Hit return after each value. Single period + return to finish.")
 #add values to list at right end
 while put(dlist, numeric(read()))
 if *dlist = 0 then stop("Bye!")
 return dlist
end

We now proceed as follows with procedure process(drama_list) which will do the actual calculation of
the coefficient. The parameter of the procedure will hold the list of values which the user has provided,
and have been entered in chronological order by year. We can sort this into ascending order very easily
by the Icon function sort() which takes a list as its argument and returns the sorted list as its value. So

 sort_list := sort(drama_list)

gives us a list of the same length as drama_list with the values in order. Now let us set up a table in
which the indices are the values of sort_list and the values are the position of each value in sort_list.
This is achieved by

 dtable := table(0)
 every n := 1 to *drama_list do
 dtable[sort_list[n]] := n

Be sure to understand this step; the value in sort_list becomes the index in dtable, and the current
position, represented by n, becomes the value of that element of the table.

We now have to create a sum of the squares of the difference between each item's rank on the two
scales. One scale is already ranked and is represented by a constantly incremented n. The other is
represented by

 dtable[drama_list[n]]

The index to drama_list returns a value which, when passed to dtable returns the ranking in the sorted
version of the list. Note the manner in which an indexed variable (drama_list[n]) can be the index of
another variable (dtable[]). Having previously initialized a variable sum_of_squares to 0, we proceed
to increment it by the new value squared:

 every n := 1 to *drama_list do
 sum_of_squares +:= ((n - dtable[drama_list[n]]) ^ 2)

Now we are ready to calculate the coefficient known as rho ():

 rho := (1 - (6 * sum_of - squares) / (real(*drama_list) * ((*drama_list ^ 2) - 1)))

This can all be written on one long line even if it is wider than the screen or window in which it is
displayed. Icon accepts statements even though they are too long for the screen.

66

If you do break it, do so at a point where the line is clearly unfinished, after an addition sign, for
example. The value is then written to the screen. It is often desirable to use real numbers in division in
order to ensure that remainders are not discarded by integer division. Converting one of the values to a
real number by real() ensures this.

The complete procedure now looks as follows:

procedure process(drama_list)
local sort_list, sum_of_squares, n, dtable, rho
#initialize sum_of_squares and n
 n := sum_of_squares := 0
#sort the list
 sort_list := sort(drama_list)
#create a table of locations from sort_list
 dtable := table(0)
 write("Values are:")
 while write(drama_list[n +:= 1])
 every n := 1 to *drama_list do
 dtable[sort_list[n]] := n
#figure the differences and sum the squares
 every n := 1 to *drama_list do
 sum_of_squares +:= ((n - dtable[drama_list[n]]) - 2)
 rho := (1 - (6 * sum_of_squares) / (real(*drama_list) * ((*drama_list ^ 2) - 1))
 write("rho = ", rho)
 return
end

8.2 Scattergrams
The scattergram indicates visually whether there is a correlation between two sets of variables, and is
often a useful precursor to the coefficient just mentioned in order to see if it is worth pursuing. Clearly
we can have a program in which the same data is used to figure the Spearman coefficient and draw a
scattergram, but we will do it rather differently here in order to illustrate some features of Icon that
have not occurred before. You may want to consider developing an integrated program which does
both. Let us set up a main procedure like this:

procedure main()
 get_values()
 figure()
 scatter()
end

The program is in three parts. One obtains the necessary data; one manipulates the data so that it can be
used; and one puts the dots that constitute the scattergram on the screen. It is necessary to get the data
in pairs, so we will allow the user to enter any amount of values, but the total must be even. It is not
possible then to allow the user to enter a period at any time; it must be done only for one value of the
pair. For this purpose a repeat loop may be useful. Unlike while which iterates so long as the control
expression at the top succeeds, and every which iterates so long as the control expression at the top
produces a result, repeat goes on forever. It has no control expression. It may be stopped by the
expression break, and this is what we in fact do:

procedure get_values()
 values := []
 repeat {

67

 writes ("X-value? Nonnumeric to finish. ")
 put(values,numeric(read())) | break
 writes ("Y-value? ")
 while not put(values,numeric(read())) do
 writes("You must enter a numeric value. Y-value?”)
 }
 return
end

We first initialize the variable values to the empty list and then enter the repeat loop, using the curly
bracket to direct Icon that all the following commands until the corresponding curly bracket are to be
considered part of the loop. We first solicit the x-value from the user, and check that it is numeric. If it
is, we put it in the list of values. If it is not, we break out of the loop, and the collection of data is done.
The symbol | means or and implies that if the expression preceding it fails, then the one following
should be tried—either put the value in the list or break out of the loop. This statement is equivalent to:

if not put(values,numeric(read())) then break

but it is more concise and easier to understand. Once the user has put in an x-value, then a y-value must
be put in. So we set up a loop (inside the repeat loop) which is entered only if the user attempts to exit
at that point by entering a non-numeric. This will recur until a proper value is entered, and the repeat
loop starts over. This time we shall not return values as the value of the procedure; instead values will
be declared a global variable which is accessible to all procedures in the program. As we mentioned
already, variables of this type should be used sparingly. Since they can be altered anywhere in the
program, they are prone to cause errors which are difficult to detect. Where possible, keep variables
local, using them only in one procedure. The declaration of global variables must be done outside all
procedures; the best place for them is right at the beginning of the program thus:

global values

These paired values must now be placed on a grid on the screen. How can we do this? The easiest,
although not the only, way to do this is to move the cursor around the screen directly to the point
concerned. Most terminals are capable of doing this, but the instructions may vary to achieve the
necessary effects. The code example given here uses escape sequences that seem to work on MS
Windows and Mac OS X terminal windows. It may require consultation with your terminal manual to
find what the corresponding commands are for your terminal.

First we have to note that some kind of scaling is necessary. The text screen has 25 lines (the x-axis)
and 80 columns (the y-axis). It is also possible to have a 25 x 40 screen. There are graphic screens on
which points can be plotted with great accuracy, but these are not accessible to the current
implementation of Icon. For this purpose we shall need to know the range of our data, and adapt it to
the size of the grid which we have available. We will therefore declare the variables for the minimum
values of x and y and the range of x and y as global variables. The maximum value will not be further
needed and so may be declared a local variable in procedure figure(). The very first line in our program
now looks like this:

global values, x_min, x_range, y_min, y_range

We are now going to run through the values supplied by the user and determine the minima and
maxima. We first set both x_min and x_max to the first value, since at this point this value is both the
maximum and the minimum. We do the same for the y value. Since we have already taken care of the
first two values we can start looking at value three. We set a variable n to 3, and are going to increment
it in steps of two, since the x and y values alternate. We now have a pair of or-statements:

68

(x_min := (x_min > values[n])) | (x_max := (x_max < values[n]))
(y_min := (y_min > values[n + 1])) | (y_max := (y_max < values[n + 1]))}

Let us consider the x statement first. We are going to try to assign a value to x_min. If we succeed, then
we shall skip the "or" part of the line. If we fail, we shall try to assign something to x_max. In other
words, if we find a value of x lower than the current minimum, it will replace that minimum. If that
does not work, we shall check if it can replace the maximum. Of course, both attempts may fail. The
expression

x_min > values[n]

succeeds if the value of x_min so far is greater than the current element in values, and returns the
second value—i.e., that of values[n]—and this then replaces the former minimum. We cannot use the
more natural expression

values[n] < x_min

because then x_min would be returned, and no change would take place. Having less-than return the
second value was a decision made by those who constructed the language. It allows expressions such as
i < j < k to work as expected. When the loop finishes, we have ascertained the maximum and minimum
values for the x- and y-axes. From these we can calculate the range, and then go on to scale these to fit
the screen. Our procedure now reads as follows:

procedure figure()
local x_max, y_max, n
 x_min := x_max := values[1]
 y_min := y_max := values[2]
 every n := 3 to *values by 2 do {
 (x_min := (x_min > values[n])) | (x_max :=
 (x_max < values[n]))
 (y_min := (y_min > values[n + 1])) | (y_max :=
 (y_max < values[n + 1]))}
 x_range := x_max - x_min
 y_range := y_max - y_min
end

The long lines are broken in a place where they are clearly incomplete. This prevents semi-colons from
being inserted at those newlines. The procedure for scaling is quite simple. We pass to it the particular
value we wish to scale:

procedure scale(n,min,range,max)
 return integer((n - min) / real(range) * max)
end

and it returns the scaled value.

We can regard our screen as a grid numbered from 1 to 25 vertically and 1 to 80 horizontally.
Executing a writes() statement

 writes("\e[1;1H")

moves the cursor to the top left corner of the screen, but writes nothing there.

 writes ("\e[25;80H")

moves the cursor to the bottom right corner. It is permissible to write this statement in pieces, provided
that we do not separate the \e which represents the escape character. If the value of q is 25 and of trh 80
then an equivalent statement to the last is

 writes("\e[",q,";", trh,"H")

69

This feature enables us to compute the coordinates. The cursor is then sent to the computed coordinates,
and a dot is printed there. Here is the complete program, including the procedure to place the dots
appropriately on the screen:

global values, x_min, x_range, y_min, y_range
procedure main()
 get_values()
 figure()
 scatter()
end
procedure get_values()
 values := []
 repeat {
 writes("X-value? Nonnumeric to finish. ")
 put(values,numeric(read())) | break
 writes ("Y-value? ")
 while not put(values,numeric(read())) do
 writes("You must enter a numeric value. Y-value? ")
 }
 return
end
procedure figure()
local x_max, y_max, n
 x_min := x_max := values[1]
 y_min := y_max := values[2]
 every n := 3 to *values by 2 do {
 (x_min := (x_min > values[n])) | (x_max := (x_max < values[n]))
 (y_min := (y_min > values[n + 1])) | (y_max := (y_max < values[n + 1]))
 }
 x_range := x_max - x_min
 y_range := y_max - y_min
end
procedure scale(n,min,range,max)
 return integer((n - min) / real(range) * max)
end
procedure scatter()
local n
 writes("\e[2J")
 every n := 1 to *values by 2 do {
 writes("\e[", 26 - ((scale(values[n + 1], y_min, y_range, 24) + 1)),
 ";", scale(values[n], x_min, x_range, 79) + 1, "H")
 writes(".")
 }
end

SUMMARY OF ICON FEATURES

1. The main procedure may have a single argument. Then, if the program is run with following
arguments these will be stored in the form of a list in the variable constituting the argument of the
main procedure.

2. list(i,x) creates a list of i values with the initial value of x.

70

3. put(L,x) adds the value x to the right of the list L.

4. numeric(n) returns a numeric value for n if it can, and fails otherwise.

5. repeat initiates a “perpetual” loop concluded by break. The loop can also terminate if the whole
procedure returns or fails or if the whole program is ended.

71

9. Pearson's Coefficient of Correlation

9.1 Planning the Program
In this chapter we shall develop a program to calculate Pearson's coefficient for word frequency in two
texts. Kenny comments as follows (p. 83):

Calculation of the Pearson product-moment coefficient by means of its definition
formula can be a slow and laborious business, since it involves calculating the mean and
standard deviation for each of the two distributions involved, and the conversion of all
the values along each scale into z-scores. This will have become apparent to the reader
on working through even the artificially simple exercises in the text…

Kenny goes on to point out that hand calculators often include a routine for calculating the coefficient.
This program offers the possibility of calculating the coefficient easily, once the texts or a sample of
them are available in machine-readable form—and preparing these is much less tedious and error prone
than working through texts by hand and making the calculations.

Additionally, optical scanners are able to convert printed matter, or even written matter, into machine-
readable form and are readily available.

Let us now consider what information we shall need, and how we shall proceed. From the user we shall
need three pieces of information: a set of words, the occurrence of which is to be checked in the texts,
and the names of two files which contain the texts. Our main procedure will call a procedure to get the
set of words, and use twice the procedure to get a valid filename which we have used before. The
results of these three procedures will be passed to a procedure which will systematically use this
information to calculate the coefficient. Our main procedure then will look like this:

procedure main()
 process(get_words(), get_valid_filename(), get_valid_filename())
end

The second and third arguments of process() give the user three chances to designate a valid filename,
and end the program if this effort does not succeed. The first one will get a list of words, and we can
also use it to explain the program. The three pieces of information are passed to procedure process()
which will do the main work of the program. If we wish to make the main procedure less succinct but
more readable we can use three local variables thus:

procedure main()
local word_list,filename_1,filename_2
 word_list := get_words()
 filename_1 := get_valid_filename()
 filename_2 := get_valid_filename()
 process(word_list, filename_1, filename_2)
end

Both of these approaches are valid, and which one chooses is a matter of style. The procedure process()
will proceed as follows:

1. Create a table for file A in which the index will be the words concerned, and the values will be the
number of times the word occurs. This table will be created by another procedure which will get the
words from the file (using a procedure we have used before) and compare them with the word list.

72

2. Create a similar table for file B. These tables will not necessarily be the same length, since some
words may occur in only one file.

3. For ease of processing, convert both tables to lists of values in the same order. From this point on we
do not need to know what the word is; we have to have paired values for the two files. The two lists
will be in corresponding order.

4. Figure the mean of the values of file A, using a procedure for that purpose, then do the same for file
B.

5. On the basis of step 4, figure the standard deviation for each text, using a procedure similar to one
already used, but quite general this time.

6. On the basis of step 5, figure the z-score for each pair of values in the lists derived from the tables,
multiply them together, and keep a running total.

7. The coefficient is figured by dividing the running total by the length of the word list, and is printed
on the screen.

