
On the Nature of Fires and How to Spark Them
When You’re Not There

Sarah Esper
University of California, San Diego

La Jolla, CA
sesper@eng.ucsd.edu

Stephen R. Foster
University of California, San Diego

La Jolla, CA
srfoster@eng.ucsd.edu

William G. Griswold
University of California, San Diego

La Jolla, CA
wgg@cs.ucsd.edu

ABSTRACT
Traditionally, computer science education research contributes
new tools, techniques, and theories to improve institutionalized
learning spaces – e.g. classrooms. However, we take the position
that the study and improvement of computer science learning
spaces outside the classroom are just as important.

We take a step toward illuminating the critical qualities of non-
institutional computer science learning spaces by engaging in a
grounded-theoretical examination of first-hand accounts of non-
institutional learning. To further study the topic, we attempted to
recreate (in the lab) a learning environment with many qualities
that characterize non-institutional learning. To make this
possible, we employed a modified version of CodeSpells – a video
game designed to teach Java programming in a way that
engenders the sense of sustained, playful, creative exploration
driven entirely by the learner. This study introduced 40 girls,
ages 10 to 12, to programming for the first time. We use the
results of both studies to develop a theoretical framework which
we use to examine existing tools such as Scratch, Alice, and
educational games in a new light.

Categories and Subject Descriptors
K.3.2 [Computer Science Education]: Introductory
Programming

General Terms
Human Factors

Keywords
Grounded Theory, Authentic Practice, Origin Stories, CS0, CS1,
Gamification, Active Learning, Informal Learning Spaces

1. INTRODUCTION
That minds are “fires to be kindled rather than vessels to be filled”
was first expressed by Plutarch and has become one of the most
oft employed quotations within pedagogical discourse. Still, there
would appear to be some magic and mystery to the sparking of
flames: it is much easier to develop curricula and textbooks that
seek to fill up minds with material rather than to spark a love of
learning. Not surprisingly, it is a rare student indeed that catches
fire in a classroom. Furthermore, our “factory” model of
education has come under such heavy criticism in recent years, [1,

2, 3] that one might begin to suspect that some forms of
institutional instruction may have a dampening effect on the
sparking of flames. This suspicion (further supported anecdotally
by several decades of the authors’ personal experiences in
academia), prompted us to study the nature of flame-sparking by
investigating how such flames manifest themselves “in the wild”
– i.e. outside of classrooms.

Indeed, the field of computer science is rife with stories of
children (many strikingly young) who discovered computers and
taught themselves to program without the benefit of formal
instruction. We collected various such accounts from a variety of
sources. The following section gives a grounded-theoretical
analysis of these accounts and begins to set forth a list of five
qualities that appear to correlate with the eventual sparking of a
lifelong love of programming.

We then sought to recreate these five qualities in a laboratory
study with 40 girls, ages 10 to 12, exposing them to programming
for the first time using a video game called CodeSpells, which
supports many of the aforementioned qualities by default. Our
goal was to study these qualities “up close”, in order to refine our
understanding of them. We present the results of this second study
in Section 4.

Ultimately, using the insights gained from our grounded-
theoretical analysis and our laboratory study, we are able to
further illuminate how a passion for programming spark “in the
wild”. Although our studies are both of non-institutional learning
environments, we believe (as in [4]) that the study of these
environments can help shed new light on the process of learning
in general. Thus, in Section 5, we discuss various contemporary
software tools for teaching programming – looking at them in the
new light offered by our analysis of non-institutional learning.

2. FORMAL VS. INFORMAL LEARNING
In related literature, a distinction is generally made between
“formal” and “informal” learning. However, we prefer the terms
“institutional” and “non-institutional” because, as pointed out by
Sefton-Green [4], the terms “formal” and “informal” are
somewhat overloaded. “Formal” can refer either to “organized”
(as opposed to “disorganized”) knowledge acquisition or to
“institutional” (as opposed to “non-institutional”) settings. This
can lead to confusions: for example, one could imagine a
disorganized (or student-driven) acquisition of material within the
confines of an academic classroom – which is difficult to classify
as a “formal” or “informal” experience. Thus, we use
“institutional” (and “non-institutional”) to make clear that we are
discussing settings that fall within (or out side of) traditional
academic institutions.

There has been wide research on informal learning spaces, but
relatively little that pertains directly to non-institutional computer
science education. The only two studies that we know of both
involve ethnographic research on how Scratch (a novice

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee
SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.
Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

305

programming environment) has been employed voluntarily by
minority teenagers in a Los Angeles-based Computer Clubhouse
[5, 6]. Although, the clubhouse environment is technically an
institution, we classify the setting as non-institutional because it is
not a traditional academic classroom environment. Students have
free rein over their activities and can even play video games if
they wish.

Thus, this paper adds to the small amount of prior knowledge on
non-institutionalized computer science education by performing
two new studies, using two new methodologies, and offering
novel analysis of non-institutional learning to better illuminate the
nature of learning in general.

3. ORIGIN STORIES STUDY
Since our research interest lies in the notion of sparking flames
that lead to lifelong passions, we elected not to begin by studying
existing non-institutional learning spaces – e.g. the clubhouse-like
settings mentioned above, or after-school programs. After all, the
children partaking in these spaces are (at best) only just beginning
a lifelong computer science career. Instead, we collected first-
hand accounts from contemporary computer science
professionals, whose lifelong passions began in non-institutional
settings. In this way, we hoped to be better equipped to draw
conclusions about the non-institutional learning qualities that
correlate with long-term excitement toward programming.

Ultimately, we accumulated 30 of these “autobiographical origin
stories” (as we call them) from 3 different sources. We first drew
12 such stories from: 1) the Computing Educators Oral History
Project [7], and 2) a qualitative study performed by Hewner and
Guzdial [8]. To obtain more data, we also obtained 18 origin
stories from 3) a survey we conducted ourselves, wherein we
instructed participants to respond to the simple prompt: “Describe
your first experiences with programming.” We sent out this
survey to the faculty and graduate student population at our
university as well as to industry professionals via email and
LinkedIn. In all cases, we selected only first-hand accounts where
it was clear that the participants were describing their first
experience as a programmer within a non-institutional setting.

The demographics of the autobiographers were intentionally quite
diverse: ranging in age from graduating college seniors to industry
professionals to retired. There were 11 males and 14 females. The
genders of the 5 authors acquired from the study performed by
Hewner and Guzdial is not directly reported. Some accounts
involved programming on ancient Teletype machines, whereas
others used modern hardware and environments like Alice. Since
our intention was to begin constructing a very general theory of
effective non-institutional learning environments, we felt that
diversity was key.

3.1 Methodology for Origin Stories Study
Following the well-accepted procedures of grounded theory as set
forth by Strauss and Corbin [9], we first engaged in open coding
[9, ch5], where we coded each sentence and often time partial
sentences. In the open coding, we found 13 subcategories: self-
drive, enjoyable/emotional connection, “flow state” while
programming, confidence/belief that you can succeed, investment
in the results of the code, empowerment, creation of “meaningful”
artifacts, lots of hours/re-visitation, access to immediate feedback,
wrongness is on a spectrum and is therefore not binary, access to
support, feeling addicted, losing track of time.

We followed open coding with axial coding [9, ch7], which
allowed us to derive 5 distinct categories based on the open
coding. Table 1 shows how the open coding results were

connected to the 5 categories found in the axial coding and in the
next section we define and give examples to our 5 categories.

Table 1. Results of Grounded Theory coding of Origin Stories

Axial Coding Results Open Coding Results

Learner-Structured
Activities

Self-driven, Access to immediate feedback, Access to
support

Exploration/
Creativity/ Play

Creation of “meaningful” artifacts, Investment in the
results of the code

Programming as
Empowerment

Enjoyable/emotional connection, confidence/belief that
you can succeed, wrongness is on a spectrum; not

binary
Difficulty Stopping “Flow-state” while programming, Feeling addicted

“Countless” Hours Lots of hours/re-visitation, Losing track of time

3.2 Results of Origin Stories Study
All 30 origin stories exhibited at least 1 of the 5 qualities. 20 of
the origin stories exhibited 3 or more.