9.2 Getting Information From the User
Here is the procedure which will give the user some information, and also request some.

procedure get_words()
local word,word_list
 word_list := []
 write(); write(); write()
 write(center("PEARSON PRODUCT-MOMENT COEFFICIENT",64))
 write(center("—————————————— ",64))
 write()
 write("This program will figure the coefficient for a set of words")
 write("you will supply as they occur in two texts. Enter them one")
 write('"at a time, following each by pressing Return. When you are")
 write("through enter a single period and press Return. You will be")
 write("asked twice for an input file. Enter valid file names.")
 write("Please enter the words.")
 while (word := read()) ~== "." do
 put(word_list,word)
 return word_list
end

This procedure is quite simple. It has only two local variables: word which will hold the words as they
come in from the user, and word_list into which the individual words will be placed and will ultimately
be returned as the value of the procedure. We start by initializing word_list to an empty list, and then
write some instructions to the screen. These could be formatted in any way you find esthetically
pleasing; the function center() is helpful in doing this, and a little experimentation will indicate what
works best. It is a good idea to start with clearing the screen, but how this is done depends on your
particular terminal. It will normally involve writing some code to the screen. This will usually be a
control character or some characters beginning with the escape character which is used to indicate that
what follows are not the usual printing characters. The following will work on the Apple terminal, and
usually work elsewhere:

 writes("\e[2J")

73

This is the escape character, represented in Icon by \e followed by a code arbitrarily set by the system.
If this does not work, look in the manual for your terminal for the appropriate code for clear screen or
home and clear, or ask someone who might know! Another approach would be to use

system("clear")

which instructs the system to use its command “clear.” This functions slightly differently in that it also
moves the cursor to the top of the screen. The user then types in a word at a time, following each by
return. The end of the list is signaled by entering a single period or some other appropriate character.
Our loop then is

 while (word := read()) ~== "." do
 put (word_list,word)

that is, so long as the word read is not a single period enter the loop which adds the word to the word
list. Note that the item read is assigned to word, and it is the value of that assignment operation which is
checked against a single period before the loop is entered. The possible length of the list is limited only
by the computer's memory; it is unlikely that this will present a problem with a list of reasonable size.
As soon as the loop is concluded, the word list is returned as the value of the procedure, and this is in
turn passed by the main procedure to a procedure which will process the information. Two final points
before we leave get_words(). First,

 word_list := list(0)

would be an acceptable alternative for initializing word_list. Second, it might be a good idea before
returning the word list to check that it actually contains something; the user might have entered a period
immediately. We could do this by checking if the length of the list is zero, in which case we stop the
program:

 if *word_list = 0 then stop("Bye!")

9.3 Figuring the Coefficient
The procedure which we shall call process() will have the three arguments mentioned before, and a
number of local variables. If the local variables are too many to place conveniently on one line we can
repeat the word local.

For each of the two files we shall need variables to contain a table, a list, a mean, and a standard
variation. In addition we shall need a variable to contain the running z-score product and finally one for
the coefficient we are seeking. Here is the procedure:

procedure process(wl,fnm_a,fnm_b)
local table_a,table_b,list_a,list_b,n,a_mean,b_mean
local a_sd,b_sd,z_sc_product,coefficient
 z_sc_product := 0
 table_a := make_table(fnm_a,wl)
 table_b := make_table(fnm_b,wl)
 list_a := list(*wl,0)
 list_b := list(*wl,0)
 every n := 1 to *wl do {
 list_a[n] := table_a[wl[n]]
 list_b[n] := table_b[wl[n]]
 }
 a_mean := mean(list_a)
 b_mean := mean(list_b)

74

 a_sd := st_dv(a_mean,list_a)
 b_sd := st_dv(b_mean,list_b)
 every n := 1 to *wl do
 z_sc_product +:= z_sc(list_a[n] ,a_mean, a_sd) * z_sc(list_b[n],b_mean,b_sd)
 coefficient := z_sc_product / *wl
 write()
 write("Coefficient is ",coefficient)
end

We initialize the running z-score product to 0. Then we create a table for each file, using a procedure
which we shall discuss soon. We then create a list for each file, which has as many elements as there
are words in the word list, and the initial value of which is 0 in each case. We then make each word in
the word list in turn the index of the table, and transfer the value to the new list. Notice that if a value is
missing in the table because the word did not occur in the file, it will still return the value 0, and this
will be entered in the list as an actual value. We then figure the means and the standard deviations;
from this the sum of the products of the pairs of z-scores and then the coefficient. We now have to
consider the procedures that contribute to this procedure.

9.4 Creating the Table—Pattern Matching
In order to create a table, we must get the words in turn from the file (which we already know how to
do) and then compare them with the words in the word list, incrementing the appropriate entry in the
table if a match is found. On a previous occasion we did a similar operation by using a loop which
compares each word in turn with the members of the word list and jumps out if a match is made. Icon
has a much better way of doing this kind of operation. In order to understand it we must examine the
nature of the string scanning facility in Icon. When this facility is invoked by following the string, or
string valued variable, by the question mark, two keywords are activated. &subject contains the original
string that is being processed. &pos contains the position of the imaginary pointer which moves along
the line as we process it, and is initially set to 1; that is, immediately left of the first character in the
string. Both &subject and &pos are global; that is to say, both can be accessed by any other procedure.
Accordingly it is possible to set up a procedure outside the one in which the string scanning facility is
in operation which will utilize these keywords and give back information to the string scanning
operation. Here is our procedure to make a table:

procedure make_table(flnm,L)
local t
 t := table(0)
 every word := getword(flnm) do
 word ? if is_in_list(L) then
 t[word] +:= 1
 return t
end

This procedure creates a table of which the initial values will all be 0. We then get one word at a time
from the file, call up the scanning facility for that word, and determine if the word is in the list. If it is,
the corresponding index has its value incremented by one. The procedure is _in_list() will succeed only
if the word which is the subject of scanning is in the list provided to is_in_list() as its argument.

9.5 Matching Against a List of Words
For our purposes we can use a procedure referred to by Griswold (p. 219) slightly modified.

procedure is_in_list(L)

75

 suspend tab(match(!L) & pos(0)
end

The exclamation point prefixed to a variable produces the elements of that variable in turn. For
example, if L is a file, it will produce each line in the file, and we could use an every loop to print out
those lines or use them in some other way. In this case, L is a list. Now suspend which returns a result
and leaves the procedure intact rather than departing from it entirely as return does, acts like every
inasmuch as it prompts the production of every possible result. So what happens is as follows. Let us
assume that the words in the word list are he she we you and the word against which we are matching
them is weed. The expression !L first produces he and match() attempts to find this string starting at the
current position of the pointer which is 1. match() fails and so tab() fails too. (Since this combination of
tab() and match() is so common, Icon possess a shorthand notation for it which consists of placing the
equal sign immediately before the string or the string valued variable.) !L now produces she which
meets with the same fate. When we is produced match() succeeds and returns 3, which is the position in
weed after the string we. tab() now moves the pointer up to position 3. So far we have a positive result.
This is conjoined by & with the result of pos(0). However, this fails, since the pointer is not at the end,
and the whole procedure fails. Since this scanning operation is complete however, the original position
of the pointer at the beginning is restored, and another try is made with you which fails in the same way
as the first two. If the word against which we are matching is we rather than weed, the third attempt will
succeed and so the procedure will succeed since it is producing a result. This is not strictly a "matching
procedure" as Icon defines it, since the matching procedure should produce the string between the
original and the ultimate position of the pointer. However, in this case our interest is purely in a yes-no
answer to the match, as we already have the string in which we are interested.

Here now is our complete program. Comments have been added. The procedures for computing in turn
the mean, the standard deviation, and the z-scores should be self-explanatory.

This program solicits a set of words and two filenames containing texts. It calculates
Pearson's coefficient of correlation for the frequency of the words in the two texts.
procedure main()
 process(get_words(),get_valid_filename(),
 get_valid_filename())
end
#For each text make a table, the index of which is a word, and the value of
#which is the number of occurrences. Convert this info to a list of values
#for each text. Figure the mean, standard deviation, and thence the z-scores for the
#raw scores, and figure coefficient based on pairs of scores.

procedure process(wl,fnm_a,fnm_b)
local table_a,table_b,list_a,list_b,n,a_mean,b_mean
local a_sd,b_sd,z_sc_product,coefficient
 z_sc_product := 0
 table_a := make_table(fnm_a, wl)
 table_b := make_table(fnm_b, wl)
 list_a := list(*wl, 0)
 list_b := list(*wl, 0)
 every n := 1 to *wl do {
 list_a[n] := table_a[wl[n]]
 list_b[n] := table_b[wl[n]]
 }
 a_mean := mean(list_a)
 b_mean := mean(list_b)

76

 a_sd := st_dv(a_mean,list_a)
 b_sd := st_dv(b_mean,list_b)
 every n := 1 to *wl do
 z_sc_product +:= z_sc(list_a[n],a_mean,a_sd) * z_sc(list_b[n],b_mean,b_sd)
 coefficient := z_sc_product / *wl
 write()
 write("Coefficient is ",coefficient)
end
#Gives instructions & solicits word list from user
procedure get_words()
local word,word_list
 word_list := []
 write(); write(); write()
 write(center("PEARSON PRODUCT-MOMENT COEFFICIENT",64))
 write(center("_______________",64))
 write()
 write("This program will figure the coefficient for a set of words")
 write("you will supply as they occur in two texts, Enter them one")
 write("at a time, following each by pressing Return, When you are")
 write("through enter a single period and press Return. You will be")
 write("asked twice for an input file. Enter valid file names.")
 write("Please enter the words. ")
 while (word := read()) ~== "." do
 put (word_list,word)
 return word_list
end
#Gives user three chances to enter a valid filename
procedure get_valid_filename()
local filename
 every 1 to 3 do {
 writes("What is the name of the input file? ”)
 filename := read()
 if close(open(filename)) then {
 write("OK")
 return filename
 }
 else
 write("Unable to open file,")
 }
 stop("Bye! ")
end
#Figures the mean of a list of values
procedure mean(L)
local total,n
 total := 0
 every n := 1 to *L do
 total +:= L[n]
 return real(total) / *L
end
#Figures the standard deviation of a list of values based on mean
procedure st_dv(m, L)
local sum_of_squares, n
 sum_of_squares := 0

77

 every n := 1 to *L do
 sum_of_squares +:= ((L[n] - m) ^ 2)
 return (real(sum_of_squares) / *L) ^ 0.5
end
#Figures the z-score based on raw score, mean, and standard deviation
procedure z_sc(raw_score,m,sd)
 return (raw_score - m) / real(sd)
end
#Succeeds if the subject matches any of a list of words
procedure is_in_list(L)
 suspend !L & pos(0)
end

#Creates a table of occurrences of list of words from a file
procedure make_table(flnm,L)
local t
 t := table(0)
 every word := getword(flnm) do
 word? if is_in_list(L) then
 t[word] +:= 1
 return t
end
#This procedure produces one word at a time from the file. Definition of word is somewhat primitive.
procedure getword(filename)
local chars, punct, filvar, line, word
 chars := (&letters ++ &digits ++ '\'-')
 punct := ' .,?";:!'
 filvar := open(filename)
 while line := read(filvar) do line ? {
 tab(many(' ')) #skip leading blanks
 while word := tab(many(chars)) do {
 tab(many(punct))
 suspend word
 }
 }
 close(filvar)
end

9.6 More on Matching
Let us now consider a further possibility of using Icon's ability to match strings. You will recall that in
order to figure the Pearson coefficient we need three pieces of information from the user:

1. The name of the file containing Text A.

2. The name of the file containing Text B.

3. A set of words, the occurrence of which is to be checked in the texts.

Assume now that instead of getting this information interactively as we have done using prompts, we
shall allow the user to enter this information on the command line, making the assumption that the first
two valid filenames on the line are the names of the files concerned, and all the other entries are the
words that are going to be checked. Icon allows the main procedure to have an argument,

78

“command_list” for example, which makes available a list of strings to the program, consisting of
items, separated by blanks, which follow the name of the program when it is called by the user. Note
that this time we are not checking that the file exists; we may indeed wish to check that also, but here
we are checking that the actual name of the file follows appropriate rules as to how it is spelled out. We
could incorporate this feature into the main procedure by checking to see if the list coming in from the
command line contains anything; if it does we use it, if not, we solicit the information interactively as
before. For our purpose, a valid filename will be a number of characters deemed permissible for a
filename, followed by a period followed by the ending txt, which is called the extension, and usually
consists of three or four letters which hint at what the file contains. For example, a file containing a
document may have the extension doc, while one containing an Icon program must end in icn. Rules
for filenames are system dependent, and procedure isfile() below can be modified according to need.

For the moment we shall write a separate program which will simply take a list of strings from its
command line, identify the two files, and print them out. We shall do this by taking the command line
(which is a list of strings) and turning it over to a procedure which will return and print out a list of two
strings that meet our needs if it finds them. If we wanted to use this technique in the preceding
program, we could put the filenames into one list, the words for matching in another, place both lists in
another list, and return it as the value of the procedure. This information can then be passed to
procedure process().

Here is our main procedure:

procedure main(command_list)
local filelist
 filelist := getfiles(command_list)
 write("First file is ",filelist[1])
 write("Second file is ",filelist[2])
end

The procedure getfiles() returns a list of up to two files, which is stored in filelist. The write() commands
will only be followed if the appropriate element in filelist exists, since the attempt to retrieve the
contents of an element ([1] or [2] in this case) will fail if that element does not exist, and that failure
will be "inherited" by write().

In getfiles() we shall proceed something like this:

● Prepare an empty list which will hold the valid filenames.

● Bring in a word from the command line list.

● If a procedure gives the OK, add it to the new list.

● Quit when two valid filenames have been found, or the old list ends.

Let us now convert this to Icon language. The first preceding item becomes:

 L_out := []

We now need a loop to bring in each string from the command line in turn. Let us assume that in this
procedure the command line has been stored in list L.

 every n := 1 to *L do

Now we invoke the string scan:

 L[n] ? if isfile() then put(L_out, L[n])

79

The procedure isfile() will succeed if L[n] is indeed a valid filename, and then it will be added to the
new list. Otherwise we go on to try a new string. There is one additional thing. Once we have found
two files, we should like to stop, and we can achieve that by setting up a flag. After the first file is
found, the flag goes up; when the second is found the flag is checked, found to be up, and the procedure
stops. Now if we establish a variable flag, its initial value is null. This we take to be the flag in its down
condition. We can check this by prefixing a forward slash (/) to the variable. This will produce the
variable flag if that variable is null; otherwise it will fail. So the command

 /flag := "up"

will succeed the first time it is met with in the program, since the value of flag is null; however the
value "up" will be assigned to flag which is produced by the expression /flag. Accordingly, the next
time around

 /flag := "up"

will fail because now flag does have a value, and is not null. You will notice that /flag produces a
variable not a value, and it is this fact that allows a new value to be assigned to flag. Of course, we
don't have to use the string "up". The arbitrary number 1 would do equally well. There is a similar
prefix, the back slash (\), which succeeds if the variable it precedes does have a value. Finally we may
note that an expression like if flag then... is useless, since it will always succeed, producing null or
some value, and being successful in either case. Using this feature our procedure becomes:

procedure getfiles(L)
local L_out,n,flag
 L_out := []
 every n := 1 to *L do
 L[n] ? if isfile() then {
 put (L_out, L[n])
 (/flag := 1) | break
 }
 return L_out
end

Since the flag statement fails the second time around, the alternative following the bar is taken account
of, and the loop stops at the behest of break. The flag statement is put into parentheses to make sure it is
properly grouped. Now we reach the crux of our discussion: the procedure isfile().