Learner-Structured Activities: An activity is learner-structured
when the learner engages in activities that are not at all (or not
entirely) structured by some outside force:

 “...when the Commodore PET came along and I took it
home one summer and taught myself BASIC”,

 “I was by myself with no assignments - just me and
the computer to play with.”

 “I... bought books and wrote programs instead of
taking courses in high school.”

Exploration / Creativity / Play: The act of creation through
experimentation and play was common – a mentality of “What
would happen if...?”

 “I'd also try to add things, so if it was print a 'hello
world' string, I would make it ask for your name, and
print 'hello <name>', and if your name was a friend's
name, I'd add an inside joke or something.”

 “I would purposely try changing some of the
parameters to see what would happen”

 “And we had gotten a Radio Shack computer and I had
played around with that.”

Programming as Empowerment: Programming was commonly
viewed as a means of increasing one’s personal efficacy, self-
esteem, sense of purpose, or social standing.

 “…so I was able to do it, and that gave me confidence
that ‘I knew computers’”

 “To me, computers are freedom, they are
entertainment and above all they are a symbol of power
and adulthood.”

 “Soon enough the computer was asking me what my
name was and then asking me how I was and addressing
me by name. I’d made a new friend! I think my most
impressive program was when I got the computer to
make different sounds.”

Difficulty Stopping: We expected to discover that the
autobiographers found programming enjoyable, but the origin
stories included many accounts of how frustrating the process
was. The common thread, however, is that the act of
programming was perceived as an engaging and often addictive
one – with descriptions liked being “hooked”.

306

 “That was a moment where I got hooked because just
the sense that you could program a loop that could do an
array of any number of any size, any number of
numbers, just seemed to be such a fantastic thing.”

 “When that actually worked, I thought it was the coolest
thing ever, and after that I was hooked =P”

 “[I was] becoming so closely involved with
technology... [that] I was a little afraid of being sucked
into the CS major stereotype...”

 “I went for Mechanical Engineering. But my liking for
computers never died... and I took some private
computer courses on the side”

“Countless” Hours: This is closely related, but distinct from,
difficulty stopping. (Some autobiographers did not exhibit signs
of addiction but still invested large amounts of time for other
reasons.) Many origin stories describe spending so much time
that the autobiographers could not readily quantify the amount,
tending to use abstract generalizations like “countless” or
“dozens” or metaphors like “journey” (which imply a large time-
investment).

 “I wrote countless Pascal programs on my old PC. (I
still have some of the old code, printed out,
somewhere!)”

 “My journey has been full of excitements. Since the
beginning I have enjoyed computers.”

 “So back then it was really very labor intensive, was
not instantaneous by any stretch of the
imagination..”

 “I read the guide to my TI-89 calculator a dozen times,
learning to make simple games or programs in it.”

We stress that this study was intended to be a preliminary theory-
building endeavor, not a means by which a definitive, overarching
theory was to be achieved. Indeed, the main intent was to inform
and structure the laboratory study that followed it.

4. LAB STUDY
Our laboratory study was intended to “enhance theoretical
sensitivity” [9, ch6] through the use of questioning – moving a
step beyond the brief, straightforward nature of the origin stories.

We wanted to be able to determine if 1) the above five qualities
could be recreated under laboratory conditions, and if so 2) to
study them “up close” in order to enrich our theoretical
understanding of them. Furthermore, we contend that performing
laboratory studies on non-institutional learning is extremely
important if one’s ultimate goal is to learn from non-institutional
learning in order to help inform institutional learning
environments. After all, a laboratory lies somewhere between a
fully institutional setting and a fully non-institutional setting. This
means that lessons learned in a laboratory may be more easily
transferable to a classroom than lessons learned in the wild.

4.1 Methodology for Lab Study
4.1.1 Software and Experimental Setup
CodeSpells is an educational video game – more specifically, an
immersive fantasy role playing game designed to teach Java
programming by immersing the player inside a 3D virtual world
and a first-person storyline wherein she plays the part of an
apprentice wizard [10]. CodeSpells teaches Java by giving players
access to a novice-friendly API for crafting novel magic spells.

We chose to use CodeSpells because its magic metaphor has been
shown to be compelling and exciting to novice learners [ibid].
We felt that the game would be an engaging environment for girls
in the 10- to 12-year-old age group.

Normally, learning in CodeSpells is encouraged by way of a series
of quests that must be completed with the use of Java-based spell
crafting. However, we particularly wished to study learner-
structured activities and creative exploration. So we employed
a version of CodeSpells that did not have explicit quests to
complete. (The CodeSpells platform is quite extensible). Rather,
players could walk up to in-game gnome-like characters who
would give various spells to the player, along with simple
explanations. Our hope was that these spells would serve as
starting points for code exploration.

We recruited forty girls (ages 10 to 12) who had no prior
programming experience in any language or programming
environment. We gave them a short overview of the CodeSpells
game mechanics – including how to write and edit code with the
in-game IDE. We divided them into 12 groups of three and 2
groups of two, and encouraged them to explore the 3D world and
to see if they could “do interesting things”. We were purposefully
vague, as we hoped to encourage a largely unstructured learning
environment.

We then allowed the subjects to play CodeSpells for one hour
while we observed. Data collection techniques during this time
involved video and audio recordings of 6 groups; video was of the
computer monitor so that we could record actual gameplay. We
also assigned one undergraduate computer science major to each
group; each undergraduate took notes on what the girls struggled
with. Our main research team also took observational notes as
they walked around the lab.

After one hour, we split the girls into groups of 12 to 15 members
and engaged each group in a semi-structured group interview. The
interview involved questions such as: “Describe what you have
been doing for the past hour.”, “Can anyone share something
interesting they did in CodeSpells?”, “Can anyone share
something they were trying to do, what did you do to try to make
it happen?”, “Did anyone get stuck while playing, what did you
do when you got stuck?”, “If you had more time, what would you
want to do next?”, and “Can anyone describe to me what spells
are and how you use them?”. Data collection during the group
interview was videotaped and the interviewer took brief notes.

4.2 Results of Lab Study
Our subjects played CodeSpells for the entire hour before we had
to ask them to stop. Students expressed disappointment that it
was “over so soon”. 25 of the subjects showed interest in playing
CodeSpells at home and wanted to know when it would be
available for them to play. We consider this to be evidence that
students experienced some difficulty stopping. And the lingering
excitement is a rough indicator that novices might indeed play
such a game for “countless” hours – though we would need to
allow our users to play CodeSpells at home to measure this
further.

Of the 6 groups of girls we recorded, roughly 90% of their time
was spent exploring the 3D world and/or editing code (as opposed
to, say, chatting amongst themselves). Also interesting is that the
quest-less version of CodeSpells provides considerably less
structure than most video games. In spite of this, subjects did not
ask “What am I supposed to be doing?”, nor did they seem at a
loss for activities to engage in. The simple directive to “do
interesting things” was sufficient for inspiring subjects to give

307

structure and shape to their own activities. This strongly suggests
that a learner-structured mentality arose within the lab study.

Some subjects tried changing method calls like
thing.levitate(3) to thing.hop() or to thing.blowup() (which
are not available in the API but are surprisingly correct
syntactically). Even though these attempts failed to evoke the
desired effect, students did not appear to become discouraged.
Subjects also discovered quite valid changes in this way too – e.g.
thing.levitate(300000). This suggests a drive to explore, play,
and create. And furthermore, this drive appeared to be fueled
(rather than dampened) by syntax errors. Of the 6 groups video
taped, 4 of them encountered some syntax error that they resolved
either by undoing the error they introduced (55% of the time) or
asking the undergraduate student that was near them (45% of the
time). In all cases, acts of self-structured activities followed
these interludes.

A particularly interesting phenomenon occurred with regard to
what one might call “logic errors”. One group of girls made the
mistake of levitating an object so high into the air that it could not
be reached. They were able to retrieve the object, however, by
jumping onto another object and levitating it (and thus
themselves) sufficiently high enough to reach the original object.
This emergent use of code to surmount challenges of one’s own
making is an act that fits our definition of exploratory play.
Logic errors were seen in all 6 groups recorded, but we note again
that the exploration seemed to be fueled (rather than dampened)
by things going awry.