We first declare a static variable permissible. By declaring permissible as static it will retain its value
however many times the procedure is called. There is then a command preceded by the word initial
which means that it will be done only the first time the procedure is called. This avoids unnecessary
computation of a value that will never change. This stores in permissible a set of all the valid characters
for filenames. The function many() will then span all such characters and return the position
immediately after the last of them. many() must find at least one character to succeed. We then need to
find a period followed by txt at which point the string must end. This is expressed by

 tab(match(".txt")

where match() looks for the string that is its argument immediately after the imaginary pointer, and
tab() then moves the pointer beyond it. The equals sign may be used also thus:

 =".txt"

The end of the string is symbolized by conjoining the pos(0) function, which ensures that the pointer is
now at the end. So we have:

procedure isfile()

80

 static permissible
 initial permissible := &letters ++ &digits ++ '$&#%\'()-@^{}~` !_'
 return tab(many(permissible)) II =".txt" & pos(0)
end

Should we wish txt to be permissible in any of the eight possible combinations of lower- and uppercase
letters we might substitute

 ="." II tab(any('Tt')) II tab(any('Xx')) II tab(any('Tt')) & pos(0)

The function any() will look for a single character in its argument immediately after the current position
of the pointer, and return the position after it.

You may wish to try modifying the program for figuring the coefficient to allow an option of providing
the information in the command line. You will need an if-statement in the main procedure such that an
empty command line triggers the interactive solicitation of information, and a command line with
information is processed such that the filenames and word list are correctly passed to process().

9.7 Sets
Icon has another structure which can often be fruitfully used in matching words. We have previously
learned something about character sets or "csets" which are created in Icon by placing a group of
characters between single quotes and are useful with such functions as upto() which looks for a point in
the string where any member of the cset occurs. Icon can handle sets of items other than single
characters. Set theory is a branch of mathematics that was elaborated by Georg Cantor, and a brief
example will help explicate the kinds of situations in which it can be helpful. Let us imagine that
committee A has members Jones, Brown, Rodriguez, and Sperber while committee B has members
Robinson, Schwartz, Rodriguez, and Sperber. If the two committees meet together, the joint committee
will have a membership of six and not eight. If we take away from the joint committee those members
who only belong to one committee, a set of two persons will be left. Icon is able to mirror operations of
this type. In order to create a set we start with a list

 [" Jones", "Brown", "Rodriguez", "Sperber"]

and convert it to a set by the function set():

 committee_A := set(["Jones", "Brown", "Rodriguez", "Sperber"])

Note that an identical individual item that recurs in the list will occur only once in the set, and unlike
the list, the members of the set are in no particular order. We can check if an item is a member of a set
by the function member(). So in this instance

 member(committee_A,"Jones")

would succeed and return the value "Jones". If the second argument had been "Schwartz" the function
would have failed. This can readily be used to check the occurrences of a word list in a text. We set up
a table to hold the occurrences of particular words:

 wordcount := table(0)

and a set of the words we are checking

 wordlist := set(["'you","'we","they"])

then as each word comes in and is stored in the variable word the statement

 wordcount[member(wordlist,word)] +:= 1

81

will create a table in which the entries are the members of the set (or as many of them as occur in the
text) and the values are the number of occurrences. No if-statement is required. If the word is not in the
set, the function member() will fail and no assignment will be made, since the entire statement will fail.
If it is in the set, it is returned as the value of member() and becomes the index of the table. The value
of that entry is then increased by one. The length of the table will be as many entries as have been
found at least once, but if a non-occurring word is checked in the table it will return 0, since that is the
initial value of table entries. This is a good example of how the useful Icon structures table and set can
be used to produce concise code in which a single line does a great deal of work.

The equality of two Icon sets can be checked by a triple equal sign (===). We have already met the
single sign being used for the equality of numbers and the double sign being used for the equality of
strings. Further information on comparing values can be found on pages 128-130 of Griswold and
Griswold's “The Icon Programming Language”, 3rd edition. A member can be inserted in a set as
follows:

 insert(committee_A, "Jackson")

or we could put Jackson in his own set and unify the two.

 committee_A ++:= set(["Jackson"])

Set union and difference is shown by the double plus sign or minus sign, and set intersection (which
gives the set of members that belong to both) by the double asterisk. In the just-cited example
committee_A and the new set are unified, and the result is assigned to committee_A which now has the
new value of the combined sets. The function delete(committee_A,"Jackson") would remove Jackson
from the set. Both insert() and delete() always succeed and cannot be used to check to see if a member
is there or not; for this member() must be used.

SUMMARY OF ICON FEATURES

1. An empty list may be created by list(0) or a pair of empty square brackets ([]).

2. The word local declaring the names of variables may occur more than once.

3. &subject and &pos are global keywords (accessible to all procedures). The first contains the string
being scanned. The second contains the current position of the pointer used in string scanning.

4. The exclamation point (!) prefixed to a variable produces the elements of that variable.

5. The equals sign (=) prefixed to a string or string-valued variable is equivalent to tab(match()).

6. The ampersand (&) conjoins statements. Both must succeed for the whole to succeed. The bar (|)
alternates statements. If one succeeds, subsequent ones are not evaluated, and the whole succeeds.

7. The forward slash (/) prefixed to a variable succeeds and produces the variable if its value is null (the
initial value of variables.) The back slash (\) prefixed to a variable succeeds and produces the variable if
its value is something other than null. Otherwise it fails. A variable without either always succeeds
because it always produces something.

8. If the Icon main procedure has a variable as its argument, that variable will contain a list valued at
the strings written after the command that calls the program. So if the first line of the main procedure is
procedure main(c) and the line calling the program is coefficient he she it, then c will be a three-string
list consisting of "he", "she", and "it".

82

9. An attempt to access a list element that does not exist will cause failure (which will be “inherited” by
any procedure calls in which such attempt occurs).

10. A variable declared static will retain its value from one call of the procedure to the next providing
"memory" for the procedure. A statement (or compound statement inside curly brackets) preceded by
the word initial will be executed on the first call of the procedure only. Statements like this must occur
at the beginning of the procedure.

11. The double bar (||) concatenates (joins together) strings.

83

10. Programming a Nursery Rhyme

10.1 Ten Green Bottles
In this chapter we shall try to generate some rhymes, both as an exercise in becoming sensitive to
structures in language and to learn some new Icon features.

The structure of the rhyme "Ten Green Bottles" is fairly obvious. It is a loop in which the number
constantly decreases until it reaches zero—a rather fancy description of a child's rhyme. We need to set
a variable to 10, decrease its value by one each time a bottle falls, and come out of the loop when 0 is
reached:

procedure rhyme()
 local n
 n := 10
 while n > 0 do {
 write(n," green bottles hanging on the wall.")
 write(n," green bottles hanging on the wall.")
 write("Now if 1 green bottle should accidentally fall,")
 write("There'd be ",n -:= 1," green bottles hang_
 ing on the wall.")
 }
end

The symbols -:= written together decrease the value of the variable by what follows just as +:= increase
it. A quoted string may be broken up for convenience between lines by using an underscore to denote
that a continuation is to be expected. Now we just need to call this procedure and it will print out the
entire rhyme. There are, however, some inelegant features occasioned by the conventions of the English
language which we may wish to remove. First, we are supposed to spell out small numbers and not use
the numeral.

There is no automatic connection in Icon between "1" and "one". The first is a one-character string
representing an integer, a counting number, and the second is a three-character string which is the name
in English of that integer. The first item may change according to the number system ("I" in the Roman
and "" in the Hebrew system, for example), while the second may change according to language ("uno"
in Spanish or "één" in Dutch), but they always point to the same underlying integer. We might make
this connection by setting up a list with ten elements and then fill it with the appropriate words:

 numbers := list(10)
 numbers[1] := "One"
 numbers[2] := "Two"

and so on.

If this procedure were going to be called more than once it would be appropriate to declare numbers as
static rather than local and initialize the elements in numbers in a compound initial statement (i.e., initial
followed by the assignments inside curly brackets) since their value will never change. It is unthinkable
that the string "Two" could ever be assigned to numbers[1] for instance. By declaring the variable as
static and designating the statements as initial, the assignments are made once and retained from one
call of the procedure to another. In this case it makes little difference, since the procedure is only called
once. You might like to try writing a procedure that will return the name in English, or some other

84

language, when furnished with an integer between 1 and 100. How would you avoid spelling out the
numbers between the tens greater than twenty? (Hint: Remember the modulo – %.)

We still have a problem in that we have not allowed for zero. Actually, if we run the program like this
the last line will not be written because the attempt to access numbers[0] will fail, and so the write()
will fail too. Then we can add the missing line after the loop. We begin by initializing the index to 10,
and then enter the loop:

 n:= 10
 while n > 0 do {
 write(numbers[n]," green bottles hanging on the wall.")
 write(numbers[n] ," green bottles hanging on the wall.")
 write("Now if one green bottle should accidentally fall,")
 write("There'd be ",numbers[n -:= 1]," green bottles hanging on the wall.")
 }
 write("There'd be no green bottles hanging on the wall.")

Notice how the indentation shows that the last command is outside the loop. By moving the line back
we show that the flow of the program has moved up one level, and is not inside the loop. An alternative
approach would be to use a table instead of a list. Then we could have a 0 index also. The conventions
of English are giving us some new problems. We wrote in the numbers with capital letters, but the third
line requires a small letter.

So we can set up a procedure to take care of this:

procedure lcase(s)
return map(s,&ucase,&lcase)
end

The function map(s1,s2,s3) produces a string in which each character of s1 that appears in s2 is
replaced by the corresponding character in s3. The keywords represent csets, but these are
automatically converted to strings by Icon.

This is a general procedure that takes a string and turns any uppercase letter into the corresponding
lowercase letter, leaving everything else unchanged. So now we have

 write("There'd be ",lcase(numbers[n -:= 1])," green bottles hanging on the wall.")

Bearing in mind that write() writes to the screen all its arguments in order, notice what the second
argument of write() does. It decreases the value of n by one, then uses the value of the assignment
statement as the index of a list which produces a string which is then converted to all lowercase letters.

There is one other inelegant feature. When we get to "one", "bottle" does not need an s. (Curiously,
with "no" it does!). We can, of course, avoid the issue by writing "bottle(s)" in the first instance, but
somehow this seems in order for an official form but inappropriate for a nursery rhyme. Spelling out for
a computer all the feelings and intuitions we have with respect to our own language is a truly enormous
task. We can cope with this by setting up a procedure for plurals that will return s or a null string
according to circumstances:

procedure plural(n)
 if n = 1 then return "" else return "s"
end

85

Notice too the way the null string is used. It regularizes the situation such that each word ends in
something—even if that something is invisible! Here now is the complete program:

procedure main()
 rhyme()
end
procedure rhyme()
local n,numbers
 n := 10
 numbers := list(10)
 numbers[1] := "One"
 numbers[2] := "Two"
 numbers[3] := "Three"
 numbers[4] := "Four"
 numbers[5] := "Five"
 numbers[6] := "Six"
 numbers[7] := "Seven”
 numbers[8] := "Eight"
 numbers[9] := "Nine"
 numbers[10] := "Ten"
 while n > 0 do {
 write(numbers[n]," green bottle",plural(n)," hanging on the wall.")
 write(numbers[n]," green bottle" ,plural(n), " hanging on the wall.")
 write("Now if one green bottle should accidentally fall,")
 write("There'd be ",lcase(numbers[n -:= 1])," green bottle",
 plural(n)," hanging on the wall.")}
 write("There'd be no green bottles hanging on the wall.")
end
procedure plural(n)
 if n = 1 then return "" else return "s"
end
procedure lcase(s)
 return map(s,&ucase,&lcase)
end

Two observations may be made on this program. First, it is generally not worthwhile to program small
items. Once one gets beyond a very crude product, considerable work goes into programming,
especially where natural language is concerned. Programming is most efficient when large amounts of
data are to be processed, or the program can be used over and over on small amounts of data. For this
reason it is hardly worthwhile to write a program to balance a checkbook, while in contrast word
processors, which get a great deal of use, have been very successful. Second, this little program
illustrates the explicitness that programming requires. Many human beings can be trusted to perform a
task intelligently, making intuitive allowances for special circumstances. The computer must be told
precisely what to do, without ambiguity. Dealing with natural language is particularly troublesome in
this regard, since it has many ambiguous and unexpected features which are hard to anticipate. It is this
fact which has made progress in machine translation from one natural language to another much slower
than was initially expected.

10.2 The House that Jack Built
If we examine the structure of the nursery rhyme called “This is the House that Jack Built” we shall see
that it consists of two loops, one within the other. The outer loop constantly brings in two new

86

elements, a noun or noun phrase and a verb or verb phrase, while the inner loop trots out all the
previous nouns and verbs, so that the verses get progressively longer. To get started we need two nouns
and a verb which are then set in a particular framework, then subsequently we need only one noun and
one verb which are set in a slightly different framework, but this pattern repeats indefinitely.

Accordingly it will be well to have a procedure to get us going and generate the first phrase, and then
pass this to a procedure which will generate the rest of the rhyme:

procedure get_started()
local str
 writes("This is the ")
 str := read()
 writes(“That ")
 str II:= “ that “ II read()
 return str
end

This procedure has one local variable which will hold the string which will ultimately be the last few
words of each verse. We prompt the user to enter “house” (or an equivalent) by printing out the words:
“This is the ” and staying on the same line. Note the blank at the end of this phrase; this makes it
unnecessary for the user to insert one. The function writes() does this for us since it does not issue a
carriage return. This is stored in str. We then print “That” at the beginning of the next line to solicit
“Jack built.” or the equivalent. This is added to the previous string along with the word “ that ”
(surrounded by spaces). The symbols ||:= increase the string by what follows just as +:= do with
integers. At this point we might want to consider simply continuing to make the string longer each time
in the same way. This is possible, since we can even include carriage returns in the string. For this we
use \n (for newline). Thus the string

 "this is a \ntest"

would print out

 this is a
 test

(There are some other so-called “escape” characters of this type. \l is exactly the same as \n. This
stands for linefeed, which is the ASCII name for this character. The previous symbol is the newer
UNIX terminology for the same character. \r brings the cursor back to the beginning of the line and in
effect overwrites what is there already. This is a simple carriage return without the linefeed which
normally accompanies it. \b is a backspace.) However, it is not a good idea to create very long strings,
even though it can be done. Long strings are clumsy to manipulate, and the string would have the and
that repeated many times, using up storage space unnecessarily.

Let us observe first of all that in each repetition of the rhyme the words inserted later are mentioned
earlier, “last in, first out.” This arrangement is typical of the stack (like the restaurant plates) and is
represented by a list which uses push() to push new elements in at the front (the left side) of the list.
There is also a function pop() for removing an element from the left side of the list, but since Jack is
cumulative we do not need to use it. It will be best to set up a stack for nouns and a stack for verbs,
adding the new "plates" to the stack as they come in.

procedure rhyme(conc)
local noun,verb,nouns,verbs,n
 nouns := []
 verbs := []
 repeat {

87

 n := 0
 write()
 writes("This is the ")
 noun := read()
 writes("That ")
 verb := read()
 writes("The ")
 while write(nouns[n +:= 1]) do
 writes("That ",verbs[n]," the ")
 push (nouns ,noun)
 push(verbs,verb)
 write(conc)
 }
end

Since the rhyme can theoretically go on forever, the outer loop is well represented by repeat which goes
on indefinitely. Two stacks (empty lists) are created. At the beginning of the loop, an index variable is
initialized to zero. The noun and verb are then solicited from the reader and stored in variables. The
inner loop then looks for the first noun, and since the index is being constantly increased by 1, the loop
will finish when it exhausts the stack, by trying to access an element that will not exist until the next
time around. The first time the loop will not even be entered, since it will try to access an element
(nouns[1]) which does not yet exist. When this loop finishes, the string which was created by the
previous procedure is printed out. We add the new items to their respective stacks, and the repeat loop
is ready to start again. The entire program now looks like this:

procedure main()
 rhyme(get_started())
end
procedure get_started()
local str
 writes("This is the ")
 str := read()
 writes(“That ")
 str ||:= “ that “ II read()
 return str
end
procedure rhyme(conc)
local noun,verb,nouns,verbs,n
 nouns := []
 verbs := []
 repeat {
 n := 0
 write()
 writes("This is the ")
 noun := read()
 writes("That “)
 verb := read()
 writes("The ")
 while write(nouns[n +:= 1]) do
 writes(“That ",verbs[n]," the ")
 push(nouns, noun)
 push(verbs, verb)
 write(conc)

88

 }
end

It would be possible to use only one stack, keeping both verbs and nouns on it in pairs. You might like
to modify the program to use this approach.

10.3 Randomizing Jack
We can have a little fun with this rhyme by shuffling the stack with the result that we may find the malt
biting the house and other improbable and amusing combinations. We can achieve this with a
procedure mentioned in Griswold (p. 97 in the first edition, and in a different form in the third edition,
p. 243.) They use it initially for strings, but it works equally well for lists.

In order to understand the procedure, we need to consider two useful Icon features that we have not met
before. The question mark (?) prefixed to a variable produces a random element of that variable, if, like
a list, it contains various elements. Do not confuse this with the question mark that invokes the
scanning facility. That is a binary operator which is surrounded by spaces and connects the two
expressions on either side. The one we are speaking of is a unary operator which affects only the value
it precedes. If the value is a whole number greater than 0, it will produce a random number between one
and that whole number. If the value is 0, it will produce a real number somewhere between zero and
one. The other Icon feature in this procedure is as follows. You will recall that the expression

 x := y

assigns the value of y to x. Icon has an exchange operator (:=:). So

 x :=: y

assigns the value of y to x, and the value of x to y. The two variables exchange values. Now let us look
at the procedure.

procedure shuffle(L)
local i
 i := *L
 while i >= 2 do {
 L[?i] :=: L[i]
 i -:= 1
 }
 return L
end

The local variable is set to the size of the list. If there are eight elements, the value of i will be 8. We
then enter a loop in which an element selected at random will be exchanged for the last element in the
list, number 8. The value of the local variable is then decreased by 1, so the exchange is with the last
but one element, and this will be a string selected from the first seven elements. When the number of
the variable drops below two the loop finishes, because no exchange is possible when only one element
is involved. So

 shuffle(nouns)

will randomly rearrange the various elements in nouns. But how shall we activate this shuffling? An
easy way would be to invite the user to add some character (say a plus sign) to any answer. We then
check each answer to see if a plus sign is there. If it is, we shuffle the stack and delete the plus sign so
that we are left with a regular word. Since this will be done in a separate procedure, we need to make
the two stacks global, so that the new procedure can operate on them. While it is a good idea in general
to avoid global variables, in this case it would be clumsy to pass the information between procedures.

89

While we are about it, we may as well give the user some way of concluding the program (since Jack is
potentially infinite) let us say by entering a period in the answer, and arrange to use the same procedure
for shuffling two different stacks. This can be achieved by an extra argument that indicates whether
nouns or verbs are to be shuffled. The following will achieve what we wish:

procedure check(s,n)
local p
 if upto('.', s) then stop()
 if p := upto('+', s) then {
 s[p] := ""
 if n = 1 then shuffle(nouns)
 else shuffle(verbs)
 }
 return s
end

The procedure check() first looks for a period. If it finds one, the program ends. A string can appear as
an argument of stop(), a commercial for a local builder let us say, which is printed on the screen before
the program ends. Here upto() is being used outside of the string scanning facility, and so the string it is
operating on must be specified as the second argument. Other string scanning functions may be used
similarly. You may like to try modifying the program so that the string scanning facility is used in this
case too. If no period is found, a check is made for a plus sign. If no plus sign is found, the procedure
simply returns the original string unchanged. If a plus sign is found, it is first eliminated from the
string. Strings can be indexed, so if the value of str is "steak" then the value of str[2] is "t". New values
can be assigned to such indexed variables, and the size of the string changes automatically. So

 str[2] := "tr"

would change "steak" to "streak" and

 str[1] := ""

would change it to "teak". This last method is used to eliminate the plus sign which has now served its
purpose. The procedure then checks the second argument. If it finds a "1" it scrambles the nouns;
otherwise it scrambles the verbs. The original word, stripped of its plus sign, is now returned as the
value of the function. To incorporate this in the program we just replace both occurrences of read() in
procedure rhyme() by check(read(),1) and check(read(),2).

As an exercise you may like to try adding the possibility of unscrambling the stacks. To do this we
need to set up two more stacks (we might call them nouns_bak and verbs_bak) which are filled at the
same time as the regular stacks but are not affected by shuffle(). Then, when the user inserts some other
symbol which check() can recognize, the scrambled stack is replaced entirely by the backup stack:

 nouns := copy(nouns_bak)

The function copy() when used with lists, tables, and records creates an exact but distinct copy. If this
were omitted, both nouns and nouns_bak would reference the same list, and the program would not
work properly. This is why in 10.3 we did not need

 nouns := shuffle(nouns)

Normally, when you pass an item to a procedure a copy of it is made, but this does not apply to lists,
tables, and records (known collectively as "structures") where the actual item is accessed.

90

SUMMARY OF ICON FEATURES

1. The combination of symbols -:= decreases the variable on the left by the value on the right.

2. The combination of symbols ||:= concatenates the string variable on the left to the string or string
variable on the right and assigns the result to the variable on the left.

3. It is permissible to break a string between lines if the first part of the string is followed immediately
by an underscore.

4. The following "escape" characters may be used in strings:

\n or \l newline

\b backspace

\r return to beginning of line

Also, you may precede \, ' and " by the back slash (\\ \' \”) if you want them to represent themselves
literally and not the special functions they normally fulfill as marker or delineator.

5. Strings may be indexed to access individual characters in the string. Such indexed characters may
have other values assigned to them, and the length of the string is automatically adjusted.

6. The function copy() makes a distinct copy of tables, lists, and records. In other cases it simply
produces the value, and so the result is not different from the result of the original item.

7. The function map(s1,s2,s3) produces a string in which each character of s1 that appears in s2 is
replaced by the corresponding character in s3.

91

11. Creating a Data Base

11.1 A Grade Program
In this chapter we shall consider the possibility of establishing a data base, which is one of the most
useful features that the computer has for many users along with word processing programs and spread
sheets. Despite horror stories of unfortunate sufferers who are dunned to pay up zero dollars, computers
have made record keeping much simpler, at least when they are properly programmed and used. While
many excellent commercial data base programs are available for general and specialized applications, it
will be helpful to write a simple program of this type in order to see what it can do. Possibilities exist
for research as well as practical purposes. Care must be employed in this kind of endeavor since
security becomes important, both in terms of not losing crucial data and avoiding snooping or
tampering by third parties. The latter is a complex issue which will not be dealt with here. Some
systems include a program which will encrypt a file which cannot then be used until it is decrypted by
means of a password. If you need this kind of security, you may want to check what is available on
your system, or you may be able to obtain a program to keep your files secret. On time-sharing systems
it is normally possible to make files private so that others cannot read them. The UNIX system has a
program chmod which can make a file available only to its owner, and you can check the
documentation to learn how to use this program. It should be pointed out that Icon keeps its records in
ASCII which is useful insofar as the files can be read by an editor or an operating system command to
“list” the file (i.e., print it out on the screen—the term comes from the days when program source files
with commands that could be listed were the only files written in something like natural language). But
it also means that unauthorized access is easier. Some programming languages create binary data files
that can only be read by a program designed to do so. Asking for a social security number in these days
of identity theft would be clearly unwise; a student number should be substituted. Building a simple
data base will also give us the opportunity to use the Icon data type called record. In Icon the list is a
very flexible structure which may expand and contract in length, be added to or subtracted from at
either end, and hold varying types of data. The result of this is that the record is not quite as useful in
Icon as it is in some languages where the data structures corresponding to the list (arrays, for example)
are more restricted in their use. The record resembles a list in that its elements can be accessed by a
numerical index. It resembles a table in that its elements can be accessed by name. It differs from both
in that the names of its elements and hence its length are predetermined. The nature of the record has to
be declared at the beginning of the program, and may be used by all procedures in the program, which
are not allowed to have their own individual record declarations.

Note that the declaration of a record at the beginning of a program does not create a record. It specifies
rather the attributes of one kind of record values when they are created in the course of the program. It
is useful when we have an item that has various fixed attributes that are interesting to us, for example,
age, sex, address, telephone number, and so on.

It would be possible to write a program simply to figure student grades, but that is rather trivial and
better achieved with a pocket calculator. More significant is a program which will preserve
information, can use that information to generate new information, can be updated from time to time,
and can issue some kind of report. The techniques covered here can be used for many other data base
applications.

Our program will have three sections:

92

● Initialization. This makes it possible to enter and preserve information that may reasonably not
be expected to change: name, address, date of birth, and so on. Of course, someone can marry
and change names or move, but we may disregard this for the moment.

● Updating. This makes it possible to enter information that was not initially available, such as
the results of tests or assignments.

● Reporting. This makes it possible to retrieve the information that has been entered, perhaps after
some calculations or other manipulations that make the data more useful.

The features which might be added to these are virtually infinite, as are the enhancements that might be
added to these sections. We might want to bring in the use of a printer, perhaps for different types of
reports. We will certainly wish to emend as well as update, dropping or adding students, for example.
We may wish to make the files generated by the program available to another program, for example,
one which would enable an individual student to access a restricted set of information of particular
relevance. It is also desirable to add protections against the entry of inappropriate information, and help
in case the user should need it. These last two items make the program "user-friendly." Above all, the
program should be able to accept enhancements and modifications easily, so that the aforementioned
three sections could be expanded to five, or twenty-five, simply by adding more procedures.

Our main program will call a procedure to get initial information from the user, and on that basis call
the appropriate procedure:

procedure main()
 local result
 result := menu()
 case result of {
 "1" : initialize()
 “2” : update()
 “3” : report()
 default : write("Goodbye")
 }
end
procedure menu()
 write(center("Data Base Program", 80))
 write()
 write("Do you wish to")
 write("\t1. Initialize")
 write("\t2. Update")
 write("\t3. Report")
 write()
 writes("Enter 1,2 or 3 and press return.”)
 return read()
end

The main procedure calls a procedure menu() and stores the value of that procedure in result. Let us
look at menu(). It prints out the name of the program and offers a "menu" of three options. The menu is
a common way to offer options to the user. You may have a numbered list of the options, and invite the
user to enter the appropriate number. An alternative method is to invite the user to press an arrow key
and then the cursor moves between the various alternatives on the screen. Nowadays the mouse is used
to select choices, but this option is not currently available in Icon. In order to implement the second
possibility, you need to know what character is sent to the computer by the arrow keys (different
keyboards may have different conventions), and then when the program detects this character it moves

93

the cursor appropriately, accepting the information from the user when finally the return key is pressed.
Since the first method is easier to implement and less dependent on local conditions, we shall stick to
that one. The \t is an Icon character that represents a horizontal tab, giving the effect here of a small
indentation. The procedure menu() returns whatever the user types in, without running any checks on
the validity of the answer. Now the main procedure takes this value, and submits it to a case statement.
A case statement allows for a multi-way condition. The value that is being checked (here, result)
appears between the words case and of. This is followed by a curly bracket and a set of lines divided
by colons, which are checked through in order. If the value of response corresponds to the left-hand
part of the first line, then the rest of the line after the colon is executed, and the program continues after
the closing curly bracket of the case statement. If it does not correspond, then the next is tried and so on
until the curly bracket is reached. It is possible to use the word default, which is executed if all else
fails. The statement containing default is always tried last, wherever it occurs in the case statement, so
you could put it first, if you wish, to emphasize the default. Note that "1", "2", and "3" come in as strings
(as does everything from the keyboard) and must be checked as strings. Icon frequently makes
automatic conversions of data. But in this case there is simply a comparison, and so the items must
belong to the same data type to be considered identical. The main procedure simply shunts the flow to
the appropriate procedure, or shuts down with a polite farewell if it is unable to do so. You may like to
try modifying the program to allow more chances to the user. It is a little more difficult here than
before, but it should be possible to find a way to do it. It would be possible to use getch() instead of
read(), in which case “and press return” could be omitted, but in this case read() is preferable, because
it gives the user the chance to change her mind and backspace if she happens to enter an incorrect
answer.