During the lab study and more so in the group interviews we were
encouraged to hear that the girls felt empowered. When changes
to the code didn’t accomplish what they wanted, they kept
working towards their goal, trying different spells or different
code changes until they eventually reached it. When asked about
how they reached their goals, they conveyed that they “knew it
could be done” and that they “just needed to figure out how”.
They described code as a “way to accomplish anything” within
the 3D environment. At no point did they describe programming
as a barrier to the self-structured activities and creative
exploration in which they chose to engage.

5. DISCUSSION
5.1 Refining the Theory
With the benefit of the laboratory study, we were able to study 4
of the aforementioned qualities (with the exception of “countless”
hours) up close. Our observations allow us to add a quality that
seems to go hand in hand with exploratory play. Namely,

A positive attitude toward “failure”: An institutional setting
often provides an objective and authoritarian definition of what
“success” and “failure” are. It was striking to observe that, when
left to their own devices in a non-institutional setting, subjects
approached what would traditionally be labeled as “failures”
(syntax and logic errors) without the slightest apparent awareness
that they had done something “wrong”. No one had ever told
them that syntax errors were bad or that code ought to do what
one expects it to.

Thus far, we have presented two studies, 1) a study of origin
stories in computer science and 2) a laboratory study of 40 novice
10- to 12-year-old pre-programmers. In the first study, we were
able to tentatively identify 5 qualities that correlate with non-
institutional learning in such a way that leads to the sparking of a
lifelong passion for computer science. In the second study, we
showed that at least 4 of these qualities (all but “countless”
hours) could be recreated in a laboratory setting. We further

observed a striking relationship between a positive attitude
toward “failure” and the tendency to engage in exploratory play
– allowing us to further enrich our theoretical framework.

We believe that further study of non-institutional learning is
critical if we, as educators, wish to better understand how the
sparking of young minds happens in the wild. We feel that a
clearer understanding of the conditions under which such a
seemingly mysterious phenomenon naturally occurs can serve to
shed light on how to recreate this phenomenon more readily
within institutional settings.

Moreover, though, the theory we have developed so far can help
enrich modern pedagogical discourses – for example, the ongoing
discourse about tools for teaching novice programmers.

5.2 Applying the Theory
Even though a comprehensive theory of non-institutional learning
is perhaps a long way off, the aforementioned theoretical
framework is already sufficient to allow for existing tools to be
discussed with a new vocabulary, leading to new insights.
Consider, for example, some common tools for teaching
introductory programming.

5.2.1 Novice IDEs
Scratch is a visual programming environment designed to allow
novice programmers, particularly young programmers, to create
media-rich results by dragging programming blocks into place to
create programs [11]. The 3D Alice environment is a friendly IDE
serving as a “stepping stone to computer science careers” [12].
Alice provides an experience that allows users to make their own
movies or video games.

Such environments allow the production of visually stimulating
effects – which certainly gives young pre-programmers more
avenues for exploration, play, and creativity.

On the other hand, it is not clear whether such environments
encourage the other four qualities. For example, these
environments do not overtly seek to motivate learner-structured
activities. Likewise, there is no overt effort to induce
“countless” hours of practice. On the other hand, nothing in
Alice or Scratch overtly prevents learners from spending
“countless” hours on learner-structured activities. Then again,
nothing overtly prevents a student from opening up Eclipse and
playing around with Java for hours on end. It is no doubt a rare
occurrence though.

When the above are embedded within a classroom environment,
“countless” hours can easily be required of students – but at the
risk of sacrificing learner-structured activities and exploratory
play. A natural place to look for solutions to this problem is in
educational video games.

5.2.2 Educational Video Games
There exists a long history of educational video games, some of
which are intended to teach programming [13, 14, 15, 16].
Although programming-related educational games to date have
not gained widespread popularity, one can still examine video
games (in general) in light of the framework.

Learner-Structured Activities: Video gaming tends to be a self-
driven and self-structured activity – even for individuals who are
too young to apply the same kind of self-motivation to academic
subjects.

Exploration / Play / Creativity: Games can be used to create
rich 3D worlds that facilitate exploration. In CodeSpells, for

308

example, the interplay between objects, physical laws, and magic
makes for emergent properties that drive play and exploration.

Programming as Empowerment: In CodeSpells, for example,
the code a player can write directly correlates with the efficacy of
that player within the 3D world. What one can code and what one
is empowered to do go hand-in-hand.