Even at this early stage it is possible to check to see if the program is working. Add some dummy
procedures as indicated next, and then give it a try:

procedure initialize()
 write("Space reserved for initialization.")
end
procedure update()
 write("Space reserved for updates.")
end
procedure report()
 write("Space reserved for reports.")
end

After we see that the basic flow is correct we can replace the dummies with procedures that actually do
some work. Let us look first at initialize(). At the beginning of the program we must place a record
declaration which gives the name of the record type (we shall call it students) and has as its arguments
the names of the various elements which it contains. Here is the record declaration, placed first in the
program:

record students(name,soc_sec,pwd,fstexam, secexam,final,total,grade)

and here is the procedure for initialization:

procedure initialize()
local filename,student,student_table,student_list
 student_table := table()
 writes("Enter the course number, e.g. 101 ”)
 filename := read()
 writes("Enter the last two digits of the current year ")
 filename ||:= read()
 writes("Enter a single digit for the semester ")

94

 filename ||:= read() II "1.dat"
 writes("The name of the file is ", filename)
 write(". Please note this for future use.")
 write("Enter information about students. Enter period(.) _
 only when asked for name to finish.")
 repeat {
 student := students("","","" ,0,0,0,0, "")
 write()
 writes("Name? ")
 student.name := read()
 if student.name == "." then break # jump out of the loop
 writes("Social security number? ")
 student.soc_sec := read()
 writes ("Password? ")
 student.pwd := read()
 student_table[student.name] := student
 }
 student_list := sort(student_table)
 write_to_file(filename,student_list)
end

We need a file in which to keep our information. We could simply ask the user to designate a filename,
but here we construct a filename from the course number, year, and semester (which amounts to six
digits) and then add a 1 (which will be increased for each update file) and the extension .dat. We then
ask the user to note this name as the identification of this particular series of information. In this
manner a series of files will be created automatically. The way we shall do it will work properly for
nine files only. You may wish to consider how to modify the program to make it work for ninety-nine
files, which should be possible without too much difficulty. We then enter a loop to structure the
incoming information appropriately. We initialize a variable student as a record of the type of students.
The initial values are zero for numerical items and the empty string for string items. We then fill in
such information as we can. We do not even ask for the score on the first examination for example, and
that stays at the 0 to which it was initialized. A password of the student's choosing is entered in case we
wish to make the scores available on a limited basis to individuals possessing the password to their
particular entry. Observe that the particular element of the record is accessed by placing a dot after the
record variable and then the name of the element. This is much more understandable in this case than
using a list, which is referenced only by numbers. We then place the information in a table indexed by
the name. This preserves the information and enables us to reinitialize the record variable and use it for
the next student. Additionally, it will be easy to alphabetize the list later using the Icon sort facility.
The loop then starts over. Anytime a single period is detected in the first entry, the loop terminates.
This kind of loop is used because it is necessary to reinitialize the variable each time, and this is not a
suitable item to control a while loop. Actually a while loop could be used, and is in fact a more
“structured” solution. Initialize the variable before entering the loop, and use the first reading of
information to control the loop:

 while (student.name := read()) ~== "." do {

This reads in the student's name and then uses the value of the assignment statement to check that it is
not a period, in which case the loop will finish. Then we have to reinitialize the record variable at the
bottom of the loop, right after placing the information in the table. This means that the initialization of
the record variable is written twice: once outside the loop and once inside. The tilde (~) makes the
string-equals sign negative, that is, it means “does not equal…”

95

The table is then sorted. This converts the table into a list which itself contains a set of lists equal in
number to the items in the table. The first item in each of these lists is the index of the table. The
second item is the value of the table. These lists will appear in the order of the ASCII character set
according to the index, now the first item in each list. (You can also sort by the value if you wish, by
adding 2 as the second argument in the sort() function.) We pass this information and the filename to
write_to_file() which will write out the information to the file and can be used by the other procedures
for the same purpose. Here it is:

procedure write_to_file(f,s)
 local filvar,n,p,line
 filvar := open(f,"w")
 n := 0
 while (n +:= 1) <= *s do {
 line := ""
 every p := 1 to 8 do
 line II:= s[n][2][p] || "%"
 write(filvar,line)
 }
 close(filvar)
end

This procedure first opens the file to which it will write the information. The second argument "w"
specifies writing to the file. If this is omitted the file can be read only. Two loops are used to get the
information in the student list into a format suitable for the ASCII file. The outer loop keeps going as
many times as there are students which is indicated by the length of the student file. The inner loop
runs eight times specifically since there are eight pieces of information on each student. The inner loop
will first look at the first item of the second element (which is a record) of the first list, and start off a
line with it. It will add a percent sign as a divider, then look at the second item of the second element of
the first list and add this to the line. After eight times of doing this, it will write the line to the file,
reinitialize the line to the empty string and then look at the first item of the second element of the
second list, and so on until all students and their attributes have been recorded. We now have the
information filed in a consistent manner.

Let us talk a little about the structures that are involved here. The student list is a list that itself consists
of lists, as many as there are students in the class. Each of these lists has a fixed number of elements,
namely 2. The first element is the name, and the second element is a record, which contains information
relevant to the student. The format has been dictated by the manner in which the table sort in Icon
works, and hence there is a duplication of the name. But it is convenient to keep this format, because
anytime we wish we can easily use the sort facility again, for example, if we would later add new
names. This is a nested structure—wheels within wheels. Icon cannot write such a nested structure to a
file. We have to write it in a sequential fashion, using some arbitrary symbol as a marker between the
different fields. When we bring back in the information from the file, we can restore it to its nested
form that is convenient to work with when manipulating the information. Note that when we want to
process all the information in the record, it is often convenient to index the record as though it is a list
of fixed length, rather than referring to the elements by name.

Let us now consider a procedure to update the information. It will do this in a rather gross fashion,
offering the user all the current information and giving the opportunity to enter the same information or
to change it. You may wish to consider making this more specific, perhaps by offering a menu. Another
possibility is to allow the original score to stand by allowing an empty string (which the user enters
simply by pressing return) to represent the same score as before.

96

We first have to get the name of the current file, and we do this by asking the user for the original
name, then constructing a name with the version number that that name contains constantly being
increased until failure indicates that such a file does not yet exist:

procedure get_version()
local filename,n
 n := 0
 write("Enter the name of the ORIGINAL filename ")
 filename := read()
 while close(open(filename[1:7] II (n +:= 1) II ".dat"))
 return filename[1:7] II (n - 1) II ".dat"
end

Note that this assumes that none of the old files have been deleted, and allows for only eight updates.
We now take this file, put the information back into the original structure, solicit replacement entries
from the user, and then write out the new information to the next file in the series. A typical filename
might be 2050713.dat where the 205 would be the course number, the 07 would be the year, the 1
would be the semester and the 3 would be the sequential number of the version, increased from the
original 1. filename[1:7] produces the section of filename between positions 1 and 7, i.e., the first six
characters of the string. Such ranges of parts of a string-valued variable may also be negative, starting
from 0 for the position after the last character in the string and then counting back -1, -2, and so on. So
filename[-1:0] would produce the last character in the string. The Icon line scanning facility is used to
detect the percent sign in the file used as a marker, and the field between the old and new positions of
the pointer is stored in each element of the record. We skip over the percent sign by ="%". The
command move(1) would have the same effect in this case. Here is the procedure:

procedure update()
local filename,filvar,n,student_list,line,student, inner_list, current
 filename := get_version()
 filvar := open(filename)
 student_list := []
 while line := read(filvar) do {
 student := students("", "", "", 0, 0, 0, 0, "")
 inner_list := list(2)
 n := 0
 line ? while student[n +:= 1] := tab(upto('%')) do
 ="%"
 inner_list[1] := student.name
 inner_list[2] := student
 put(student_list,inner_list)
 }
 close(filvar)
 n := 0
 while current := student_list[n +:= 1][2] do {
 write("Name: ",current.name)
 write("Current first exam = ",current.fstexam)
 writes("New score? ")
 current.fstexam := read()
 write("Current second exam = ",current.secexam)
 writes("New score? ")
 current.secexam := read()
 write("Current final exam = ",current.final)
 writes("New score? ")

97

 current.final := read()
 student_list[n][2] := current
 }
 filename[7] +:= 1
 write_to_file(filename,student_list)
end

The current file is first opened, and read using the file variable filvar. The variable student_list is
initialized to an empty list, and we shall push on to it as many inner lists as there are students in the
class. We initialize inner_list to a list of two elements, the first of which is to contain the student's
name, and the second the student's record. From the first line we extract all the items and place them in
a record variable which reproduces the original form of the record. When complete, this is placed in the
second item of the inner list, and the name only in the first item. This is then pushed onto the student
list, as just indicated. This is repeated for as many students as there are in the class. Our original nested
structure has now been reproduced. The second part of the procedure extracts each record in this nested
structure, stores it temporarily in a variable current, and uses this to display and maybe change the
information. Since current is being used as a record, it is possible to add a period and the respective
record field to it. When we are through, the same procedure as before is used to write the information to
the new file.

We shall leave it to the reader to write a report procedure. This might take the exam scores and sum
them, perhaps with some scaling, such as 40% for the final and 30% for the other exams. This figure
will be stored in the total element of the record. The grade might be figured by a long if-statement:

 if current.total >= 92 then current.grade := ”A” else
 if current.total >= 89 then current.grade := ”A-” else

and so on. It is not necessary to state the range of the grade. As soon as it is found to be greater than or
equal to one of the stated numbers, it gives a value to current.grade and skips out of the if-statement.
Note that as one of the if-statements fits, then all the rest are skipped because they form part of the else-
leg of that particular statement. The end will be something like:

 if current.total >= 64 then current.grade := "D-" else current.grade := "F"

The final else picks up all that remains, which is in effect any grade below 64.

You may wish to try writing a program for a student to access only one record. This will involve
having the student enter a password. This will be compared with the password field on each line, and if
a match is found make accessible the rest of the data on that line. This program is offered for
illustration only, and no guarantees are given as to its effectiveness in practice.

Here now is the program at the point to which it has been developed:

record students(name, soc_sec, pwd, fstexam, secexam,final,total, grade)
procedure main()
local result
 result := menu()
 case result of {
 "1" : initialize()
 "2" : update()
 "3" : report()
 default: write("Goodbye")
 }
end

98

procedure menu()
 write(center("Data Base Program" ,80))
 write()
 write("Do you wish to")
 write("\t1. Initialize")
 write("\t2. Update")
 write("\t3. Report")
 write()
 writes ("Enter 1,2 or 3 and press return. ”)
 return read()
end
procedure initialize()
 local filename, student, student_table, student_list
 student_table := table()
 writes("Enter the course number, e.g.
 filename := read()
 writes("Enter the last two digits of the current year ")
 filename ||:= read()
 writes("Enter a single digit for the semester ")
 filename ||:= read() II "1.dat"
 writes("The name of the file is ",filename)
 write(". Please note this for future use.")
 write("Enter information about students. Enter period(.) _
 when asked for name to finish.")
 repeat {
 student := students("","","",0,0,0,0,"")
 write()
 writes ("Name? ")
 student.name := read()
 if student.name == "." then break
 writes("Social security number? ")
 student.soc_sec := read()
 writes (“Password? ")
 student.pwd := read()
 student_table[student.name] := student
 }
 student_list := sort(student_table)
 write_to_file(filename, student_list)
end
procedure write_to_file(f,s)
 local filvar,n,p,line
 filvar := open(f,"w")
 n := 0
 while (n +:= 1) <= *s do {
 line := ""
 every p := 1 to 8 do
 line ||:= s[n] [2] [p] II "%"
 write(filvar,line)
 }
 close(filvar)
end

99

procedure report()
 write("Space reserved for report.")
end
procedure get_version()
local filename,n
 n := 0
 write("Enter the name of the ORIGINAL filename ")
 filename := read()
 while close(open(filename[1:7] II (n +:= 1) II ".dat"))
 return filename[1:7] II (n - 1) II ".dat"
end
procedure update()
local filename,filvar,n,student_list,line,student, inner_list,current
 filename := get_version()
 filvar := open(filename)
 student _list := []
 while line := read(filvar) do {
 student := students("","","",0,0,0,0,"")
 inner _list := list(2)
 n := 0
 line ? while student[n +:= 1] := tab(upto('%')) do =”%”
 inner_list[1] := student.name
 inner_list[2] := student
 put(student_list,inner_list)
 }
 close(filvar)
 n := 0
 while current := student_list[n +:= 1][2] do {
 write("Name: ",current.name)
 write("Current first exam = ",current.fstexam)
 writes("New score? ")
 current.fstexam := read()
 write("Current second exam = ",current.secexam)
 writes("New score? ")
 current.secexam := read()
 write("Current final exam = ",current.final)
 writes("New score? ")
 current.final := read()
 student_list[n][2] := current
 }
 filename[7] +:= 1
 write_to_file(filename, student_list)
end

11.2 A Vocabulary Program
Tables can be constructively used for purposes other than counting. Most people will agree that a major
part of learning a foreign language is the absorption of thousands of words, along with their translation
into the mother tongue. It was customary to ask students to compile word lists for this purpose.
Although merely writing down the words may help somewhat to remember them, retrieval becomes
difficult as the lists lengthen. We can uses tables to aid this effort. The data base in this instance can be
quite simple: a word in the target language glossed by a translation in the mother tongue. We do not

100

need a program to create the data base itself; we can use a simple text editor for this purpose. For
example we might set up a file FRtime for French and English time words:

jour%day
heure%hour
mois%month
an%year
janvier%January
February%février
mars%March
avril%April
mai%May
juin%June
juillet%July
août%August
septembre%September
October%octobre
novembre%November
décembre%December

The words and their translation are separated by a percent sign (%) or whatever marker you chose. For
this purpose, the order does not matter, but you should avoid trailing blanks. You can use any character
that can be keyboarded; thus you can type e-acute (é) by entering option-e followed by e, or alt
followed by 130 on the keypad, according to the operating system you are using. The special character
is encoded by the machine, but this is transparent to the programmer or the user. We can use this simple
data base both as a two-way dictionary and a ready way of testing our knowledge.

It may be possible to use this program for non-Roman scripts. Thus, if the international feature is
activated on the Apple operating system, foreign scripts can be keyboarded. In this case it is easier to
type into the data base all the foreign words first on separate lines, and only then all the English
corresponding words. The OS even takes care of the right-to-left orientation of Hebrew automatically
by prepending each letter as it is written in.

In the following program, we first open the previously prepared vocabulary file, and create a table
vocabulary from the data it contains. We take a line at a time and scan it, storing the first section in the
variable a. We then pass over the marker, and capture the rest of the line, storing it in b. In the table a
first becomes the key to the value b, and then b becomes the key to the value a, thus making the table
bi-directional.

We then ask the user if they wish to be tested; if the user does not respond positively, we ask them to
enter a word in this case in French or English. When the user does so, we call up the value of that word
in the table; if the word does not exist in the table, we return the default value of the table, which is
"not found".

If the user opts to be tested, we use a feature of Icon which extracts a pseudo-random key from the
table. This is done by prefixing a question mark to the variable which represents the table thus:
?vocabulary. This item is then presented to the user, and their response is compared to the item. This is
repeated as long as the user wishes, and then the program is concluded in the usual way. Here is the
complete program.

global filvar, vocabulary

101

procedure main()
 initialize()
 create_table()
 process()
 finish()
end

procedure initialize()
local vocab
 writes("Name of vocabulary? ")
 vocab := read()
 (filvar := open(vocab)) | stop("Vocabulary not found.")
 return
end #initialize

procedure create_table()
local line,a,b
 vocabulary := table("not found")
 while line := read(filvar) do {
 line ? {
 a := tab(upto('%'))
 move(1)
 b := tab(0)
 }
 vocabulary[a] := b
 vocabulary[b] := a
 }
 return
end

procedure process()
local word
 write("Do you wish to be tested? y/n ")
 if getch() == "y" then test()
 else {
 writes("Enter word in English or target language: ")
 while (word := read()) ~== "." do {
 write("The translation is ", vocabulary[word], ".")
 writes("Enter word in English or target language. Period to finish: ")
 }
 }
 return
end

procedure test()
local item,answer,total,correct
 total := correct := 0
 item := ?vocabulary
 writes("What is the translation of ",item,"? ")
 while (answer := read()) ~== "." do {
 total +:= 1
 if answer == vocabulary[item] then {
 correct +:= 1

102

 write("Correct.")
 }
 else write("Correct answer is: ",vocabulary[item],".")
 item := ?vocabulary
 writes("What is the translation of ",item,"? Period to finish:")
 }
 write("Your score is ",(correct * 100) / total,"%.")
 return
end

procedure finish()
 close(filvar)
 write ("Goodbye.")
end

SUMMARY OF ICON FEATURES

1. A record is declared globally at the beginning of the program. It has a fixed number of fields which
are named and may be accessed by creating a variable of this type and adding to its name a period and
the field name.