Positive attitude toward “failure”: Games are not always
enjoyable. Players can lose. Characters can die. Tetris blocks
don’t always fit. Frustration is as common as euphoria. Yet it
doesn’t seem to phase gamers and is indeed an integral part of the
experience.

Difficulty Stopping: Indeed, while not always strictly an
enjoyable experience, video games inspire an unprecedented level
of active engagement that (for some) borders on addiction.

 “Countless” Hours: The gaming industry is a multi-billion
dollar industry. At least one study shows that children spend
10,000 hours playing video games throughout childhood [17].
Clearly non-educational video games do spark lifelong passions…
for playing video games.

One might then ask, if video games have all the requisite qualities,
why aren’t educational video games routinely sparking lifelong
passions for all sorts of academic disciplines? Our response
would be to point out that many explicitly educational video
games actually lack some of the above qualities.

It is difficult for many educational games to support creative
exploration. Consider, for example, the classic Math Blaster. In
order to provide positive and negative feedback to the player, the
game must be able check the player’s answers to mathematical
problems. This means that the game can only serve-up a series of
checkable problems, each with an objective right or wrong
answer. There is no room for creativity. The game cannot say to
the player: “Do something mathematically creative. You’ll get
more points the more creative it is.”

Similarly, many educational games have been criticized and
called “chocolate-covered broccoli” [18] because the educational
material interrupts what would otherwise be smooth gameplay. In
other words, the education interrupts the fun stuff. Or, to put it
the other way around, the fun stuff (chocolate) is intended to
thinly disguise the education (broccoli). No doubt this has a
detrimental effect on the difficulty stopping and the tendency to
engage in “countless” hours.

In conclusion, it would appear that both novice-friendly IDEs and
educational games alike leave something to be desired from the
standpoint of sparking lifelong passions for programming. The
gamification of programing environments like Alice or Scratch
might be one solution. CodeSpells, for example, seeks to combine
the best aspects of educational games with the best aspects of
novice-friendly IDEs.

6. FUTURE WORK
Our main goal is to use lessons learned from highly successful
non-institutional learning to shape and inform institutional
learning. To this end, we are currently conducting a 6-week-long
class in which unstructured play time in CodeSpells is
supplemented with in-class instruction. Also, we have developed
a multi-player, competitive version of CodeSpells, which we are
utilizing to examine the non-institutional learning environment
that has sprung up around a competitive CodeSpells team that
practices three times a week while we observe.

Our grounded theory study on origin stories was somewhat
limited because we reviewed static, written text and were not

engaging in interviews. We would like to further define our 6
categories that classify non-institutionalized learning spaces
through a series of interviews where we could employ the
grounded theory technique more rigorously. This study has
introduced us to the theory, but we would like to define this
theory more detailed so that other education researchers may
apply it when examining and creating tools and environments for
novice programmers.

7. CONCLUSION
We take the position that it is highly relevant to study non-
institutional learning in which young people teach themselves to
program. We analyzed the origin stories of 30 individuals who
eventually became successful in computer science. We identified
five qualities that tended to occur across multiple origin stories
and that can be tentatively posited to correlate with the sparking
of lifelong passions for computer science.

To more deeply study these qualities, we performed a laboratory
study with 40 girls (ages 10 to 12) and analyzed their experiences
according to the aforementioned five qualities. This allowed us to
refine our understanding of these qualities and even to observe a
sixth quality – further deepening the theoretical framework.

Our contributions are three-fold:

 We give the first theoretical framework for
understanding the conditions under which the sparks of
lifelong learning are sparked in non-institutional
computer science learning environments.

 We demonstrate two novel methodologies for further
examining non-institutional computer science learning.
(The small amount of prior work that exists uses only in
situ ethnographic methodologies.)

 We contribute a new vocabulary for discussing and
designing tools for novices, using our theoretical
framework to point out opportunities for improvement
in both novice-friendly IDEs and educational games.