2. A case statement allows for conditions with multiple choices. It tests the value of a variable and if it
finds a match, executes the statement following the colon after that match. A default condition may be
included.

3. \t is the Icon character for a tab stop.

4. A substring of a string valued variable may be accessed by, for example, str[2:4] which produces the
substring between positions 2 and 4 of str.

103

12 Icon and Markup Languages

12.1 A Brief History of Markup Languages
The word markup has several definitions in the American Heritage Dictionary. The fourth one is the
one with which we are concerned, and reads as follows:

 4a. The collection of detailed stylistic instructions written on a manuscript that is to be typeset.

 4b. Computer Science: The collection of tags that describe the specifications of an electronic
document, as for formatting. [A tag is a labeling device indicating the beginning or ending of an
information unit; it is sometimes called a sentinel.]

Markup, however, is older than both typesetting and electronic documents by many centuries. Around
the seventh century C.E. Hebrew scribes devised a complex system of marks to be added above or
below each word in the Hebrew scriptures, in order to represent the traditional cantillation of these
texts, that is, the form of high speech intermediate between speaking and singing, used in publicly
declaiming them for the instruction of the public. These marks were also a form of punctuation, since
the cantillation follows the sense of the words. Soon after, an additional set of vowel points was added,
since vowels were not indicated in the original sacred text, and it was considered very important to
ensure the correct enunciation. In the 1950s I observed a skilled operator using a Hebrew Linotype
machine for a Bible text; he had to make three passes on each line, entering first the consonants, then
the vowels, then the cantillation points. Finally he hit a button which justified the line, producing a
single slug for printing that line. Syriac, another Semitic language, borrowed the Greek vowels, and
positioned them above or below the Syriac consonantal letters. The vocalic markup of Arabic, besides
adding vowels, implicitly corrects the pronunciation of the text from the urban dialect in which it was
written to the higher-status dialect of the Bedouin. (Orthodox Muslims might not agree with this
characterization.) The Indic scripts, like the Tamil syllabary previously mentioned, are another example
of markup. The consonants were probably derived from the Aramaic alphabet, and vowels were added
to each consonant, ultimately with simplifications, creating a complex alpha-syllabic system.

The markup of printer's proofs is a set of marginal symbols, coupled with underlining of the applicable
words, to specify fonts, especially italics and boldface, and to make changes or corrections to the proof.
Like the markup of ancient manuscripts, such items grew up in an unregulated manner. Symbols of this
type are inconsistent in character, like traditional mathematical notation, and not well suited for
computer handling, so a computer-friendly system was devised at IBM for use with their text formatter.
This was called GML which stands for Generalized Markup Language, and also, not coincidentally, the
initial letter of the names of the three individuals responsible for devising this scheme. These tags were
introduced by a colon (:) which had the disadvantage of not being obvious on the page. This system
was supplanted by SGML (Standard Generalized Markup Language) which enclosed tags between the
symbols < and > which came to be regarded as pointy brackets, rather than their original mathematical
significance. SGML has a steep learning curve, and in the 1990s several simplified versions were
proposed. An especially significant application derived from SGML is HTML (HyperText Markup
Language) with which millions have some contact on account of its use on the World Wide Web.
HTML uses a subset of SGML tags, and adds the important capacity of linking to specific sections of a
web site, as well as to other web sites. SGML also led to XML (Extensible Markup Language) which
has a more manageable set of tags, as well as user-defined tags. An important development in 1987 was

104

TEI (Text Encoding Initiative) which concentrates on making available documents of scholarly interest
for interchange and research. Further information on this initiative may be found at:

http://www.tei-c.org/index.xml

12.2 Manipulating texts encoded according to the TEI
To show how Icon may be used for extracting information from an encoded text, we offer a program to
extract all the quotes from a text from Charlotte Brontë's famous novel Jane Eyre. This was encoded
years ago by C.M. Sperberg-McQueen, who has been prominent in the development of the TEI.

The commencement of a quote is marked by the tag <q> and its end by </q>. This use of the forward
slash to indicate an end tag is standard. We have not included much error-checking—as would be
necessary in a commercial program—and the search for quotes is hardwired, something which will
often occur in a one-shot program designed for a specific purpose, for example, the study of the local
dialect used by the speakers. The program can easily be expanded to look for any markup tag, by
soliciting the name of a tag from the user, and storing it in a variable. We shall give such an expanded
program later. The program first looks for an initial page number, enclosed in a pb (page boundary) tag,
and sends it to the output file. You may wish to ascertain for yourself why, if there is no pb tag, the
program will produce no output, even though the program is still not erroneous. It then looks for a line
with the appropriate <q> tag, and uses the scanning facility to scan for a </q> end tag, or another
beginning tag. The quotes are numbered and sent to the output file, retaining the line breaks of the
original text. Finally, the user is told the total number of quotes in the text.

Note that there are various possibilities for the occurrence of quotes in a particular line:

● There may be one complete quote in a line.

● There may be several complete quotes in a line.

● A quote may run over the end of the line, and continue in the next, as yet unprocessed, line.

● A line may start with an unfinished quote from the previous line.

All these possibilities must be allowed for. It is convenient to begin by attempting to process a line
starting with an unfinished quote, even though in a well-formed, encoded text such an instance cannot
be the first line of the data. This permits us to process the rest of the line in the usual way. We shall be
helped by a flag, which is a way of informing later parts of a program what conditions—in this case
“quotedness”— earlier parts have encountered. The use of the term reflects the use of physical flags to
indicate the stop/go of the train conductor, or similar alternate states. We do this by selecting a variable
which is defined by assigning “up”— or any other value— to it, and this means “quote”. By allowing
it to retain its initial null value, or assigning the null value to it explicitly, we indicate the absence of a
quote. A back slash prefixed to this variable tests whether the variable is defined, and the expression
succeeds only if the variable is in fact defined. The fact that most Icon expressions can succeed or fail
usually renders such “Boolean values” unnecessary, but sometimes they are useful.

The first example given here is very simple. In the current version of the TEI additional information
may be included in the tag, using an attribute, which adds more specificity. For this more sophisticated
approach to quotes see:

http://www.tei-c.org/Guidelines/Customization/Lite/U5-hilites.html#z635

105

which deals with quotation in detail. This is part of the current “Lite” version of the TEI which is
supposed to cover 90% of what anyone would need to encode texts.

Here follow:

● The input text from Jane Eyre;

● The Icon program to process the text;

● The output of the program.

12.2.1. The Input Text

<teiHeader>
</teiHeader>
<text>
<body>
<pb n=’474’/>
<div1 type="chapter" n=’38’>
<p>Reader, I married him. A quiet wedding we had: he and I,
the parson and clerk, were alone present. When we got back
from church, I went into the kitchen of the manor-house,
where Mary was cooking the dinner, and John cleaning the
knives, and I said —</p>
<p><q>Mary, I have been married to Mr Rochester this
morning.</q> The housekeeper and her husband were of that
decent, phlegmatic order of people, to whom one may at any
time safely communicate a remarkable piece of news without
incurring the danger of having one’s ears pierced by some
shrill ejaculation and subsequently stunned by a torrent of
wordy wonderment. Mary did look up, and she did stare at
me; the ladle with which she was basting a pair of chickens
roasting at the fire, did for some three minutes hang
suspended in air, and for the same space of time John’s
knives also had rest from the polishing process; but Mary,
bending again over the roast, said only —</p>
<p><q>Have you, miss? Well, for sure!</q></p>
<p>A short time after she pursued, <q>I seed you go out with
the master, but I didn’t know you were gone to church to be
wed</q>; and she basted away. John, when I turned to him,
was grinning from ear to ear. <q>I telled Mary how it would
be,</q> he said: <q>I knew what Mr Edward</q> (John was an
old servant, and had known his master when he was the cadet
of the house, therefore he often gave him his Christian
name) — <q>I knew what Mr Edward would do; and I was
certain he would not wait long either: and he’s done right,
for aught I know. I wish you joy, miss!</q> and he politely
pulled his forelock.</p>
<p><q>Thank you, John. Mr Rochester told me to give you and
Mary this.</q></p>
<p>I put into his hand a five-pound note. Without waiting
to hear more, I left the kitchen. In passing the door of
that sanctum some time after, I caught the words —</p>

106

<p><q>She’ll happen do better for him nor ony o’ t’ grand
ladies.</q> And again, <q>If she ben’t one o’ th’
handsomest, she’s noan faàl, and varry good-natured;
and i’ his een she’s fair beautiful, onybody may see
that.</q></p>
<p>I wrote to Moor House and to Cambridge immediately, to
say what I had done: fully explaining also why I had thus
acted. Diana and <pb n=’475’/> Mary approved the step
unreservedly. Diana announced that she would just give me
time to get over the honeymoon, and then she would come and
see me.</p>
<p><q>She had better not wait till then, Jane,</q> said Mr
Rochester, when I read her letter to him; <q>if she does,
she will be too late, for our honeymoon will shine our life
long: its beams will only fade over your grave or mine.</q></p>
<p>How St John received the news I don’t know: he never
answered the letter in which I communicated it: yet six
months after he wrote to me, without, however, mentioning Mr
Rochester’s name or alluding to my marriage. His letter was
then calm, and though very serious, kind. He has maintained
a regular, though not very frequent correspondence ever
since: he hopes I am happy, and trusts I am not of those who
live without God in the world, and only mind earthly things.</p>
</body>
</text>

12.2.2. The Program
Extracts quotes in the TEI.

#can be used in any procedure
global inputFileVariable, outputFileVariable, quoteCounter

procedure main() #the main procedure is a "traffic cop" outlining the program
 initialize()
 process()
 finish()
end

procedure initialize() #Obtain the name of the input and output files
 writes("Name of Input File?> ")
 inputFileVariable := open(read(),"r") | stop("File not found.")
 writes("Name of Output File?> ")
 outputFileVariable := open(read(),"w")
 quoteCounter := 0
end
procedure process()
local line, newline, quoteFlag #can be used only in this procedure

 #read in a line, look for initial page number, write it to out file
 while line := read(inputFileVariable) do
 line ?

107

 if find("<pb") then {
 tab(upto(&digits))
 write(outputFileVariable,"Page ",tab(many(&digits)))
 break
 }

 #if the incoming line is already a quote, look for its end. When quoteFlag is defined,
 #that is, "up", a quote is being handled; when it is null, "down", regular text is involved.

 while line := read(inputFileVariable) do
 line ? {
 if \quoteFlag then { #the prefixed backslash is a non-null test
 if newline := tab(find("</q>")) then {
 move(4)
 quoteFlag := &null
 write(outputFileVariable,newline)
 }
 else {
 write(outputFileVariable, line)
 next
 }
 }

 #find every example of a quote in the rest of the line, or the new line,
 #write it to the out file
 every tab(find("<q>")) do {
 write(outputFileVariable,quoteCounter +:= 1) #increment the counter by 1
 move (3) #move the pointer over the tag
 quoteFlag := "up"
 if newline := tab(find("</q>")) then {
 quoteFlag := &null #the flag is now down
 write(outputFileVariable,newline)
 }
 else write(outputFileVariable,line[&pos:0]) #&pos holds the position of the counter;
 } #0 is the position after the last character
 }
end

#close files, tell user number of quotes found

procedure finish()
 close(inputFileVariable)
 close(outputFileVariable)
 write("The output file has been created.")
 write("Total number of quotes: ",quoteCounter,".") #Tell user how many quotes
 write("Goodbye.")
end

12.2.3. The Output
Page 474
1
Mary, I have been married to Mr Rochester this

108

morning.
2
Have you, miss? Well, for sure!
3
I seed you go out with
the master, but I didn’t know you were gone to church to be
wed
4
I telled Mary how it would
be,
5
I knew what Mr Edward
6
I knew what Mr Edward would do; and I was
certain he would not wait long either: and he’s done right,
for aught I know. I wish you joy, miss!
7
Thank you, John. Mr Rochester told me to give you and
Mary this.
8
She’ll happen do better for him nor ony o’ t’ grand
ladies.
9
If she ben’t one o’ th’
handsomest, she’s noan faàl, and varry good-natured;
and i’ his een she’s fair beautiful, onybody may see
that.
10
She had better not wait till then, Jane,
11
if she does,
she will be too late, for our honeymoon will shine our life
long: its beams will only fade over your grave or mine.

12.3 Expanding the above Program
Let us now proceed to expand the program in the following respects

● The user will be allowed to specify an arbitrary number of tags to be extracted. These tags may
be nested in other tags.

● When the page changes, this is noted in the output.

● The user is notified as to the number of tags found, and the information is safely stored in a file
named by the user. This file can be inspected as desired.

In order to have more than one suitable tag, let us tag the two occurrences of “did” on page 474 and the
phrase “better not” on page 475 with the tag <emph> and its end tag, indicating some form of
emphasis, perhaps by italic type.

Here is the program:

Extracts tags in the TEI.