Ultimately, we take the position put forth in [11] – namely, that
studying non-institutional learning is a means by which to
understand learning in general. After all, non-institutional
learning has a unique character. It is unstructured. It is creative.
It is play. Also, as we saw in our laboratory study, the absence of
values implicitly instilled in institutional settings (e.g. that syntax
errors are bad) can lead to differences in behavior. As such, the
study of non-institutional spaces may serve as an untapped
resource for computer science educators – a resource that can help
inform how we structure our institutional spaces. We believe the
study of these space can yield surprising new insights about what
we’re doing right as well as what we may be doing wrong.
Ultimately, it is a line of research that can give us new ways to
light fires and to keep them lit.

8. ACKNOWLEDGMENTS
This research is funded, in part, by two NSF Graduate
Fellowships. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF. Our
thanks to ACM SIGCHI for allowing us to modify templates they
had developed.

9. REFERENCES
 Eric Mazur. 2009. Farewell, Lecture? Science, 323, 50-51

(2009).

309

 Christopher D. Hundhausen, N Hari Narayanan, and Martha
E. Crosby. 2008. Exploring studio-based instructional
models for computing education. In Proceedings of the 39th
SIGCSE technical symposium on Computer science
education (SIGCSE '08). ACM, New York, NY, USA, 392-
396. DOI=10.1145/1352135.1352271

 Andrew Luxton-Reilly and Paul Denny. 2009. A simple
framework for interactive games in CS1. SIGCSE Bull. 41, 1
(March 2009), 216-220. DOI=10.1145/1539024.1508947

 Julian Sefton-Green. 2004. Literature Review in Informal
Learning with Technology Outside School, 2004. A NESTA
Futurelab Series -report 7.

 Kylie A. Peppler and Yasmin B. Kafai. 2007. From supergoo
to scratch: exploring creative digital media production in
informal learning. Learning, Media and Technology 32, 2
(2007), 149–166.

 John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel
Resnick, and Natalie Rusk. 2008. Programming by choice:
urban youth learning programming with scratch.
In Proceedings of the 39th SIGCSE technical symposium on
Computer science education (SIGCSE '08). ACM, New
York, NY, USA, 367-371. DOI=10.1145/1352135.1352260.

 CEOHP. 2008. Computing Educators Oral History Project.
(April 2012). www.ceohp.org/.

 Michael Hewner and Mark Guzdial. 2008. Attitudes about
computing in postsecondary graduates. In Proceedings of the
Fourth international Workshop on Computing Education
Research (ICER '08). ACM, New York, NY, USA, 71-78.
DOI=10.1145/1404520.1404528.

 Anselm Strauss and Juliet Corbin. 1990. Basics of qualitative
research: grounded theory procedures and techniques. Sage
Publications, Newbury Park, Calif.

 http://sarahesper.ucsd.edu/CodeSpells, August 2012.
 John Maloney, Mitchel Resnick, Natalie Rusk, Brian

Silverman, and Evelyn Eastmond. 2010. The Scratch
Programming Language and Environment. Trans. Comput.
Educ. 10, 4, Article 16 (November 2010), 15 pages.
DOI=10.1145/1868358.1868363.

 Stephen Cooper, Wanda Dann, and Randy Pausch. 2000.
Alice: a 3-D tool for introductory programming concepts. J.
Comput. Small Coll. 15, 5 (April 2000), 107-116.

 Matthew Dickerson. 2011. Multi-agent simulation and
netlogo in the introductory computer science curriculum. J.
Comput. Sci. Coll. 27, 1 (October 2011), 102–104.

 Michael K¨olling. The greenfoot programming environment.
2010, Trans. Comput. Educ. 10, 4 (November 2010), 14:1–
14:21.

 William H. Bares, Luke S. Zettlemoyer, and James C. Lester.
1998. Habitable 3d learning environments for situated
learning. In Proceedings of the 4th International Conference
on Intelligent Tutoring Systems, ITS ’98, Springer-Verlag
(London, UK, UK, 1998), 76–85.

 http://robocode.sourceforge.net/, August 2012.
 Clare Richards. 2003. Teach the world to twitch: An

interview with Marc Prensky, CEO and founder
Games2train.com. Futurelab.
www.futurelab.org.uk/resources/publications_reports_article
s/web_articles/Web_Article578.

 Amy Bruckman. 1999. "Can Educational Be Fun?" Game
Developer's Conference, San Jose, California. (March 17th,
1999).

310