109

global inFileName,inputFileVariable,outputFileVariable,tagCounter

procedure main() #the main procedure is a "traffic cop" outlining the program
 initialize()
 process()
 finish()
end

procedure initialPageNo()
#read in a line, look for initial page number, write it to outfile

 while line := read(inputFileVariable) do
 line ?
 if find("<pb") then {
 tab(upto(&digits))
 write(outputFileVariable,"Page ",tab(many(&digits)))
 break
 }
 return
end

procedure initialize() #Obtain the name of the input and output files
 writes("Name of Input File?> ")
 inFileName := read()
 inputFileVariable := open(inFileName,"r") | stop("File not found.")
 writes("Name of Output File?> ")
 outputFileVariable := open(read(),"a")
 initialPageNo()
 tagCounter := 0
end

procedure process()

local line, newline, tagFlag, tagName,pageNo

 writes("Enter the name only of the tag you are seeking. To conclude enter a single period.> ")
 while ((tagName := read()) ~== ".") do {
 # if the incoming line is already tagged, look for its end. When tagFlag is defined,
 # that is, "up", a tagged text unit is being handled; when it is null, "down",
 # regular text is involved.
 write(outputFileVariable,"\nTag = ", tagName)
 while line := read(inputFileVariable) do
 line ? {
 #Check if there is a page boundary in the line
 if tab(find("<pb")) then {
 tab(upto(&digits))
 pageNo := tab(many(&digits))
 write(outputFileVariable,"\nPage ",pageNo) # \n creates a blank line
 &pos := 1
 } #restore the position of the pointer to the beginning of line
 if \tagFlag then { #the prefixed backslash is a non-null test
 if newline := tab(find("</" || tagName || ">")) then {
 tab(upto('>'))

110

 move(1)
 tagFlag := &null
 write(outputFileVariable,newline)
 }
 else {
 write(outputFileVariable, line)
 next
 }
 }

 # find every example of the tag in the rest of the line, or the new line,
 # write it to the out file
 every tab(find("<" || tagName || ">")) do {
 write(outputFileVariable,(tagCounter +:= 1)) #increment the counter by 1
 move (2 + *tagName) #move the pointer over the tag
 tagFlag := "up"
 if newline := tab(find("</" || tagName || ">")) then {
 tagFlag := &null #the flag is now down
 write(outputFileVariable,newline)
 }
 else write(outputFileVariable,line[&pos:0]) #&pos holds the position of the counter;
 } #0 is the position after the last character
 }
 #Tell user how many tagged items
 write("Total number of ",tagName," = ",tagCounter,".")
 tagCounter := 0 #reset counter
 close(inputFileVariable) #go to the beginning of the input file
 inputFileVariable := open(inFileName,"r") #by reopening it

 writes("Enter the name only of the tag you are seeking. To conclude enter a single period.> ")
 }
end

#close files
procedure finish()
 close(inputFileVariable)
 close(outputFileVariable)
 write("The output file has been created.")
 write("Goodbye.")
end

The user is asked to state the name of a text file for processing; if that file cannot be found, the program
concludes immediately. The user then provides the name of the output file, which should be a new file,
since all additions are appended to this file. The user is then asked for the name of a tag; the program
looks for such tags, writes their contents to the output file, numbering each, and lets the user know how
many have been found. It then loops back to ask for another tag, first closing the input file, and then
reopening it, which resets the file to the beginning. Since the output file has not been closed, and is in
append mode, the material already placed there will not be overwritten. When the user has no more tags
to request, a single period point brings the loop to a conclusion. Note that the first solicitation of a tag
name occurs before the loop commences, and a similar solicitation occurs within the loop, right at the
end. This gives full control to the user.

Here is the interchange between the machine and the user:

111

Name of Input File?> jane.dat
Name of Output File?> jane.out
Enter the name only of the tag you are seeking. To conclude enter a single period.> q
Total number of q = 11.
Enter the name only of the tag you are seeking. To conclude enter a single period.> emph
Total number of emph = 3.
Enter the name only of the tag you are seeking. To conclude enter a single period.> .
The output file has been created.
Goodbye.

And here is the stored output of the program:

Page 474

Tag = q
1
Mary, I have been married to Mr Rochester this
morning.
2
Have you, miss? Well, for sure!
3
I seed you go out with
the master, but I didn’t know you were gone to church to be
wed
4
I telled Mary how it would
be,
5
I knew what Mr Edward
6
I knew what Mr Edward would do; and I was
certain he would not wait long either: and he’s done right,
for aught I know. I wish you joy, miss!
7
Thank you, John. Mr Rochester told me to give you and
Mary this.
8
She’ll happen do better for him nor ony o’ t’ grand
ladies.
9
If she ben’t one o’ th’
handsomest, she’s noan faàl, and varry good-natured;
and i’ his een she’s fair beautiful, onybody may see
that.

Page 475
10
She had <emph>better not</emph> wait till then, Jane,
11
if she does,
she will be too late, for our honeymoon will shine our life
long: its beams will only fade over your grave or mine.

112

Tag = emph

Page 474
1
did
2
did
3
better not

12.4 Stripping Tags and Character Entities from a Text
TEI encoded texts convey much valuable information; however they may be inappropriate for
statistical study, as suggested earlier in this book, since they contain many characters that are markup,
and not found in the original text. This would entirely skew a word length study, for example. Here
follows a program which achieves the following:

It removes all tags, both beginning and ending, and the entire “header” which precedes the actual text.

It deals with the problem created by “character entities”, for example in the word “faàl” where
Brontë attempts to represent a dialect word by utilizing a grave accent, which is not normally used in
English. Something which is really a single character, is here eight characters. In this case the program
looks for items beginning with the ampersand (&), which heralds the onset of a character entity. It then
looks at the next character. If this is a named entity, like à, beginning with a vowel, or the
letters c or n which frequently take a diacritical mark in Romance languages, the appropriate unmarked
letter replaces it. If the ampersand is followed by the pound sign (#), indicating a numeric entity, or
some other letter, as in — (which represents —) the entity is replaced by an asterisk (*), often
used for an ellipsis, and is a single character. The program then seeks out the semi-colon which ends
the character entity.

global ifv,ofv

procedure main()
 initialize()
 process()
 finish()
end

procedure initialize()
 writes("Name of Input File?> ")
 ifv := (open(read(), "r")) | stop("File not found.")
 writes("Name of Output File?> ")
 ofv := (open(read(),"w")) # a previously created file will be overwritten
 return
end

procedure process()
local line, newline
 line := skipHeader()
 until (match("</body>",line)) do {
 newline := strip(line)
 write(ofv,newline)

113

 line := read(ifv)
 }
 return
end

procedure skipHeader()
local line
 (line := read(ifv)) | write("File is empty.")
 until match("<p>",line) do
 line := read(ifv)
return line
end

procedure strip(l)
local segment, vowel, nl

static markers, vowels

initial {
 markers := '<&'
 vowels := 'aeiouycnAEIOUYCN'
 }

 nl := ""
 l ? {
 while segment := tab(upto(markers)) do {
 nl ||:= segment
 if ="<" then {
 tab(upto('>'))
 move(1)
 }
 else {
 move(1)
 if vowel := tab(any(vowels)) then
 nl ||:= vowel
 else nl ||:= "*"
 tab(upto(';'))
 move(1)
 }
 }
 nl ||:= tab(0)
 }
 return nl
end

procedure finish()
 write("The output file has been created.")
 close(ifv)
 close(ofv)
end

114

We have abbreviated inputFileVariable in this program to ifv; both are acceptable names for variables.
You can choose according to the power of your memory, or you can use underscores like this:
input_file_variable.

procedure initialize() opens the input file, if possible, and the output file. We then proceed to procedure
process() which in turn calls procedure skipHeader() which simply reads the header and throws it
away until the tag <p> is reached. This means that a paragraph of real text is now available, and it is
returned as the value of the procedure and stored in the variable line. The line on which it occurs is
passed to procedure strip(l), which does the main work of the program. There is an important point to
note here. It is inadvisable to change the original line, since altering its length (which Icon can do
automatically) can cause much confusion. Rather, we build from it a new line, and return this new
creation as the value of procedure strip(l). The variables which will hold two csets are designated as
static, rather than local, because their value is always the same, and will be used numerous times (see
10.1). The new line we shall build, here called nl, is first initialized to the null string ("") and it will be
built up steadily using the very convenient augmented concatenation (||:=) which appends the contents
of the right side of the equation to the contents of the left side, and stores the result in the left side
variable. We store the segment of the string prior to the markers < and &, and then eliminate the tags,
or convert the character entity into a single letter. The remainder of the line (which will often be the
entire line!) is covered by nl ||:= tab(0) which moves the pointer to the end of the line, and returns the
text from the old place of the pointer. This is added to the new line and makes it complete. This new
line is returned as the value of this hard-working procedure. process() writes this out to the output file,
and this continues until the tag </body> signals the end of the text, and the loop stops. Files are closed
by procedure finish().

SUMMARY OF ICON FEATURES

1. The forward slash (/) prefixed to a variable checks if the variable is null, that is to say, it has not
been given a value, or its value has been replaced by the keyword &null. If it does have the null value it
succeeds, otherwise it fails.

2. The backslash (\) prefixed to a variable is the reverse; it checks if the variable has a value other than
null. If it has such a value it succeeds and produces the value. If not, it fails. This means that a
statement like if x then... is useless, because it always succeeds.

115

13. Conclusion

13.1 Word Processing
In this chapter we shall deal with a few items which may help you in your programming. Let us talk
first a little about the question of word processing. This has become a major use of computers, even
though it was a by-product of writing computer programs. Computing was originally intended to
perform complex mathematical operations accurately and speedily, hence its name. The fact that letters
of the alphabet and other symbols can be encoded as numbers made it possible for computers to
manipulate texts as well as mathematical entities.

Just half a century ago the word computer referred to a human being, and when the French came to
need a word for the modern meaning of computer, they selected ordinateur which means that which
puts in order, which is a better representation of the capabilities of the computer. There are many
commercial word processors available, some of them inexpensive or even free, and it is not likely that
you will want to compete with these products by writing your own program for word processing.
However, it may occasionally be convenient to write a small program to perform some task that might
be troublesome on your word processor. The SNOBOL-4 language became famous for its "one-line
programs" which could do a limited task expeditiously, and Icon has similar capabilities. This is largely
due to the fact that statements in Icon can “fail,” which is equivalent to building in a condition into the
statement; if certain circumstances prevail then the statement succeeds, and if they do not, it fails. This
can be exploited to write very concise mini-programs. For example, let us say you have a file which
uses the British spelling colour, and you wish to change it to the American usage which omits the u. In
all probability your word processor will have a command to make such a change throughout the file
easily. But say you have a group of files that need such a change, and they have a set of related names
such as file1, file2, and so on. In such a case it might be easier to write a little program to handle the
change throughout. Let's consider the change in the spelling of the word first, assuming that we have a
line in which the word occurs twice. The following loop will take care of it:

 while line[find("colour",line) + 4] := ""

The inner function find() will look for the string we wish to change in the line. Since we are not using
here the Icon scanning facility, the function requires as its second argument the string (in this case
represented by the variable line) which is being searched. When we use Icon's scanning facility we do
not need to do this, since the target string is cited right at the beginning prior to the question mark
which initiates this facility. If find() succeeds, it returns the position at the beginning of the word. Used
by itself as the index of the variable, this number represents the first letter in the word. By adding four
to whatever this number is, we zero in on the offending u, and by assigning to it a null string we
effectively delete it. This loop will keep on going as long as it finds the word colour in the line. When it
has changed all occurrences, it will fail. Note that this loop has no “body.” All the work it needs to do
is performed by the assignment which takes place in the control statement beginning with while. By
enclosing this loop in another loop which reads in lines for processing, and reads them out modified if
necessary, we cover the entire file:

 while line := read(infile) do {
 while line[find("colour",line) + 4] := ""
 write(outfile,line)
 }

Now we enclose all of this in a loop which takes care of each file in turn.

116

Assuming we have twenty files, it will look like this:

 every n := 1 to 20 do {
 infile := open("file" II n)
 outfile := open("file" II n II ".new","w")

followed by the same loop as before and the closing of the current files before the outermost loop is
recommenced. You will now have the original set of files, and a modified set of files which have
appended the extension .new to their names. There is a certain safety feature here; the original files are
opened for reading only and so will undergo no change. The modified file was initially created by
adding the second argument to the open() function. When you are satisfied that all is as it should be,
you can delete the original files using rm, or del, or whatever your operating system uses. Here is the
complete program:

Omits the “u” in “colour” in twenty files
procedure main()
 process()
end
procedure process()
local n,infile,outfile,line
 every n := 1 to 20 do {
 infile := open("file" II n)
 outfile := open("file" II n II ".new","w")
 while line := read(infile) do {
 while line [find("colour" ,line) + 4] := ""
 write(outfile,line)
 }
 close(infile)
 close(outfile)
 }
end

Let us take another similar example. I have a set of files in which the names of the section headings are
on a separate line and follow an indicator \section{, prescribed by the typesetting program, and each
section heading is itself closed with a right curly bracket. I have each of these in small letters and wish
to capitalize them all. The following line will achieve this:

 line := line[1: match("\section{" ,line)] II map(line[10:0],&lcase,&ucase)

In this instance the function match() is used. This function resembles find(), but it always starts at the
beginning of the line, or if the scanning facility is being used, from the position of the imaginary
pointer which may be moved up by tab() or move(). Additionally it returns the position after, rather
than before, the string which is found. Obviously the position before would be uninteresting since we
know where we are starting. We now give a range, from the first position through the end of what
match() finds for us, and then concatenate it with the rest of the line (indicated by line[10:0]) after it has
had all its small letters made capitals by using the map() function. The first argument is the string with
which we are concerned, and all letters of the second argument which occur in the string are switched
to the corresponding letters of the third argument, and returned as the value of the function. The values
of the keywords representing the small and big letters are really sets, but are automatically switched to
strings for this purpose by the Icon system, just as in selecting the filename it automatically changes the
integers included in the filename to strings. These automatic changes of data type go on all the time in
Icon, and save the programmer considerable effort. The opening and closing of the files can be handled
in exactly the same way as before. Two questions arise with regard to these little programs. First, since
they are so small why not simply put them into the main procedure? The answer is that procedures

117

often get modified and reused, and it is better to start off with them as separate procedures, and use the
main procedure only for traffic control. It is tempting to short-circuit by throwing everything into the
main procedure, but this is a bad habit which should be avoided. Second, is it in order to use programs
like this which contain no error checking? The answer is yes, provided that only you yourself use them,
and you plan to use them promptly. It is a good idea to delete them after use, although you may want to
save some procedures that look as if they could be reused. It would be inadvisable to allow someone
else to use such a program. For example if there was already a file with the same name as the output
file, this program would destroy that file in order to write the new one. It is easy to check to see if a file
exists by attempting to open it and immediately close it. If that succeeds, then the file exists and you
may warn the user that the file will be destroyed if the program is allowed to proceed. It is essential to
put in such precautions against a careless user, since the risk of losing important information is a
serious one. It also points out the need to back up files by making copies and placing them in some
other location so that in the event of an accident all is not lost.

13.2 Other Icon Features
Icon is a language rich in features, and those described in this book represent only a part of the
capabilities of the language which are described in full in the Griswolds' book mentioned in Chapter 1.
The features discussed so far make possible programs of considerable complexity. Here some
additional features will be discussed which are less likely to be used regularly but may prove useful
from time to time.

13.3 Co-Expressions
Certain expressions known as generators produce a sequence of results rather than a single result. For
example, 1 to 10 produces the first ten natural numbers in sequence. We have used this generator with
the every loop to cause a loop to function a fixed number of times. It is possible to feed such a sequence
into a variable, and produce the next number in the sequence whenever we wish. For example, consider
the following fragment of code which would produce a "menu," and store the user's response in the
variable answer:

 write("Would you like to:")
 write("l. Initialize")
 write("2. Update")
 write("3. Report")
 writes("Enter number selected:")
 answer := read()

If, as the program develops, we change the order of the items in the menu, or insert new ones, we shall
constantly be changing the numbers. We could avoid that by rewriting the program fragment as
follows:

 a := create 1 to 10
 write("Would you like to:")
 write(@a,". Initialize")
 write(@a,". Update")
 write(@a,". Report")
 writes("Enter number selected:”)
 answer := read()

The first line stores the result sequence of 1 to 10 in the variable a, and every time we write that
variable preceded by the at-sign, the next result of the sequence is produced. This is known as a co-

118

expression. In this way, the numbering will always be correct, provided it does not exceed 10, however
much we change around the items, or insert new ones.

Additionally, we can reset the sequence to the beginning by prefixing a circumflex to the variable
containing the result sequence.

 b := ^a

stores in b the whole sequence anew from the beginning. The keyword ¤t contains the current
co-expression, and may be useful if you are using several.

13.4 File Handling
We have already learned to use the function open() which gets a file ready to use if it already exists,
and creates it first if it does not. Files should always be closed with close() as soon as they are no
longer needed. A file can be deleted from within a program by using the function remove(). The sole
argument to this function is the name of the file (not a file variable.) The file should always be closed
before it is deleted. This function should be used with caution, since it is possible to delete files later
using the operating system.

Another function can be used to give a file a new name. This is rename() which takes two arguments,
separated as usual by commas, the first of which is the current name of the file, and the second is the
new name.

As an example of how we might use these two functions, let us revert to those twenty files we spoke
about earlier in this chapter in which we changed "colour" to "color". After concluding the changes,
and perhaps arranging for some check that all is as it should be, we might delete the old files containing
"colour", and then give the new file the original name:

 every n := 1 to 20 do {
 remove("file" II n)
 rename("file" II n II ".new","file" II n)
 }

119

Appendix A: Character Sets
Computer character sets are an inheritance from telegraphy (Greek: writing from a distance) and a little
history will aid in their understanding. In the sixteenth century the Italian physician and mathematician
Gerolamo Cardano (1501-1576) suggested that messages could be sent by lighting beacons on five
towers. If we designate an unlighted tower by 0 and a lighted tower by 1, then we can have a code such
as:

00001 (beacon 5 lighted) = A
00010 (beacon 4 lighted) = B
00011 (beacons 4 & 5 lighted) = C

There are 32 possible combinations (25) and this allows for the entire alphabet plus a few extra
characters. Cardano had in effect discovered the bit or binary digit, i.e., a unit of information which can
have one of two states (lighted/unlighted, 0/1, strong current/weak current, and so on.) By combining
these bits, messages can be encoded. Systems of lanterns using Cardano's principle became common in
the nineteenth century. The five-bit Baudot Code named after the French engineer and inventor Jean-
Maurice-Émile Baudot (1845-1903) was widely used in the transmission of messages by electrical
means. Some characters were used to give information or instructions to the teletype at the other end of
the line (to return the carriage or to indicate the end of the message, for example). These had no graphic
representation and came to be known as control characters. In 1966 the American Standard Code for
Information Interchange known as ASCII was adopted. This uses seven bits for information and hence
has 27 = 128 possible combinations.

There is an extra bit used for checking the accuracy of the transmission, and this makes a total of eight
bits. In the ASCII code the first thirty-two characters (from 0 to 31) are control characters; for example,
number 12 was used to instruct the machine to eject a page, and so was known as formfeed or FF. Now
L in the ASCII code is character 76 which in eight binary digits is 01001100. Character 12 in binary
digits is 00001100. To send character 12 the machine simply changed the second digit of character 76
from 1 to 0, and hence this is called control-L. (The "second digit" is normally called bit 6, starting
from zero and numbering from the right—which betrays the Semitic origin of our numerical notation
system!) The operator indicates this to the machine by pressing L while holding down the control key.
(Lowercase letters bear a similar relationship. They change the third digit to a 1—01101100.) It is
interesting to observe that the highest character 127 is also a control character called rubout or delete.
This is on account of the paper tape which was widely used for input. Once a tape has holes in it
(indicating 1's) it is impossible to remove them. But it was possible to backspace and then make all
seven digits 1's by punching all of them, since repunching a hole leaves it unchanged. Hence the
character 127 (01111111 in binary) was simply ignored. In adapting to computers, many of the control
characters lost their original meaning and are used arbitrarily for a number of purposes (especially in
word processing) although some of them such as control-C for end of text remain in many applications.
Such decisions are made by the author of the particular program, and there is little consistency between
different programs. A control character is often indicated by placing a wedge (caret) or circumflex (^,∧
or ˆ) in front of the normal printing character.

In Icon this notation may be used to represent control characters if preceded by a backslash. The
backslash indicates the special nature of the wedge. Thus in a string \^L represents control-L. Since the
additional bit which was used for checking the correctness of the transmission may not be required in
computer usage, this extra bit can also be used to represent characters, and the extended ASCII set of
256 characters contains additional symbols such as letters with accents used in foreign languages and

120

mathematical characters. There are other character sets, for example EBCDIC which also has 256 char-
acters but in a quite different order from ASCII, and some special character sets for scientific
applications. ASCII is now widely used however, and a text using ASCII only is referred to as “plain
text.” Capital letters were traditionally used in indicating control characters, because the obsolete
FIELDATA character set used capitals (uppercase letters) only. Small letters may be used.

It is worthwhile mentioning one matter which is the result of historical developments. The typewriter
moved to a new line by two distinct movements. First, the platen moved sufficiently to feed in enough
paper for one line. Then the carriage shifted to the beginning of the line. For this purpose the character
set had two control characters: one to return the carriage and one to perform a linefeed. On computer
screens, which have no carriage, only one character is needed. This is therefore dubbed "newline" and
just the linefeed character is used. Icon represents this by \l (for “linefeed”) and \n (for “newline”).
These are the same character (ASCII 10). Icon uses \r for the carriage return character (ASCII 13). This
will cause the cursor to return to the beginning of the line.

121

Appendix B: Some Hints on Running Icon Programs

Icon for Apple OS X
The Apple OS X operating system is based on a fully-operational UNIX kernel called “Darwin”, and
features a terminal application which is very helpful in writing, compiling, and executing Icon
programs. An image of the terminal appears in the “Dock”, the bar of icons along the edge of the
screen, and is invoked by clicking on it.

You will also want to install the Emacs editor that the Macintosh offers, which you will find in
“Optional Installs” on the distribution disk. This is an excellent editor for writing programs. As soon as
you save a file with the extension .icn Emacs will go into a mode specially designed for Icon. For an
easy introduction to the main commands, download the following "cheat sheet". On the cheat sheet, C
means that you hold down the control key, and press the following key; M means that you hit and
release the esc key, and press the following key.

http://www.rgrjr.com/emacs/emacs_cheat.html

There is also a newer Emacs called Aquamacs. It works in a way more typical of the Mac than the old
Emacs, but is not well suited to the terminal. Note that the mouse has no function in the terminal, apart
from closing or minimizing the Terminal screen.

Now follow these steps, which are a little tedious, but at least you only have to do this once.

Step 1

Click on the Terminal icon, the oblong box containing >-. It will tell you when you last logged in, and
show you a dollar sign ($) which is the prompt to enter a command. UNIX arranges directories
(folders) in a tree structure. Type in pwd and you will learn that you are in your home directory, in my
case /Users/alancorre. Your own username should appear of course. The command pwd is useful in
case you get lost on your "tree," since it names for you the directory in which you are working. pwd
stands for "print working directory" and came about in the days when there was no interactive
computing with a screen. So let's think of "produce" rather than "print.

Step 2

We need to make an addition to your .profile file, which Apple sets up for you to initialize Darwin.
This will ensure that you will be able to run Icon properly. At the prompt enter: emacs .profile You
will see an Emacs screen. Press the down arrow on the keyboard to bypass preliminary information,
then paste or type in the following, substituting your username for mine:

Setting the path for MacPorts.
export PATH=/opt/local/bin:/opt/local/sbin:/Users/alancorre/icon.v950/bin:$PATH

Press the control key, followed immediately by x and c. You will be asked if you want to save the file.
Type in yes. Emacs saves the file, and exits. At the prompt, key in logout and click on the red dot.

122

Step 3

Download the Icon version 9.5 software for the Intel Mac from:

http://www.cs.arizona.edu/icon/ftp/binaries/unix/mac-x64-v950.tgz

You must have OS X Version 10.6.4 or later for this software, issued in May, 2010.

The resulting zipped (compressed) file should appear on your screen in the Finder. Click on it, and your
Mac will expand it for you. Drag the folder icon-v950 to the image of the Terminal in the Dock.

Step 4

It is not a good idea to write programs in your home directory, so on returning to the Terminal, key in
mkdir iconprogs which will create a directory called iconprogs one level below your home directory.
Give it another name if you like, just one word, no spaces. Then key in cd iconprogs and you will
change to that directory. If you now key in pwd you will see that this working directory is empty—so
start filling it up! To conclude you key in logout, click on the red dot, and take a deserved rest.

Icon for Windows
For Windows go to http://www.cs.arizona.edu/icon/v93w.htm and click on “5.1 ZIP file” which will
download the Icon 9.3.2 installation package. This also works with Windows Vista. This piece of
software is well designed and quite intuitive, so if you are familiar with Windows you should have no
problem. You can use Notebook as an editor to write your programs, just be sure that the file is saved as
text only.

Happy programming!

http://www.cs.arizona.edu/icon/v93w.htm
http://www.cs.arizona.edu/icon/ftp/binaries/unix/mac-x64-v950.tgz

123

Index
ampersand 5, 81
any() 80
arithmetic mean 37
array 91
ASCII 26, 41, 119
asterisk 8
average 37
back slash 31, 79, 90, 104
backspace 86
Baudot Code 119
binary digit 119
binary operator 88
bit 119
caret 57, 119
case 93
center() 72
char() 26
character set 41, 80, 119
circumflex 57
close() 24
co-expression 117
command line 63
comment 32
control character 11, 41, 119
cset 80
data base 91
default 22, 93
delete 81
do 10
editor 17
effect 4
Emacs 17
end 8
end of text 119
every 14, 21
exchange operator 88
exclamation point 75

exponentiation 57
extension 19, 78
failure 4
FIFO 64
file 17
file handling 118
filename 19, 33
formfeed 119
generator 14, 21
global 13
graphics 21
hex number 41, 51
histogram 21
HTML 41
icont 9
indentation 8, 93
inherited failure 10
initial 13
integer() 4
keyword 5, 27
left() 29
LIFO 64
linefeed 41, 86
list 12
local variable 23
loop 2
main procedure 8, 69
many() 9, 15, 79
map() 116
match() 75, 116
matching 74
mean 37
median 38
menu 92, 117
mode 31
modulo 27
move() 27, 116

multi-way condition 93
newline 86, 120
not 25
null string 84
of 93
open() 24, 31, 52, 116
operating system 65, 91
or 25
parentheses 3, 38
password 91
pattern matching 74
Pearson's coefficient 71
pop() 86
procedure 8
program flow 8
push() 64, 86
question mark 7, 74
read() 11, 15, 64
real number 37
real() 37
record 91
remainder 27
remove() 118
rename() 118
repeat 66
result sequence 117
return 8
right() 26
rubout 119
scaling 26, 67
scanning facility 7, 54, 74
scattergram 66
set() 80
sort() 60, 65, 95
Spearman coefficient 66
square root 57
stack 64, 86

124

standard deviation 53
static 79, 82
stop() 12, 25
string 3, 7
suspend 32, 55
tab character 93
tab() 7, 15, 27
table 52, 74
tilde 57, 94
unary operator 88
underscore 3, 83, 114
until 25
up-arrow 57
upto() 7, 89

value 24
wedge 57, 119
while 10, 66
word frequency 59
word processing 115
write() 4
writes() 22
-:= 83
:=: 88
! 75
? 7
* 8
/ 79
& 27

&ascii 27
&cset 27
¤t 118
&digits 27
&lcase 11
&letters 11
&pos 54
&subject 61
&ucase 11
+:= 13
== 11
||:= 86

תושלב"ע

	Foreword to the Second Edition
	Preface
	1. Introduction
	1.1 The Icon Programming Language
	1.2 Basic Concepts
	1.3 Mathematical Concepts

	2. Distributions
	2.1 Getting Started on a Program
	2.2 Separating Data and Program
	2.3 Distribution

	3. Storing and Editing Programs in Files
	3.1 Making Information that Lasts
	3.2 The Emacs Editor
	3.3 Running an Icon Program From a File

	4. Graphs
	4.1 Histograms
	4.2 Reading Data From a File
	4.3 Refining the Histogram

	5. Measures of Central Tendency
	5.1 The Mode
	5.2 The Arithmetic Mean
	5.3 The Median
	5.4 Variants on the Program

	6. Icon and Unicode
	6.1 Introduction to Unicode
	6.2 Working with Russian, Tamil, and Hebrew
	6.2.1 Russian
	6.2.2 Tamil
	6.2.3 Hebrew

	6.3 Further Study
	6.4 Hex to Dec

	7. Standard Deviation
	7.1 Working with Sentences
	7.2 Figuring the Standard Deviation
	7.3 Word Frequency

	8. Correlation
	8.1 The Spearman Rank Correlation
	8.2 Scattergrams

	9. Pearson's Coefficient of Correlation
	9.1 Planning the Program
	9.2 Getting Information From the User
	9.3 Figuring the Coefficient
	9.4 Creating the Table—Pattern Matching
	9.5 Matching Against a List of Words
	9.6 More on Matching
	9.7 Sets

	10. Programming a Nursery Rhyme
	10.1 Ten Green Bottles
	10.2 The House that Jack Built
	10.3 Randomizing Jack

	11. Creating a Data Base
	11.1 A Grade Program
	11.2 A Vocabulary Program

	12 Icon and Markup Languages
	12.1 A Brief History of Markup Languages
	12.2 Manipulating texts encoded according to the TEI
	12.2.1. The Input Text
	12.2.2. The Program
	12.2.3. The Output

	12.3 Expanding the above Program
	12.4 Stripping Tags and Character Entities from a Text

	13. Conclusion
	13.1 Word Processing
	13.2 Other Icon Features
	13.3 Co-Expressions
	13.4 File Handling

	Appendix A: Character Sets
	Appendix B: Some Hints on Running Icon Programs
	Icon for Apple OS X
	Icon for Windows

	Index

